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sources give only one large wave, others give a sequence of equally dangerous
waves spread over several hours. Combining these patterns with knowledge
of the tide cycle at a particular location improves the ability to estimate the
probability that a wave will arrive at a time when the tidal stage is sufficiently
large that inundation above a level of interest occurs.
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1 Introduction

At Crescent City, the difference in tide level between mean lower low wa-
ter (MLLW) and mean higher high water (MHHW) is about 2.1 meters.
Coastal sites with such a significant tidal range experience tsunami/tide inter-
actions that are an important factor in the degree of flooding. For example,
[Kowalik and Proshutinsky(2010)] conducted a modeling study that focused
on two sites, Anchorage and Anchor Point, in Cook Inlet, Alaska. They found
tsunami/tide interactions to be very site-specific, with strong dependence on
local bathymetry and coastal geometry, and concluded that the tide-induced
change in water depth was the major factor in tsunami/tide interactions. Sim-
ilarly, a study of the 1964 Prince William Sound tsunami [Zhang, et al(2011)]
compared simulations conducted with and without tide/tsunami interactions.
They also found large, site-specific differences and determined that tsunami/tide
interactions can account for as much as 50% of the run-up and up to 100% of
the inundation. Thus, probabilistic tsunami hazard assessment (PTHA) stud-
ies must account for the uncertainty in tidal stage during a tsunami event.

[Houston and Garcia(1978)] developed probabilistic tsunami inundation pre-
dictions that included tidal uncertainty for points along the US West Coast.
The study was conducted for the Federal Insurance Agency, which needed such
assessments to set federal flood insurance rates. They considered only far-field
sources in the Alaska-Aleutian and Peru-Chile Subduction Zones, because local
West Coast sources such as the CSZ (Cascadia Subduction Zone) and Southern
California Bight landslides had not yet been discovered, and assigned proba-
bilities to each source based on the work of [Soloviev(2011)]. Maximum runup
estimates were made at 105 coastal sites rather than from actual inundation
computations on land. The tidal uncertainty methodology began with a mod-
eled 2-hour tsunami time series that was extended 24-hours by appending
a sinusoidal wave with an amplitude that was 40% of the maximum mod-
eled wave, to approximate the observed decay of West Coast tsunamis. This
24-hour tsunami time series was then added sequentially to 35,040 24-hour
segments of a year-long record of the predicted tides, each segment being tem-
porally displaced by 15 minutes. Determination of the maximum value in each
24-hour segment then yielded a year-long record of maximum combined tide
and tsunami elevations, each associated with the probability assigned to the
corresponding far-field source. Ordering the elevations and, starting with the
largest elevations, summing elevations and probabilities to the desired levels
of 0.01 and 0.002, produced the 100-year and 500-year elevations, respectively.

[Mofjeld, et al(2007)] developed a tidal uncertainty methodology that, un-
like [Houston and Garcia(1978)], does not use modeled tsunami time series.
Instead, a family of synthetic tsunami series are constructed, each with a
period in the tsunami mid-range of 20 minutes and an initial amplitude rang-
ing from 0.5 to 9.0 m that decreases exponentially with the decay time of
2.0 days, as estimated by [Van Dorn(1984)] for Pacific-wide tsunamis. As in
[Houston and Garcia(1978)], linear superposition of tsunami and tide is as-
sumed and the time series are added sequentially to a year-long record of
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predicted tides at progressively later arrival times, in 15 minute increments.
Direct computations are then made of the probability density function (PDF)
of the maximum values of tsunami plus tide. The results are then approxi-
mated by a least squares fit Gaussian expression that is a function of known
tidal constants for the area and the computed tsunami maximum. This ex-
pression provides a convenient means of estimating the tidal uncertainty, and
was used by [González, et al(2009)] in the PTHA study of Seaside, OR.

In this paper we describe in detail two improved methods for incorpo-
rating tidal uncertainty into PTHA studies. The two new methods are re-
ferred to as the dt-Method and the Pattern-Method. They were developed as
part of a PTHA study of Crescent City, CA in [González, et al(2012)], a pilot
study funded by BakerAECOM to explore methods to improve products of
the FEMA Risk Mapping, Assessment, and Planning (RiskMAP) Program.

Both the dt-Method and the Pattern-Method introduce major improve-
ments to previous approaches. In both methods: (a) the assumption of linear
superposition of the tide and tsunami waves is replaced by a methodology that
utilizes multiple runs at different tidal stages; thereby introducing nonlineari-
ties in the inundation process that are not accounted for in previous methods,
and (b) synthetic time series are replaced by the actual time series computed
by the inundation model. In addition, the Pattern-Method (c) takes account
of temporal wave patterns that are unique to each tsunami source; for exam-
ple, some sources produce only one large wave, others a sequence of equally
dangerous waves that arrive over several hours. Combining these patterns with
knowledge of the tide cycle at a particular location like Crescent City improves
estimates of the probability that a wave will arrive at a time when the tidal
stage is sufficiently large that inundation above a level of interest occurs. Fi-
nally, we compare these methods to that of [Mofjeld, et al(2007)] which we
refer to as the Gaussian or G-Method.

1.1 Notation and terminology

– h refers to the water depth above topography or bathymetry. It is one of
the primary variables of the shallow water equations that is output from a
GeoClaw run at a static sealevel. The real water depth that includes the
tsunami and the rising and falling of the tides is denoted d. B refers to the
pre-earthquake topography or bathymetry as specified by the topography
datasets, and is relative to Mean High Water (MHW) since that is the
vertical datum of the fine scale Crescent City bathymetry. z will be used
to denote the maximum observed GeoClaw value over the full time period
of a tsunami of either h or B + h:

z =

{
h, the flow depth, where B > 0 (onshore),
B + h, the sea surface elevation plus subsidence, where B < 0.

– ζ will be used to denote the real value over the full time period of a tsunami
of either d or B + d: GeoClaw inundation maps show z and hazard maps
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that include tidal variation show ζ.

ζ =

{
d, the flow depth, where B > 0 (onshore),
B + d, the sea surface elevation plus subsidence, where B < 0.

– ξ denotes the tide stage, relative to Mean Sea Level (MSL). With GeoClaw

we can run the code with different sealevels ξ̂, relative to MSL, that remain
fixed over the tsunami duration.

– CSZ, AASZ, KmSZ, KrSZ, and SchSZ refer to the Cascadia, Alaskan Aleu-
tian, Kamchatka, Kuril, and South Chile Subduction Zones. TOH refers
to Tohoku. We denote tsunami sources in the form AASZe03, for exam-
ple, event number 3 on the Alaska Aleutian Subduction Zone. Some events,
e.g., a CSZ Mw 9.1 event, have multiple possible realizations. CSZBe01r01-
CSZBe01r15 refers to the CSZ Bandon sources of various sizes of a single
event modelled as 15 realizations. We assign a recurrence time to the event
and then a conditional probability to each realization of the event.

1.2 Probabilities, rates, and recurrence times

By probability of an event we generally mean annual probability of occurrence.
Specific earthquake events are often assumed to be governed by a Poisson pro-
cess with some mean recurrence time TM , in which case the annual probability
of occurrence of event Ej is P (Ej) = 1− e−ν where the rate is ν = 1/TM . If ν
is small then P (Ej) ≈ ν with an error that is O(ν2). For example, if TM = 250
then ν = 0.004 and P (Ej) = 0.003992. For larger TM there is even less error.
It is generally fine to assume P (Ej) = 1/TM .

1.3 Probability of exceedance

We consider J tsunami events, with event Ej having a recurrence rate νj
that obeys a Poisson process. We are interested in finding the probability that
inundation height ζ exceeds level ζi at a grid location of interest. Typically, we
are interested in all grid locations covering a fixed grid of the Crescent City
area. The probability that Ej does not produce exceedance of ζi is

1 − (1− e−νj )P (ζ > ζi |Ej).

Then the probability that at least one event gives exceedance of ζi is

P (ζ > ζi) = 1 −
J∏
j=1

(
1 − (1− e−νj )P (ζ > ζi |Ej)

)
. (1)

Furthermore, if event Ej is composed of kj mutually exclusive realizations, so
that when Ej occurs, exactly one of the realizations occurs, say Ejk, then

P (ζ > ζi |Ej) =

kj∑
k=1

P (ζ > ζi |Ejk)P (Ejk |Ej)
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where
∑kj
k=1 P (Ejk |Ej) = 1. Substituting this into equation (1) gives

P (ζ > ζi) = 1 −
J∏
j=1

1 − (1− e−νj )
kj∑
k=1

P (ζ > ζi |Ejk)P (Ejk |Ej)

 . (2)

If we define µ̄ij as

µ̄ij = (1− e−νj )
kj∑
k=1

P (ζ > ζi |Ejk)P (Ejk |Ej), (3)

equation (2) can be written as

P (ζ > ζi) = 1 −
J∏
j=1

(1− µ̄ij) (4)

and following the discussion in Section 1.2, can be approximated as

P (ζ > ζi) ≈ 1 −
J∏
j=1

e−µ̄ij . (5)

If we approximate µ̄ij in equation (3) by µij , where

µij = νj

kj∑
k=1

P (ζ > ζi |Ejk)P (Ejk |Ej), (6)

we arrive at the expression for P (ζ > ζi) from [González, et al(2009)]:

P (ζ > ζi) ≈ 1 −
J∏
j=1

e−µij . (7)

The procedure is to first find P (ζ > ζi |Ejk) in (6) using one of the methods
in Section 2, and then use the known conditional probabilities P (Ejk |Ej) and
(6) to calculate the µij that is used in (7) to find P (ζ > ζi). By varying
i = 1 . . . nζ to cover more exceedance levels of interest, we can calculate the
pairs (ζi, P (ζ > ζi)), i = 1 . . . nζ and construct a hazard curve for each fixed
grid location (x, y) with the horizontal axis representing maximum depth of
inundation ζ and the vertical axis the probability of exceeding this value. The
terminology of hazard curves has been used for many years in probabilistic
seismic hazard assessment (PSHA) and has been adopted in PTHA and used
in past studies such as [González, et al(2009)].

In practice we use a finite set of exceedance values ζi and approximate
the hazard curve by a piecewise linear function that interpolates the val-
ues (ζi, P (ζ > ζi;x, y)). We do this because computing each P (ζ > ζi;x, y)
requires combining information from all simulation runs together with tidal
variation and is somewhat costly to perform. We use the following nζ = 35
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exceedance values which we believe is sufficiently dense to yield good approx-
imations:

ζi = 0, 0.1, 0.2, . . . , 1.9, 2.0, 2.5, . . . , 5.5, 6.0, 7.0, . . . , 12.0. (8)

Figure 1 gives several hazard curves for one location in Crescent City, CA,
showing each Subduction Zone’s influence to the total hazard (in green).

Fig. 1: Hazard Curves by Subduction Zone

Once the hazard curve at each (x, y) has been determined, the information
contained in this curve can be used in two distinct ways. For a given probability
such as p̄ = 0.01 it is possible to find the corresponding value ζ100 for which
P (ζ > ζ100;x, y) = 0.01. This could be interpreted as the depth of inundation
expected in a “100-year event”. By determining this for each (x, y) it is possible
to plot the extent of inundation expected with probability p̄ and the flow depth
at each point inundated. [González, et al(2012)] shows the 100-yr flood for
Crescent City, CA.

Conversely, one can choose a particular inundation level ζ̃ and determine
the probability of exceeding this value P (ζ > ζ̃;x, y) at each point. A contour
plot of this value over the spatial (x, y) domain then shows the probability
of exceeding ζ̃ at each point in the community. In particular, choosing ζ̃ = 0
would show probability contours (p-contours) of seeing any flooding. The p =
0.01 contour would again correspond to the inundation limit of the “100-year
event”. [González, et al(2012)] shows ζ = 0 and ζ = 2 meter p-contours for
Crescent City, CA.

2 Methods for finding P (ζ > ζi |Ejk) including tidal variation

As outlined above, we need to find the probability that an inundation height
ζ exceeds level ζi due to the k-th realization of source j whenever it occurs,
denoted by

P (ζ > ζi |Ejk). (9)

We want to find this probability at each location in a fixed grid covering
the Crescent City area when the effect of the tides is taken into account.
We note that GeoClaw code is not modeling the tidal dynamics, so GeoClaw
information needs to be combined with tidal information at Crescent City
to determine the probability in equation (9). We implemented three different
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methods for doing this and determined their relative merits. The three methods
are referred to as the dt-Method, the Pattern-Method, and the G-Method.
All three methods are compared in detail in Section 3. The dt-Method and
the Pattern-Method give quite similar results for a properly chosen dt but
vary significantly from the G-Method, especially at land points. The Pattern-
Method is a very robust method coupled to the wave pattern actually seen
in GeoClaw for each individual tsunami. Furthermore, the Pattern-Method
gives modelers a single method that can be used for both land and water
locations. The G-Method [Mofjeld, et al(2007)] is briefly described in Section
2.4. The key ideas in the dt-Method, see Section 2.2, and the Pattern-Method,
see Section 2.3 are summarized below:

A tsunami wave that arrives at high tide will cause more flooding than the
same wave arriving at low tide. Nonlinearities in the governing equations mean
that there will be nonlinearities in the tsunami-tide interaction. For example,
if the tide stage is 1 meter higher, the resulting maximum flow depth at a point
will not generally be exactly 1 meter higher, even at points that are inundated
at both tide levels.

The GeoClaw code can easily be set to run with different (static) values of
sea level in order to explore how the tide stage affects the level of inundation.
The tide stage used for a run will be denoted by ξ̂, relative to MSL.

For each exceedance level ζi and each grid point (x, y), we can use multiple
GeoClaw runs to estimate how high the tide stage must be in order to observe
a maximum GeoClaw flow depth above ζi at this point. This value of tide
stage that must be exceeded will be denoted ξ̂ = we below, the “water level to
exceed”. Note that we is different for each ζi at each (x, y) but in the discussion
below we focus on a single point and exceedance level. We can then ask what
the probability is that the tide stage at Crescent City will be above we when
the tsunami arrives. If the tsunami consisted of a single wave of short duration,
then the probability of exceeding ζi for this one realization would simply be
the probability that the tide stage ξ is above we at one random instant of time
i.e. a random point in the tide cycle. This can be estimated based on the past
history of tides at Crescent City, as explained further below.

However, it is not this simple because most tsunamis consist of a sequence
of waves that arrive over the course of several hours. During this time the tide
may rise or fall considerably. If the tsunami consists of a sequence of closely
spaced and equally large waves arriving over a period of ∆t hours, then the
better question to ask would be: what is the probability that the tide stage will
be above we at any time between t0 and t0 +∆t, where t0 is a random time.
For fixed ∆t this can also be determined from past tide tables. This approach
is explained in Section 2.2 as the “dt-Method”. Different events will require
different choices of ∆t. For example, a Cascadia Subduction Zone (CSZ) event
typically gives one very large wave that causes most of the inundation. On the
other hand farfield events may lead to a larger number of waves that arrive
over many hours due to reflections from various distant points, any one of
which could give flooding exceeding ζi if the tide stage is above we.
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For some events, it may be that there are several such waves separated by
many hours when no waves arrive that could cause the same level of flooding.
In this case choosing a large ∆t may overestimate the probability of inunda-
tion above ζi. Instead we might want to specify a pattern of times specific to
one realization when the dangerous waves arrive. For example, if the tsunami
consists of two large waves arriving 4 hours apart, the pattern might consist
of a 1-hour window starting at time t0 and another 1-hour window starting
4 hours later. We could then ask what the probability is that the tide stage
will be above we at any time in this pair of windows, when t0 is a random
point in the tide cycle. This can also be determined based on the tide record
and gives a smaller (and more accurate) probability than simply looking at a
∆t = 5 hour window would. Similar questions can also be answered when the
tsunami consists of multiple waves of different amplitudes. This is the basis of
the “Pattern-Method” described in Section 2.3.

The dt and Pattern methods were designed to use GeoClaw simulation
information at multiple but static tidal levels. These methods will work with
other simulation codes that have the capability to produce similar results.

2.1 Crescent City tides

The tide gauge at Crescent City (Gauge No. 9419750) gives Mean Low Low
Water (ξMLLW = −1.13), Mean Low Water (ξMLW = −0.75), Mean Sea Level
(ξMSL = 0.0), Mean High Water (ξMHW = 0.77), and Mean High High Water
(ξMHHW = 0.97). The lowest and highest water seen at the gauge in a year’s
data from July 2011 to July 2012 are ξLowest = −1.83 and ξHighest = 1.50,
respectively. The tide levels in meters are referenced to MSL. Figure 2 shows
the probability density function and cumulative distribution for this yearly
data. The horizontal axis represents tidal level and the vertical axis of the
Cumulative Distribution Function represents the probability of exceedance of
this level at any point in time.

Fig. 2: Crescent City Tidal Distributions Left: Probability Density Function
(mean=0.0, σ = .638) Right: Cumulative Distribution Function

A GeoClaw simulation of the shallow water equations is done for each re-
alization of each source. This gives a maximum inundation height z associated
with the tide level set in GeoClaw, at each fixed grid location. Whether or not
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this GeoClaw maximum z value is actually achieved or exceeded depends on
the tidal levels at Crescent City during the tsunami. This represents aleatoric
uncertainty, as we do know the tidal patterns at Crescent City, but we do not
know when the tsunami will occur. To model this uncertainty, we make use of
the GeoClaw feature that permits simulations at any static tide level.

2.2 The dt-Method

For each realization Ejk, we run GeoClaw simulations at multiple static tide

levels, typically the three levels ξ̂m for m = MLW, MSL, and MHHW. We say
tide level ξ̂m produced the maximum GeoClaw inundation depth z(ξ̂m) and
plot the results with a piecewise linear function, as shown in the GeoClaw Sim-
ulation Curve in Figure 3. (This example used 7 tide levels.) The intersection
of the vertical dashed line with the tide level axis will give the minimum static
tide level ξ̂ = we that could be used with GeoClaw to produce inundation
depth z = ζi. Hence, if tide level ξ̂ > we were used for a GeoClaw run, we
claim that z > ζi would result.

Fig. 3: Finding ξ̂ = we and P (ξ > we |dt = 2)

The upper graph in Figure 3 has been extended to the left and to the right
of the data points (blue dots). We do this extension using a linear segment of
appropriate slope. If ζ = 0 for all the data points, we extend both left and
right with slope=0; otherwise, we extend to the left using slope=min(1, slope
of first data segment) and to the right using slope=max(1, slope of last data
segment).

If the horizontal dashed line in the GeoClaw Simulation Curve at inunda-
tion level ζi intersects the extended graph in multiple places (as would happen
for example if inundation does not occur until the tide reaches a particular
level), we choose ξ̂ = we to be the smallest tide level above which ζi is ex-
ceeded. As an example, if ζi = 0, the graph shows we only exceed ζi if the tide
is above the third blue dot, so the tide level associated with this point would
be chosen for we. It could also happen that the ζi inundation dashed line falls
below the entire graph (think of shifting the graph up by .5 meters and con-
sidering ζi = 0). In this case P (ζ > ζi |Ejk) = 1. Likewise, if the ζi inundation
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dashed line is above the entire graph, we set P (ζ > ζi |Ejk) = 0. If we is
greater than or equal to the highest tide possible at the Crescent City gauge,
we set P (ζ > ζi |Ejk) = 0. Finally, if we is less than the lowest tide possible at
the Crescent City gauge, ζi is always exceeded and we set P (ζ > ζi |Ejk) = 1.

Now, suppose for the moment that the GeoClaw tsunami of Figure 3 con-
sisted of only one wave with a very narrow width, say a spike even. If the tide
level at Crescent City at the time this wave strikes exceeds we, then we say the
conditional probability is 1 because both the tsunami wave and the Crescent
City tide support this level of inundation. However, we don’t know exactly
when the tsunami will strike in the tidal cycle and the level might not exceed
we. This aleatory uncertainty has been quantified in the cumulative probabil-
ity distribution function in Figure 2 that gives the probability of exceedance of
we at any particular instance of time. We refer to this time interval as dt = 0,
and say that P (ζ > ζi |Ejk) = P (ξ > we |dt = 0).

The cumulative probability distribution from Figure 2 is also shown as the
curve labelled (dt=0) in the bottom plot in Figure 3. This graph shows how
we would extract the desired probability by looking up we in the cumulative
distribution table (when dt=0 we would drop the dotted vertical line to the
bottom graph and then construct another dotted horizontal line to read off
the desired probability). This is very convenient, since the question about
P (ζ > ζi |Ejk) is changed to a simplier question about the tide levels at
Crescent City and the same cumulative distribution table can be used for every
grid point location in Crescent City (only we varies across the grid locations).

Next, suppose the tsunami represented in Figure 3 still consists of one
wave, but a much wider one (say 15 minutes wide). It is convenient to think of
a square wave with constant amplitude over this 15 minute interval. We still
can find the constant GeoClaw tide level, we, that we need to exceed so that
ζ will exceed ζi. The issue, though, is that the tide level at Crescent City will
not remain constant during a 15 minute interval, although it changes by at
most .18 meters. Do we need the Crescent City tide level ξ to exceed we during
the entire 15 minutes to report exceedance of ζi? Would the same exceedance
occur if ξ > we for only 7.5 minutes while this square wave were passing into
Crescent City? Taking this to the limit, would we still exceed ζi if ξ > we
at only one point in the 15 minute interval when the wave were coming into
Crescent City? We don’t know the answers to these questions, but choose to
err on the side that would give the biggest probability. We will say exceedance
of ζi occurs if the maximum value, ξ̄, of ξ during the 15 minute (.25 hr) interval
exceeds we, and denote the probability of any 15 minute interval as having a
maximum value exceeding we as P (ζ > ζi |Ejk) = P (ξ > we |dt = .25).

We can of course consider the one-wave scenerio with waves wider than .25
hours since our experience shows that the wave width typically lasts between
5 and 45 minutes. The procedure is the same, and the requirement is that we
are able to create a cumulative distribution table with columns corresponding
to the size of dt, and rows corresponding to valid values of we. The bottom
graph in Figure 3 illustrates several graphs of the columns of such a table, with
one graph per column. The limiting case is considering an infinite dt which



The Pattern-Method for Tidal Uncertainty 11

would correspond to choosing the conditional probability to be 1 if the value
of we is smaller than the largest tide level seen at Crescent City Gauge No.
9419750 and 0 otherwise.

The cumulative distribution corresponding to a finite dt is gotten as follows.
We simply take a dt-window of time and slide it one minute at a time across
a year’s worth of Gauge 9419750 data. Each time the dt-slider window stops,
we find the maximum tide level within the window. We increment a counter
in the first bin whose right edge exceeds or equals this maximum (to create a
histogram) and also in all lower bins (to create a cumulative histogram). Divid-
ing by the number of times the dt-slider window stops gives us the probability
mass function and cumulative distribution function, respectively. (The prob-
ablility density function is then obtained by dividing the probablility mass
function by the binsize used.) A table is saved that records the cumulative
probabilities for the valid tide levels with one column for each dt considered.

Tsunamis, however, consist of multiple waves of varying amplitudes and
widths, and may have the biggest amplitudes spaced apart by hours during
which the height of the tide alone will not change the maximum exceedance
ζ value at a grid point location. Multiple waves of nearly or equal magnitude
should increase the probability of exceedance of ζi since the time frame where
we could be exceeded increases. Even waves with lesser magnitude than the
largest one could produce exceedance of ζi if they came into Crescent City
at a sufficiently higher tide level than we. Applying the dt-Method to these
cases means finding a reasonable way to choose dt. We have the possibility in
GeoClaw to record the time history for the tsunami wave (or its effect) at any
computational location. Of course, doing this everywhere is prohibitive, but to
assist this study, we place GeoClaw Gauge 101 at a location in the water near
the Crescent City Gauge 9419750, and GeoClaw Gauge 105 at a point that
usually inundates (near the river, but on land). We also have Gauge 33 near
the shelf in deeper water, and GeoClaw Gauges 102, 103, and 104 on land. We
record what we call the GeoClaw tsunami at Gauge 101, and its biggest effect
is usually at Gauge 105. Examination of these computational gauges gives the
time intervals and widths of the waves responsible for inundation. The width
of the responsible wave of biggest amplitude certainly gives a minimum value
for the contiguous dt interval, and we increase dt based on nearby potentially
responsible waves.

In Section 2.3, we see the dt-Method works remarkably well compared to
the Pattern-Method for appropriately chosen dt. In particular, for all tsunamis
in Table 2 and [González, et al(2012)] the recommended values of dt can be
given. We recommend dt=1 for the Kamchatka event KmSZe01 and dt=3 for
KmSZe02. For the three Kuril events, we recommend dt=2 for KrSZe01, dt=3
for KrSZe02, and dt=4 for KrSZe03. For the Alaska events, we recommend
dt=1 with the exception of dt=2 for AASZe02. The value dt=1 should be
used for the Chilean event SChSZ01, the Tohoku event TOHe01, and the
Cascadia Bandon CSZBe01r13 and CSZBe01r14 realizations. The value dt=0
should be used for the remaining Cascadia Bandon realizations, CSZBe01r01-
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CSZBe01r12 and CSZBe01r15. We suspect that choosing dt beyond 4 will give
overestimates of the probability as this points to a 4 hour contiguous interval.

2.3 The Pattern-Method

This approach grew from the desire to automate the choice of dt in the dt-
Method. Instead of achieving this automation, we developed an even better
method that is tailored to each realization’s GeoClaw tsunami as seen at Geo-
Claw Gauge 101. The Pattern-Method uses the relative heights of the wave
amplitudes seen at Gauge 101, their widths, and the times they occurred,
(with the first wave starting at time 0), to first create a cumulative probabil-
ity distribution (a table with one column) associated with this particular wave
pattern. This is extra work, but the difference is that a fixed dt will not have
to be chosen. Instead, the entire pattern will be taken into account to calculate
the distribution. Figure 4 shows that for some tsunamis this new cumulative
distribution when compared to the columns of the dt-Method’s cumulative dis-
tribution gives probabilities similar to a fixed dt (AASZe03, dt=1), while for
other tsunamis the probabilities are consistent with a varying dt (AASZe02).
The pattern cumulative distribution is shown as a dotted line on the same
graph as that for the dt-Method with varying dt.

Fig. 4: Pattern to dt Comparison, Left: AASZe03, Right: AASZe02

Suppose Gauge 101 records K waves. We model wave Wk with a square
wave and record the difference of its amplitude from that of the highest wave
as Dk. We record the starting and terminating times of Wk as the interval
Ik = [Sk, Tk]. These times are relative to the start of W1, so we set S1 = 0,
and are recorded in minutes since our gauge 9419750 has minute data. The
entire length of the pattern is then TK minutes, the ending time of wave K.

In Figure 5, we show the GeoClaw tsunami for the AASZe02 event that
was recorded at gauge 101 as the red graph and the pattern as the black
graph. The first wave arrived at Crescent City 4 hours and 23 minutes after
the earthquake and nothing significant was seen there after 11 hours. The
pattern is well represented by the 7 waves shown. We are overestimating the
probability a bit by using square waves, but we don’t have to account for tides
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during times that they can’t possibly have any impact. A table showing the
values that describe the pattern are given in Table 1. We note that the first
wave began at 263 minutes after the earthquake and the amplitude of the
largest wave W7 was about 1.5 meters. The black horizontal line starts at .2
meters since the GeoClaw run was done at MHHW which is .2 meters above
MHW, the zero level for the Gauge 101 plot in Figure 5.

Fig. 5: Pattern for AASZe02

Table 1: Pattern Values

Wave Ik = [Sk, Tk] Dk (meters)
Wk Wave Interval Difference to

(min since S1) Tallest Wave
W1 [000, 042] 0.561
W2 [084, 124] 0.498
W3 [160, 202] 0.517
W4 [243, 275] 0.782
W5 [309, 325] 0.876
W6 [342, 349] 1.450
W7 [372, 396] 0.000

As in the dt-Method, we take the valid values for the tide levels at Crescent
City and put them into a fixed number of bins. But now we take our pattern-
slider window that has length TK and slide it one minute at a time across
a year’s worth of Gauge 9419750 data. Each time the pattern-slider window
stops, we do the following:

– Find the maximum tide level, Mk associated with each Ik, k = 1 . . .K.

– Adjust Mk to get Mk: Mk = Mk −Dk.

– Compute MP = maxk Mk.

– Increment a counter in the first bin whose right edge exceeds or equals MP ,
the max for the pattern for this window stop, to create a histogram and
also increment all lower bins to create a cumulative histogram.

Dividing the cumulative histogram by the number of times the pattern-slider
window stops gives a cumulative distribution function for the probability of
exceeding each valid tide level by a tsunami of this pattern. A table is saved
that records the cumulative probabilities for all valid tide levels at the Crescent
City gauge 9419750. The associated probability density function is not needed
but is computed so comparisons can be made to the other methods.

After the pattern cumulative distribution is found, the method proceeds
exactly as the dt-Method. We use the multiple GeoClaw simulations to find
the minimum static tide level ξ̂ = we that could be used with GeoClaw to
produce inundation height z = ζi. If we would make a GeoClaw simulation
with tide level we (we don’t do this), the thinking is that the resulting tsunami
pattern values at GeoClaw gauge 101 would be the same as those obtained
using any other tide level. This is because gauge 101 is in the water and records
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the tsunami as it comes into Crescent City as opposed to being located at a
land point that also feels the tsunami’s nonlinear effects.

So, we need to find the probability that the Crescent City tide is sufficient
for the tsunami pattern to exceed ζi by looking up we in our pattern cumulative
distribution. We denote the probability that the tide exceeds we in the sense
of the pattern as P (ζ > ζi |Ejk) = P (ξ > we |pattern) with the meaning

P (ξ > we |pattern) = P (ξ > we +Dk somewhere in Ik for some k). (10)

The advantages over the dt-Method include:

– Only one synthetic gauge, GeoClaw gauge 101, needs to be examined.

– By adjusting the Mk, we permit the possibility that a wave with amplitude
Dk less than the maximum one seen at GeoClaw gauge 101 could also cause
an inundation at gauge 101 of ζi or higher if it occurred at a time when
the tide level was at least Dk higher than that required of the maximum
amplitude GeoClaw gauge 101 wave.

– By looking in each interval Ik, we take into account each wave’s width. We
only examine the tide during each interval Ik, not between. This allows a
more accurate representation of tsunamis that have a longer duration.

– The procedure is automatic.

A possible limitation is that the Pattern-Method requires the simulation code
to have GeoClaw’s capability of a computational gauge. The dt-Method bene-
fits from examining the gauges to determine dt, but if none were present, the
recommended choice would be to use dt=1 for all near-field realizations and
dt=2 for far-field events.

2.4 The G-Method

The G in the G-Method emphasizes that parameters are chosen to select a
Gaussian probability density function for the maximum wave height of the
tsunami and the tides. A 5-day theoretical tsunami with exponentially de-
caying amplitude having an e-folding time of 2 days was assumed at each
grid location P . Other authors have used e-folding times to model the decay
of tsunami wave energy, see [Van Dorn(1984)], [Rabinovich, et al(2011)], and
[Fine, et al(2012)]. The tsunami’s amplitude, AG at location P is calculated
using data at the grid location from one GeoClaw simulation using one tide
level, ξ̂. This theoretical tsunami was then combined with local tidal infor-
mation and regression analysis used to develop an analytical expression for a
Gaussian probability density function and a cumulative distribution described
by the erf function.

[Mofjeld, et al(2007)] gives parameters for this method for a variety of lo-
cations. The parameters for Crescent City include σ0 = .638, the standard
deviation for the tides there, and the regression parameters α′ = 0.056, β′ =
1.119, C ′=.707, α=0.17, β=.858, and C=1.044.
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The form assumed for the standard deviation, σ, of the random variable
ζP (ξ̂) (and hence the random variable ξ̄P (ξ̂) = ζP (ξ̂)− zP (ξ̂) + ξ̂) is a function

of the amplitude at location P , (AG = AP (ξ̂)), and the parameters:

σ = σ0

(
1− C ′ e−α

′
(
AG
σ0

)β′)
(11)

The form for the mean of ζP (ξ̂), denoted ζ0, is

ζ0 = zP (ξ̂)− ξ̂ + C(ξMHHW ) e
−α

(
AG
σ0

)β
, (12)

and hence the mean of ξ̄P (ξ̂), denoted w0, is

w0 = C(ξMHHW ) e
−α

(
AG
σ0

)β
. (13)

The G-Method calculates the probability as

P (ζP (ξ̂) > ζi |Ejk) =
1

2

(
1− erf

(
ζi − ζ0√

2σ

))
. (14)

Equation (14) can also be written as

P (ζP (ξ̂) > ζi |Ejk) = P (ξ̄P (ξ̂) > w̃e) =
1

2

(
1− erf

(
w̃e − w0√

2σ

))
(15)

where w̃e = zP (we) − zP (ξ̂) + ξ̂, and we implement using the choice ξ̂ =

ξMHHW . If the GeoClaw Simulation Curve ξ̂ vs zP (ξ̂) has slope 1, w̃e = we.

The G-Method has two major limitations. First, only one GeoClaw simu-
lation with tide level ξ̂ = ξMHHW is used to produce zP (ξMHHW ), and this
value is used to compute AG. Using only one simulation is appropriate when-
ever zP (ξ̂) and ξ̂ are related by a linear relationship with slope 1, since then
the value of AG and the random variables ζP and ξ̄P will be independent of the
tide level ξ̂ used for the GeoClaw run. Multiple GeoClaw Simulations Curves
show that these assumptions are not true, especially for land locations. Figure
6 illustrates this point for one water and one land location, using 11 different
tide levels for the Alaska 1964 event. The tsunami amplitudes were calculated
using all 11 tide runs, and the range of amplitudes are given with the plot as
well as the slopes of the piecewise linear segments in the graphs. Notice that
for the water location, the amplitudes calculated from the 11 runs were fairly
close, as were the slopes. The same is not true for the land location. The black
line is the slope 1 through (ξMHHW , z(ξMHHW )).

The second limitation is the use of the same 5-day proxy tsunami (where
the amplitude alone varies) as the pattern for modelling each tsunami in a
PTHA study, especially when the major question being studied is the inunda-
tion at land points. As seen in Table 2, the duration of all the tsunamis studied
that could impact the maximum inundation at a land point is much less than
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Fig. 6: Left (water): Slopes .93 to 1.21, Amplitudes 4.63 to 4.74. Right (land):
Slopes .001 to .18, Amplitudes 13.1 to 15.2

5 days, and as seen by GeoClaw time series at Gauge 101, these tsunamis
have patterns that are very different. A local tsunami from the Cascadia Sub-
duction Zone will typically have only one or two waves occuring over a short
time frame that are responsible for the maximum; whereas, far field events
can have damaging waves occuring over a longer time frame, but still much
shorter than 5 days with amplitudes that can increase over a time interval. It
was not the first wave that was the largest in the real 1964 Alaska event, nor
is it the first for many of the sources in Table 2. Also, for all these sources, it
was rare to see the GeoClaw tsunami waves have non-increasing amplitudes
in the first two hours after the arrival of the first wave. In fact, the first four
Alaska sources did not have non-increasing amplitudes up through the first
seven hours, and the second Kamchatka source did not have non-increasing
amplitudes up through the first five hours. Such wave patterns pass through
significant tidal variations.

3 Method comparisons

3.1 G and Pattern PDF Comparisons for ξ̄ at Gauge 101 (multiple sources)

In Table 2, we compare the probability density functions (PDFs) of the Mofjeld
(G) and Pattern methods for some of the tsunamis considered in the Crescent
City study. Table 2 shows there are huge differences between the G-Method
(Mofjeld) and the Pattern-Method. Only for the four large amplitude tsunamis
CSZBe01r01, CSZBe01r02, CSZBe01r03, and CSZBe01r04 do the two methods
have PDFs with similar means and standard deviations. For the other tsunamis
in the table, the G-Method has a much higher mean and smaller standard
deviation than the Pattern-Method.

3.2 AASZe03 comparisons

For the purposes of further comparing the methods, we made GeoClaw runs
of the Alaska 1964 event using 11 tide levels. These levels referenced to MSL
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Table 2: Mofjeld (G) and Pattern Method PDF comparisons. The length T
in min. and amplitudes AG = A101 = z101(ξMHHW ) + ξMHW − ξMHHW in
m. (seen at Gauge 101) are given in columns 2 and 3 for some tsunamis used
in this study. Columns 4-7 give the mean ω0 and standard deviation σ of the
PDFs for ξ̄101 = ζ101−z101(ξMHHW )+ξMHHW generated by the two methods.

Mofjeld (G) Mofjeld (G) Pattern Pattern
Source T A w0 σ w0 σ
Name (min) (m) (m) (m) (m) (m)

AASZe03-Proxy 7205 3.92 .45 .34 .46 .34
AASZe01 328 1.96 .65 .27 .12 .53
AASZe02 396 1.50 .71 .25 .36 .37
AASZe03 267 3.92 .45 .34 .14 .60
AASZe04 476 1.77 .67 .26 .18 .47
KmSZe01 308 .92 .80 .22 .15 .54
KrSZe01 275 .50 .88 .21 .22 .52
SChSZe01 106 .60 .86 .21 .16 .60
TOHe01 324 1.66 .69 .26 .07 .59
CSZBe01r01 329 14.18 .09 .56 .04 .63
CSZBe01r02 326 12.96 .11 .55 .04 .63
CSZBe01r03 326 13.31 .10 .55 .04 .63
CSZBe01r04 157 13.00 .11 .55 .04 .63
CSZBe01r09 160 6.72 .28 .43 .03 .63
CSZBe01r15 160 3.25 .51 .32 .04 .63

were -1.13, -0.75, -0.50, -0.25, 0.00, 0.25, 0.50, 0.77, 0.97, 1.25, and 1.5 meters.
We also consider the 35 exceedance values given in (8).

3.2.1 G and Pattern cumulative comparisons for ξ̄ at Gauge 101

We ran the Pattern-Method on the 5-day proxy tsunami that is assumed by
the G-method and compared the resulting cumulative distributions for ξ̄ =
ζ − z(ξMHHW ) + ξMHHW at Gauge 101. The amplitude for the 5-day proxy
tsunami was taken as that of the biggest wave seen at Gauge 101 for AASZe03.
The two distributions when plotted are almost identical with values differing
mostly less than 1% as seen in Figure 7 as the green and dashed red graphs
and given in the first line of Table 2. The black graph is the distribution for ξ̄
for the Pattern Method on the actual tsumani at Gauge 101 for which we used
a T = 267 minute duration. This explains differences generated by the Mofjeld
method (G-Method) and the Pattern-Method at the Gauge 101 for any real
tsunami is not due to our methodology, but to the fact that the real tsunami
is not well approximated by the proxy one. The Pattern-Method can capture
the differences of each specific tsunami as seen in Figure 7 by the differences
between the black graph and the green (or dashed red) ones.
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Fig. 7: Pattern Method Validation

3.2.2 All methods PDF comparisons for ξ̄ at Gauge 101

Next, we computed the means and standard deviations of the PDFs for ξ̄ at
Gauge 101 using all three methods for the Alaska 1964 tsunami (AASZe03).
These are given in Table 3 below.

Table 3: Method PDF comparisons for AASZe03 at Gauge 101. Columns 2 and
3 give the mean ω0 and standard deviation σ of the PDFs for ξ̄ used by the
methods at GeoClaw Gauge 101 to compute the Cumulative Distribution for
the probability indicated in column 4. We note AG = A101 = z101(ξMHHW ) +
ξMHW − ξMHHW , and w̃e = z101(we)− z101(ξMHHW ) + ξMHHW .

Method w0 σ P (ζ > ζi |Ejk)

Pattern .14 .60 P (ξ > we | pattern) = P (ξ̄ > we)

dt .12 .62 P (ξ > we | dt) = P (ξ̄ > we)

G .45 .34 P (ξ̄ > w̃e) in (15)

3.2.3 Tide probability differences

For each grid location, we compared the 35 probabilities P (ζ > ζi |Ejk) in
equation (6) for the 1964 Alaska event where j = 1, k = kj = 1, and i
ranges from 1 to 35. The numbers in Table 4 are over all the grid locations
that cover the Crescent City area. The row labelled max is the maximum
difference seen when the method being compared to the Pattern-Method gives
the larger result, and the row labelled min is the difference seen when the
Pattern-Method gives the larger result.

Indeed, differences close to 1 are observed in the first column and the
second column shows that dt=1 for this particular tsunami gives results very
close to those of the Pattern-Method. Both the dt and Pattern methods use
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Table 4: Tide Probability P (ζ > ζi |Ejk) Differences

G-Pattern dt-Pattern
max +.747 +.006
min -.936 -.017

the amplitude of the tsunami at Gauge 101 (instead of the amplitudes at the
land points) and assume its duration is T-minutes instead of 5 days. Further
analysis given in [Adams, et al(2013)] shows that almost all of the -.936 is due
to the G-Method’s choice of 5 days, while all but .158 of the .747 is due to this
choice. This remaining .158 difference is due to the use of a proxy decaying
e-folding pattern of 2 days for the tsunami, rather than the observed pattern.

3.2.4 Tide probability differences contour plots

In Figure 8 we compare the dt-Method and the G-Method to the Pattern-
Method by giving contour plots of the absolute value of the tide probability
differences of exceeding ζi = 0 meters and ζi = 2 meters. The magnitudes in
the colorbar show the tidal probabilities of the dt and Pattern methods differ
by less than 2%. In fact, Table 4 gives the difference as less than 1.7%.

Fig. 8: Probability Difference Contours, Left: ζ = 0 m., Right: ζ = 2 m. Top:
abs(dt-Pattern), Bottom: abs(G-Pattern)
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4 Conclusions and open questions

This study has provided some advice to the PTHA community.

– The Pattern-Method is appropriate for both land and water locations.

– The G-Method should not be used for land points.
– Duration time T should be used for land points.

Issues that warrant further consideration are given below:

– The Pattern-Method can be extended to use different cumulative distribu-
tions for different groups of locations if warranted by a study’s questions.
For example, taking a larger T for water locations might be of interest.

– Using more computational gauges in addition to Gauge 101 could enhance
the Pattern-Method.

– Finding an automatic way of choosing dt would enhance the dt-Method.

– We do not model the currents that are generated by the tide rising and
falling. A tsunami wave arriving on top of an incoming tide could poten-
tially inundate further than the same amplitude wave moving against the
tidal current, even if the tide stage is the same. Modeling this is beyond
the scope of current tsunami models.
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