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Objective: To semi-automatically induce semantic categories of eligibility criteria from text and to auto-
matically classify eligibility criteria based on their semantic similarity.
Design: The UMLS semantic types and a set of previously developed semantic preference rules were uti-
lized to create an unambiguous semantic feature representation to induce eligibility criteria categories
through hierarchical clustering and to train supervised classifiers.
Measurements: We induced 27 categories and measured the prevalence of the categories in 27,278 eligi-
bility criteria from 1578 clinical trials and compared the classification performance (i.e., precision, recall,
and F1-score) between the UMLS-based feature representation and the ‘‘bag of words’’ feature represen-
tation among five common classifiers in Weka, including J48, Bayesian Network, Naïve Bayesian, Nearest
Neighbor, and instance-based learning classifier.
Results: The UMLS semantic feature representation outperforms the ‘‘bag of words’’ feature representa-
tion in 89% of the criteria categories. Using the semantically induced categories, machine-learning clas-
sifiers required only 2000 instances to stabilize classification performance. The J48 classifier yielded the
best F1-score and the Bayesian Network classifier achieved the best learning efficiency.
Conclusion: The UMLS is an effective knowledge source and can enable an efficient feature representation
for semi-automated semantic category induction and automatic categorization for clinical research eligi-
bility criteria and possibly other clinical text.

� 2011 Elsevier Inc. All rights reserved.
1. Background bullet list, or arbitrary user-specified topic categories. In contrast,
Eligibility criteria specify the characteristics that a human vol-
unteer must or must not possess to participate in a clinical study
or to be treated according to a standard clinical care guideline.
Each criterion is an independent sentence describing a patient
characteristic, often with a temporal constraint. Examples are
‘‘Age of at least 18 years and 75 years or less’’ or ‘‘Have a CD4 cell
count of 200 copies/ml or higher within 60 days of study entry.’’ With
more and more patient health information being available elec-
tronically, especially through the expanding adoption of electronic
health records (EHR) worldwide, it is appealing to link eligibility
criteria to electronic patient information to automatically match
patients to clinical research opportunities or to automatically
screen patients for personalized clinical care. However, the
unstructured format of eligibility criteria is a big barrier to this goal
[1]. On ClinicalTrials.gov [2], the official public registry of clinical
trials, clinical eligibility criteria are organized as a paragraph, a
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patient information is often structured and encoded in various
clinical terminologies by category. For example, disease diagnoses
are often encoded by the International Classification of Diseases
(ICD) version 9, while the Current Procedure Terminology (CPT) en-
codes laboratory test results. In order to improve the efficiency for
eligibility determination in the vast patient information space, ide-
ally eligibility criteria should be categorized and structured in the
same way as the corresponding patient information. The various
templates for structuring eligibility criteria of different categories
also necessitate automatic criteria categorization to facilitate effi-
cient eligibility criteria template selection.

Currently there is no standard categorization of clinical research
eligibility criteria. Various task-dependent criteria categories have
been defined according to certain criteria features, such as the pur-
pose, clinical topic, disease area, or syntactic complexity of eligibil-
ity criteria [1]. For example, the most common categories for
eligibility criteria include inclusion criteria and exclusion criteria.
The Trial Bank Project defines three categories of clinical eligibility
queries: age-gender-rule, ethnicity-language-rule, and clinical-rule
[3]. ERGO classifies criteria by syntactic variations into simple
statement, complex statement, and comparison statement [4].
The ASPIRE project categorizes eligibility criteria as either
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pan-disease queries or disease-specific queries [5]. Tu [6] viewed
an eligibility criterion as a dynamic property and differentiated eli-
gibility criteria by their objectiveness, variability, and controllabil-
ity of the underlying clinical conditions. Specifically, Tu classified
eligibility criteria as (1) stable requisite; (2) variable routine; (3)
controllable; (4) subjective; and (5) special. Metz et al. [7] classi-
fied eligibility criteria into five categories: demographic, contact
information, personal medical history, cancer diagnosis, and treat-
ment to date. The existing approaches to categorizing eligibility
criteria are largely task-dependent and hence may not generalize
across application domains. Furthermore, most of the categoriza-
tion processes are manual and hence are time consuming and
expensive [8,9]. More efficient, generic semantic categorization of
eligibility criteria is much needed.

In fact, clinical research eligibility criteria are ideally suited for
automatic categorization. Ross et al. analyzed clinical eligibility cri-
teria and discovered that about 92% of clinical eligibility criteria
contained only one content topic (e.g., patient characteristic,
behavior, or treatment) in each sentence, with about 71% of queries
describing patient characteristics, 34% describing the treatments or
procedures patients have received or will receive, and 4% specify-
ing patient behaviors [10]. With this observation, we hypothesize
that it is feasible to automatically categorize clinical research eligi-
bility criteria using machine-learning classifiers.

We have previously presented a methodology for inducing
semantic categories from free-text clinical research eligibility cri-
teria on the AMIA Fall Symposium 2010 [11]. Extending that work,
in this paper, we describe the design and evaluation of a novel
approach to dynamic categorization of clinical research eligibility
criteria based on hierarchical clustering. Our design fully integrates
semi-supervised hierarchical clustering and supervised machine-
learning classifiers via a shared semantic feature representation
for eligibility criteria based on the UMLS semantic types. Our re-
search question was ‘‘would the UMLS semantic knowledge be effec-
tive to facilitate machine-learning approaches to categorization of
clinical research eligibility criteria?’’ We measured the prevalence
and distribution of the semi-automatically induced criteria catego-
ries among 27,278 criteria extracted from 1578 clinical studies. We
also evaluated the classification efficiency by using five common
classifiers available in the open-source Weka package [12], includ-
ing J48 [13], Bayesian Network [14], Naïve Bayesian [15], the near-
est-neighbor (NNge) [16], and the instance-based learning
classifier IB1 [17]. With the use of the Unified Medical Language
System (UMLS) semantic types for feature representation, classi-
fier-learning efficiency was significantly improved over the use of
the traditional ‘‘bag of words’’ feature representation. More design
and evaluation details follow next.
2. An integrated framework for categorization based on
clustering

Fig. 1 illustrates our machine-learning framework for integrated
category induction and criteria classification, both sharing the
same feature representation by annotating each eligibility criterion
with a UMLS-based semantic lexicon [18]. Instead of using manu-
ally defined categories, we semi-automatically generated eligibility
categories using a hierarchical clustering algorithm to augment hu-
mans for category induction. Then a supervised machine-learning
classifier achieves automatic classification. More design details
are provided below.
2.1. Semantic feature representation

Each criterion was first parsed by a previously published and
freely available semantic annotator [18] to identify the UMLS-rec-
ognizable terms, many of which were associated with multiple
semantic types and hence resulted in ambiguity. We removed such
ambiguities by using a set of predefined semantic preference rules
[19] to select specific types over general types [18]. For example,
the UMLS concept pericardial was associated with two UMLS
semantic types, Body Location or Region and Spatial Concept. In
the UMLS Semantic Network, Body Location or Region was one of
the sub-types of Spatial Concept. Hence, the semantic type Body
Location or Region was more specific than Spatial Concept. There-
fore, for the UMLS concept pericardial, the type Body Location or
Region was retained as the preferred semantic type.

We also created three new types to label terms that were not
covered in the UMLS but frequently occurred in clinical research
eligibility criteria. We defined the Numeral type for numbers (e.g.
18, 60, two). We also defined the Symbol type for comparison con-
nector (e.g. +, P, @) and the Unit type for measurement units (e.g.
mm3, ph, kg). The example criterion ‘‘Prior adjuvant therapy for
metastatic disease allowed’’ would be annotated as ‘‘prior/Temporal
Concept | adjuvant therapy/Therapeutic or Preventive Procedure|for/|
metastatic disease/Neoplastic Process | allowed/Social Behavior’’, in
which each UMLS concept (underlined) was separated from its cor-
responding UMLS semantic type (italic) by a slash.

Fig. 2 shows the process of transforming eligibility criteria into
a semantic feature representation matrix. A criterion was denoted
as S and it was mapped into a semantic type vector T (Fig. 2A). The
value of a semantic feature in the vector T was weighted by its fre-
quency of occurrence, Ti ¼ Fi=

Pk
j¼1Fj, where i ¼ f1;2;3 � � � kg, Fj

being the frequency of the semantic type j and k being the number
of all the different semantic types in sentence S. For example, the
above sentence contained four different UMLS semantic types,
each occurring once; therefore, the weighted frequency of each
semantic type was 0.25. All the criteria instances were parsed
and transformed into a feature representation matrix to support
classifier learning, where each row was a criterion and each col-
umn was a UMLS semantic type, as shown in Fig. 2B.

2.2. Semi-supervised hierarchical clustering

After the semantic annotator transformed the criteria into a
UMLS-based semantic feature matrix, the hierarchical agglomera-
tive clustering algorithm (HAC) algorithm [20] was applied on
the semantic feature matrix to induce the semantic categories of
criteria. HAC used a bottom-up approach that initially created a
cluster for each criterion and then progressively agglomerated
clusters based on their semantic similarity, one pair each time,
until all criteria were joined into a giant cluster. To assess the sim-
ilarity of eligibility criteria, the Pearson correlation coefficient [21]
was applied to quantify the relationship between the semantic rep-
resentations of two criteria with the value ranging between�1 and
1. For example, if criterions A and B contained completely different
sets of UMLS semantic type features, their correlation value would
be �1.0 because they were perfectly divergent. If the two sets were
not perfectly divergent, but still diverged, the correlation would
remain negative, but would be greater than �1.0. In contrast, if cri-
teria A and B were convergent, then their correlation would be 1.0.
If there was no relationship, their correlation would be 0. A Pearson
correlation coefficient was initially computed for every possible
criterion comparison to create a table of correlation values
between every possible pair of the criteria being clustered. Then
the criterion pair that had the highest correlation value was first
selected to merge into one cluster to form a new ‘‘pseudo-crite-
rion’’. The new pseudo-criterion would contain the same number
of feature representation, but each feature would now be the arith-
metic mean of the two original feature sets. The two original
criteria that were merged would be removed from the table of cor-
relation values, and new correlations would be found between the



Fig. 1. A framework for dynamic categorization of free-text clinical eligibility criteria by UMLS-based hierarchical clustering: solid arrows show the machine learning process
for classifier development; dotted arrows show the automatic criterion classification process using the classifier; shadowed blocks indicate the shared modules between the
training and classification stage.
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Fig. 2. The process of transforming eligibility criteria into a UMLS-based semantic feature matrix.

Z. Luo et al. / Journal of Biomedical Informatics 44 (2011) 927–935 929
new pseudo-criterion and all of the remaining criteria. The next
highest remaining correlation value in the table would be identi-
fied and that pair of criteria would be joined for form a new pseu-
do-criterion. This process continued until all that remains was a
single pseudo-criterion containing the arithmetic mean of all the
original criteria at each feature. When clustering an original crite-
rion with a previously formed pseudo-criterion, the newly formed
pseudo-criterion must be an arithmetic mean of all the criteria’
features that it contains, not a simple average between the pseu-
do-criterion’s and the original criterion’s features. By retracing
the order in which the criteria were progressively joined into clus-
ters and by knowing the correlation value of each step, we identi-
fied the criteria related to each other closely and the criteria
related only distantly by setting a threshold from the [�1, 1] value
range, where any criteria paired with correlations greater than that
threshold were considered a cluster, and any criteria or clusters
with correlations less than that threshold were not. In this way,
all criteria had a correlation greater than the threshold were con-
sidered as a cluster.

A manual review was performed to merge and label these clus-
ters to form semantic categories based on their semantic similarity
[18]. For example, one cluster contained the criterion ‘‘SGOT 6 2
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times ULN’’, while the other cluster contained the criterion ‘‘Neu-
trophil count larger than 1000 per mm3’’. Both criteria had similar
scores of the semantic similarity between instances in each cluster,
which were typical laboratory test results; therefore, these two
clusters were semantically related. In addition, the syntax of the
instances in the two clusters was similar, both including a clinical
object, a comparison symbol, numerical values, and measurement
units. A manual review concluded that the two clusters were
semantically similar and could be merged into one category: Diag-
nostic or Lab Results. Meaningful category names were created
manually and supplied to the classification module. We purposely
reused the labels of the UMLS semantic types to name criteria cat-
egories since they are familiar to many informatics researchers.

2.3. Supervised machine-learning for criteria classification

Two human raters independently labeled a set of criteria using
the developed semantic categories and reached consensus on
the categorization results. These instances were also parsed by
the semantic annotator and transformed into semantic features.
The manual categorization results and their semantic features
were used to train five very commonly used supervised classifiers
in the open-source Weka package [12], including J48 [13], Bayesian
Network [14], Naïve Bayesian [15], the nearest-neighbor (NNge)
[16], and the instance-based learning classifier IB1 [17]. We com-
pared the classification performance using the UMLS-based
semantic feature representation and the standard ‘‘bag of words’’
representation respectively among all the five classifiers.

3. Results

3.1. The 27 semantic categories for eligibility criteria

ClinicalTrials.gov is a public registry of all clinical trials and
their eligibility criteria [2]. From this web site, we randomly ex-
tracted 5000 sentences. Excluding 179 non-criterion sentences
Table 1
Criteria categories and groups and their distributions. For instance, 29.21% of eligibility cr

Topic groups Semantic classes

Health Status (43.72%) Disease, Symptom and Sign
Pregnancy-related activity
Neoplasm status
Disease stage
Allergy
Organ or tissue status
Life expectancy

Treatment or Health Care (20.74%) Pharmaceutical substance or drug
Therapy or surgery
Device

Diagnostic or lab test (14.85%) Diagnostic or lab results
Receptor status

Demographics (8.79%) Age
Special patient characteristic
Literacy
Gender
Address
Ethnicity

Ethical Consideration (8.52%) Consent
Enrollment in other studies
Capacity
Patient preference
Compliance with protocol

Lifestyle Choice (3.38%) Addictive behavior
Bedtime
Exercise
Diet

Total –
and using the remaining 4821 criteria sentences, the hierarchical
clustering module initially recommended 41 clusters whose pair-
wise similarity was above the threshold 0.75. We manually
induced 27 eligibility criteria categories, whose organizational
hierarchy includes six topic groups: Demographics (e.g., age or
gender), Health Status (e.g., disease or organ status), Treatment
or Health Care (e.g., therapy or medication), Diagnostic or Lab
Tests, Ethical Consideration (e.g., willing to consent), and Lifestyle
Choice (e.g. diet or exercise). More category information can be
found in our previous publication [11]. Two independent human
raters manually labeled 2718 criteria sentences. The Cohen’s Kappa
[22] was 0.82, which indicated an excellent inter-rater agreement.
Table 1 shows the 27 criteria categories with their topic groups and
frequency, and example instances. The most frequent category,
Disease, Symptom or Sign, covered 29.21% of all the instances,
followed by Diagnostic and Lab Tests, covering 14.63% of all the in-
stances. The next two most frequent categories were Pharmaceuti-
cal Substance and Drug (12.84%) and Age (5.91%).

3.2. Distribution and prevalence of the criteria categories

To assess the comprehensiveness of the semi-automatically in-
duced eligibility criteria categories, we randomly selected 1578
clinical trials and extracted 27,278 eligibility criteria to investigate
the prevalence and frequency of each category in these criteria, as
shown in Table 2. The column ‘‘average incidence in each trial’’ lists
the average number of instances for each category in a typical
clinical trial study; the column ‘‘prevalence in all trials’’ lists the
percentage of trials containing instances of a particular category.
For example, an average trial contains 4.5 criteria about Disease,
Symptom and Sign, which are prevalent in 92.27% of trials. Eight
classes, including Gender, Special Characteristics of Patients, Age, Dis-
ease or Symptoms or Signs, Diagnostic and Lab Results, Pharmaceuti-
cal Substance or Drug, Therapy or Surgery, and Pregnancy Related
Activity, are each prevalent in from 45% to 99% of clinical trial stud-
ies. We call these classes ‘‘majority classes’’. The remaining 19 cat-
iteria belong to the semantic category ‘‘Disease, Symptom and Sign.’’

Distribution (%) Example

29.21 No coagulation disorders
5.17 Pregnancy ongoing or planned within 3 years
3.67 Presence of rapidly progressive, life-threatening metastases
2.20 No stage IIIB breast cancer
2.15 Allergy to fluorescein
0.73 Adequate renal function
0.59 Life expectancy of at least 3 months

12.84 No prior Gabapentin
7.61 Prior chemotherapy allowed
0.29 Have an active implantable device

14.63 Neutrophil count P 1000/mm3

0.22 ER and PGR negative

5.91 Age 23–47
1.18 Accept healthy volunteers
0.65 Able to understand and speak English
0.41 Sex: female
0.35 Resident of Toronto, Canada
0.29 Patients must identify their ethnicity as Latino or Hispanic

2.76 Patient signs informed consent
2.38 Patients included in others clinical trials of imagery
1.50 Able to perform 6 min hall walk
1.38 Agree to come to the clinic up to two times per week
0.50 Able to comply with all study procedures

2.09 Abuse alcohol or drugs
0.47 Usual bedtime between 21:00 and 01:00
0.44 Lack of access to regular meals
0.38 Use of grapefruit juice products

100 –



Table 2
Prevalence and average incidence of each class in 1587 clinical trial studies. For example, 99.11% studies contain 1.04 instances of
gender criteria.

Class Average incidence in each trial Prevalence in all trials (%)

Gender 1.04 99.11
Special characteristic of patient 1.20 96.51
Age 1.52 93.09
Disease, Symptom and Sign 4.51 92.27
Diagnostic or lab results 2.19 64.58
Pharmaceutical substance or drug 1.63 52.41
Therapy or surgery 1.11 48.16
Pregnancy-related activity 0.84 46.58
Consent 0.39 31.94
Neoplasm status 0.80 31.50
Allergy 0.31 25.79
Disease stage 0.37 22.94
Addictive behavior 0.24 17.93
Patient preference 0.22 16.10
Capacity 0.20 15.91
Organ or tissue status 0.18 13.81
Enrollment in other studies 0.15 13.37
Life expectancy 0.11 10.58
Literacy or spoken language 0.08 7.03
Address 0.07 5.89
Device 0.06 5.07
Compliance with protocol 0.02 2.22
Exercise 0.02 1.77
Diet 0.02 1.58
Receptor status 0.01 0.89
Ethnicity 0.01 0.76
Bedtime 0.001 0.13

Table 3
F1-score is consistently higher when using the UMLS feature representation than using the ‘‘bag of words’’ feature representation among the five classifiers (P-value = 0.0001215,
t-test). The scores are macro-averages for all criteria categories.

Classifier J48 BayesNet NaiveBayes NNge IB1

Feature representation ST BoW ST BoW ST BoW ST BoW ST BoW

Precision 0.870 0.730 0.853 0.683 0.839 0.665 0.797 0.683 0.701 0.597
Recall 0.872 0.723 0.855 0.680 0.843 0.667 0.767 0.631 0.702 0.574
F1-score 0.869 0.717 0.852 0.667 0.836 0.646 0.772 0.622 0.699 0.566
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egories are the ‘‘minority classes’’ that are prevalent in a smaller
percent, ranging from 0.13% to 31.94%, of clinical trial studies.

3.3. Feature representation comparison: UMLS vs. ‘‘bag of words’’

A total of 3403 randomly selected eligibility criteria were used
to train the classifiers. We conducted a 10-fold cross-validation to
compare the classification performance among five commonly
used machine-learning classifiers, which were J48, Bayesian Net-
work, Naïve Bayesian, the nearest-neighbor (NNge), and the in-
stance-based learning classifier IB1, each using the ‘‘bag of
words’’ representation (baseline) and the UMLS semantic type rep-
resentation. Our comparison was from the following perspectives:
(1) classification accuracy measured by precision, recall, and F1-
score (Table 3); (2) classification accuracy by criteria category
(Fig. 3); (3) computational efficiency of classifiers (Fig. 4); and (4)
classifier learning efficiency (Fig. 5). Recall, precision and F1-score
are defined as follows:

Precision ¼ True positive predictions
True positive predictionsþ False positive predictions

ð1Þ

Recall ¼ True positive predictions
True positive predictionsþ False negative predictions

ð2Þ

F-score ¼ 2 � Precision � Recall
Precisionþ Recall

ð3Þ
As shown in Table 3, the UMLS semantic feature representation
consistently outperformed the ‘‘bag of words’’ feature representa-
tion by achieving higher precision, recall and F1-score, with perfor-
mance improvement ranging from 13.3% to 19.0% in all of the five
classifiers. The Naïve Bayes classifier increased the F1-score by 19%
by changing from the ‘‘bag of words’’ representation to the UMLS
semantic type representation. Overall, the J48 classifier performed
the best among the five classifiers, with a precision of 87.0%, recall
at 87.2% and F1-score of 86.9% when using the UMLS semantic type
representation.

Fig. 3 contrasts the average F1-scores for the 27 semantic cate-
gories using the UMLS semantic type representation and the ‘‘bag
of words’’ representation respectively. In 24 of the 27 semantic cat-
egories (89%), the UMLS semantic type representation outper-
formed the ‘‘bag of words’’ representation by using semantic
knowledge that was unavailable in the ‘‘bag of words’’ feature rep-
resentation to identify the semantic similarity between seemingly
different terms. For example, criteria ‘‘Sex: Male’’ and ‘‘Inclusion: Fe-
male’’ did not share any learning feature in the ‘‘bag of words’’ rep-
resentation because of the term variations. However, the UMLS
semantic representations for both criteria shared the same UMLS
semantic type Organism Attribute. Therefore, the UMLS semantic
type representation was able to detect semantic similarity that
was not captured in the ‘‘bag of words’’ representation. The P-value
of the difference between the two feature representations for all 27
categories measured by a t-test [23] was 0.00334 (P < 0.05), indi-
cating the statistical significance of the differences. Therefore, the
performance of the UMLS semantic representation was signifi-
cantly better than that of the ‘‘bag of words’’ representation.



Fig. 3. F1-scores of all categories using the UMLS and ‘‘bag of words’’ feature representation respectively.

Fig. 4. Time-efficiency between the ‘‘bag of words’’ and UMLS feature
representation. Fig. 5. The learning efficiency of classifier J48 (X-axis: the number of training

instances; Y-axis: F1-score of the J48 classifier).
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Three rare categories, Life expectancy, Consent, and Special
patient characteristics, did not show the advantages of the UMLS
semantic type representation because the criteria belonging to
those classes often contained salient keywords that were more
effective than their semantic types for classification. For example,
75.53% of the criteria in the category Consent contained phrase ‘‘in-
formed consent’’. When using the ‘‘bag of words’’ representation,
the classifier could easily tell whether a criterion belonged to the
Consent category simply by looking up the keywords ‘‘informed’’
and ‘‘consent’’ in the feature set. In contrast, when using the
semantic type representation, the term ‘‘informed consent’’ was
mapped to the UMLS semantic type Regulation or Law which also
included terms in criteria that were not related to consent, such
as ‘‘drug regulations’’ or ‘‘health policy’’. Using this semantic fea-
ture alone was not very sufficient to tell whether a criterion be-
longed to the Consent category. In this case, the use of the ‘‘bag
of words’’ representation was more accurate than using the seman-
tic type representation.

Fig. 4 shows that the UMLS semantic type representation con-
sistently required significantly less time than the ‘‘bag of words’’
representation across the five classifiers. The learning dimension
of ‘‘bag of words’’ representation was much bigger than that of
the semantic type representation. This might be explained by the
fact that we obtained 4413 distinct ‘‘bag of words’’ features but
only 135 semantic-type features for the 3403 training criteria.
We also found that BayesNet classifier and NaïveBayes classifier
were robust to resist the fast growth in the learning dimension
and retained high efficiency, while efficiency was significantly im-
paired in IB1, J48 and NNge as the learning dimension expanded, as
shown in Fig. 4.

We also carried out an experiment to measure the learning effi-
ciency of the best performing classifier of the five, J48, by dividing
the 3403 training criteria into groups, each containing only three
criteria. The training process was divided into 1134 steps, each
step incrementally increasing the size of the training data set by
3. Therefore, the step-wise training sizes are 3, 6, 9 , . . .3 � K in-
stances, where K is the sequential number of the step. The classifi-
cation accuracy for each step was documented and plotted as a
learning curve that grows with the size of the training data set,
as shown in Fig. 5. The learning speed increased fastest for the first
500 training instances. After that point, the learning performance
increased relatively slowly. Finally, after about 2000 training in-
stances, the learning curve stabilized, indicating that a 3403-sen-
tence training set was sufficient to develop a stable model for
classifying eligibility criteria.

3.4. A user interface for dynamic categorization of eligibility criteria

At the point of this study, there was no standard and automatic
way to categorize and organize clinical research eligibility criteria.
We applied the learned classifier (J48) to organize the eligibility
criteria on Clinicaltrials.gov. Fig. 6 shows the eligibility criteria sec-
tion of a clinical trial study on Clinicaltrials.gov, which is a bullet



Fig. 6. Example of eligibility criteria narratives on Clinicaltrials.gov.
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list. Fig. 7 shows the results of dynamic eligibility criteria categori-
zation [24]. Using our J48 decision tree classifier, we can assign
each criterion to its corresponding semantic category and organize
the criteria section into a hierarchical tree, which could facilitate
fast content browsing [25] and faceted search [26].
4. Discussion

Clustering is an unsupervised learning technique that does not
need a human labeled training set but rather identifies the similar-
ities between instances, whereas classification is a supervised
machine learning approach that needs to be trained using manually
labeled examples [27]. In this paper, we present an effective
approach to dynamic categorization of clinical research eligibility
criteria by integrating hierarchical clustering and classification
algorithms through the use of a shared semantic feature represen-
tation based on the UMLS semantic types. Our method demon-
strates the value of using the UMLS semantic types for feature
representation. To improve machine learning efficiency, various
approaches have been developed to automate training data gener-
ation [28–30]. Our semantic annotator automatically generates
features based on the UMLS semantic types and significantly re-
duces the learning dimension compared to the traditional ‘‘bag of
words’’ method. Prior studies manually defined categories for clin-
ical eligibility criteria [4,5]. Our method reduces the human effort
required for category development and contributes a set of
fine-grained semantic categories for clinical eligibility criteria.
Moreover, previously proposed categories for clinical sentences
were often task-dependent, such as the study that assigned Intro-
duction, Methods, Results, or Discussion categories to sentences in
MEDLINE abstracts [31]. To our knowledge, our research is the first
of its kind to automatically categorize clinical research eligibility
criteria based on the semantic similarities in the criteria. Of the five
classification algorithms, the best performing classifier is the Deci-
sion Tree J48, which achieves an overall F1-score of 86.9%. In a dif-
ferent clinical domain, McKnight and Srinivasan [32] reported a
method incorporating sentence position and ‘‘bag of words’’ as
learning feature and achieved results with F1-scores ranging from
52% to 79% for different categories. Compared to the existing meth-
ods, our method shows the potential to significantly improve sen-
tence classification accuracy.

Our method for dynamic categorization of criteria sentences is
inspired by and extends a notable related work for dynamic



Fig. 7. The dynamic categorization results for the example criteria in Fig. 6.
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categorization of documents, which is the DynaCat system devel-
oped by Pratt and Fagan [25]. DynaCat utilized the UMLS for
knowledge-based query terms labeling and PubMed document
classification. All query terms were automatically encoded with
MeSH terms, but document categories and classification rules were
manually specified for document categorization. We extended
DynaCat by using the hierarchical clustering tools to automatically
induce semantic categories for the objects to be categorized and by
using a machine-learning approach to train the classifier, which
was an improvement over manually defined rule-based classifiers.
By using MeSH terms, DynaCat achieved standards-based query
term annotation but did not reduce the feature space. As an exten-
sion, we used the UMLS semantic types to annotate eligibility cri-
teria concepts and significantly reduced the feature dimension for
machine learning-based classification. Furthermore, DynaCat per-
formed categorization at the document level; in contrast, our
method allows categorization at the sentence level.

We also compared our semi-automatically induced criteria
categories to existing clinical data or clinical query categories pro-
vided by various standardization organizations, such as The Health
Level Seven (HL7) [33], the MURDOCK study group [34], and the
BRIDG group [35]. A significant portion of our categories overlaps
with the manually defined standards. For instance, The Continuity
of Care Document (CCD) defined by HL7 contains 17 clinical data
types [33], such as Problems, Procedures, and Medications, which
are also included in our 27 categories. Those data elements that
do not intersect with our categories include Header for message
formatting and Payer for payment, which are not semantically
interesting. The MURDOCK study group proposed 11 study vari-
ables [34] for integrating clinical data. Several of them can be
aligned with our categories, such as Demographics, Physical examin-
ations, and Laboratory test results. The Biomedical Research Inte-
grated Domain Group (BRIDG) Model was developed by a group
of domain experts for clinical data modeling. The BRIDG model
defined 17 eligibility criterion attributes. We were able to align
16 out of 17 BRIDG attributes with our induced semantic classes.
We also identified eight classes that were not specified by the
BRIDG model. We observed that some highly prevalent criteria cat-
egories that we identified were not defined in BRIDG, such as Ther-
apy or Surgery, which has 48% prevalence in eligibility criteria
published on the ClinicalTrials.gov. These results imply that our
criteria categories are comparable to those developed by clinical
experts and contain categories that may be missed by clinical
experts.

In this study, some classification errors were caused by the
noise in the UMLS. For example, in the criterion ‘‘Alkaline Phospha-
tase <2.5 times ULN,’’ the term Alkaline phosphatase had a UMLS
semantic type Pharmacologic Substance; therefore, this criterion
was classified as Pharma Substance or Drug. However, the criterion
specifies the range of a lab test variable, which should be classified
as Lab Test Results. Similarly, the criterion History of Cholecystec-
tomy was mapped to a general semantic type Finding but human
reviewer considered this criterion as a past surgery, whose cate-
gory should be Therapy and Procedure.

We can improve our current methodology in several ways in
the future. We identified two open research questions for classify-
ing clinical sentences. One is to develop better machine learning
algorithms for imbalanced training data. As we demonstrated in
Section 3.2, different categories achieved varying degrees of accu-
racy, which was partially caused by the different prevalence and
incidence of these categories, as indicated in Table 2. Learning from
imbalanced data sets where the number of examples of one
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(majority) class is much higher than others, machine-learning
algorithms tend to produce better predictive accuracy over the
majority classes but poorer predictive accuracy over the minority
classes. This is an open research challenge for the machine learning
community. Over-sampling algorithms [36] can be used to im-
prove the performance for minority classes. Another needed
improvement is to develop multi-label classifier for eligibility cri-
teria. Although the majority of eligibility criteria contain only
one topic, there are still about 8% of eligibility queries containing
multiple topics. For example, the criterion ‘‘pregnant women’’ con-
tains two topics pregnancy and gender. Another example is ‘‘male
and female with age between 18 and 65.’’ Multiple topics may also
be present less explicitly in some examples; for instance, ‘‘positive
pregnancy lab tests’’ could be categorized as both Lab Test Results
and Pregnancy. However, our classifier only assigns one category
to these eligibility criteria. The categories resulting from hierarchi-
cal clustering are not completely mutually exclusive and can con-
tain some hidden relations (e.g., a set of lab tests for measuring
pregnancy), which also could have affected the classification accu-
racy. These research questions are worth more studies in the
future.

5. Conclusion

In this paper, we present a novel method that combines an
unsupervised clustering algorithm with a supervised classification
algorithm to develop a semantic classifier, which can be used to
categorize clinical research eligibility criteria automatically. We
also demonstrate the value of semantic knowledge such as the
UMLS in improving the learning efficiency of semantic classifiers
for clinical sentences such as clinical research eligibility criteria.
Using the UMLS semantic types is far more effective and efficient
than using words for feature representation when classifying clin-
ical sentences, primarily because UMLS semantic knowledge
matches the semantics in clinical text well.
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