Internal waves and eddies from gliders and the MITgcm

Kyla Drushka¹, Luc Rainville¹, Dimitris Menemenlis²

1. Applied Physics Laboratory, University of Washington

2. NASA Jet Propulsion Laboratory

SWOT Science Team Meeting :: 27 June 2018

Challenge:

Separating internal waves from geostrophically balanced motions

Separating internal waves from geostrophically balanced motions

Thought experiment:

How well will SWOT get the mesoscale SSH field if we know the internal tides perfectly?

Separating internal waves from geostrophically balanced motions

Thought experiment:

How well will SWOT get the mesoscale SSH field if we know the internal tides perfectly?

Explore with the MITgcm IIc4320 simulation

Separating internal tide signal in steric height (SH) from model or gliders: <u>high frequency steric height</u>

Total SH

- Diurnal + semidiurnal + inertial: fit isopycnal displacements to known frequencies.
- 2. Fitting errors, submesoscale, other tidal constituents...

How well can SWOT get the mesoscale if we know the internal tides?

"True" mesoscale = total – internal tide – residual

"Best guess" mesoscale ≈ total – internal tide

"SWOT" mesoscale ≈ total – internal tide + SWOT noise

Example from Luzon Strait: strong mesoscale and internal tide region

From Chelton eddy database

From GOLD model; Rainville and Simmons, in prep.

Luzon Strait steric height variance from MITgcm:

* See our poster for validation of the model using gliders

Example 1: MITgcm snapshot from 24 Jan 2012 Luzon Strait

* Extract by fitting isopycnal displacements to known frequencies (diurnal, semidiurnal, inertial)

Example 1: MITgcm snapshot from 24 Jan 2012 Luzon Strait

known frequencies (diurnal, semidiurnal, inertial)

Luzon Strait: What would SWOT see?

24

22

20

ĭ22

SWOT sampling adds noise, but mesoscale is still clearly separable Best estimate of the mesoscale we could measure with SWOT= $\eta_{total} - \eta_{Internal tide} + SWOT$ simulator noise

"True" mesoscale snapshot = low-pass filter of **η**_{total} (subsampled along the swath)

Snapshot 1: 24 Jan 2012 Luzon Strait

Snapshot 2: 17 Jan 2012 Luzon Strait

SWOT sampling adds noise, but mesoscale is still clearly separable

Relatively strong internal waves: residual + noise overwhelms the mesoscale signal.

Example 2: MITgcm snapshot from 17 Jan 2012

22

20

24

Relatively strong internal waves: residual + noise overwhelms the mesoscale signal.

note, model tides may have unrealistically * strong high-frequency signals

Relative strength of mesoscale and internal tides will affect our ability to interpret SWOT data – regional variability matters.

From Chelton eddy database

From GOLD model; Rainville and Simmons in prep.

Region 2: Tasmania

Tasmania steric height variance from MITgcm: mesoscale >> internal tides

Tasmania:

Total SH [m]

"best guess" of mesoscale = total - IT

"True" mesoscale

Weak internal tides \rightarrow good estimate of ocean mesoscale is possible from SWOT

Ongoing work: quantify mesoscale/IT characteristics with glider data & MITgcm in other regions

From Chelton eddy database

From GOLD model; Rainville and Simmons in prep.

A note on spatial sampling from gliders internal mesoscale total 22°N tides 0.07 24 24 24 0.06 23 23 23 22 22 22 0.05 From 42 glider 21 0.04 m missions: 20 20 0.03 19 19 19 0.02 ^{0.02} RMS steric height (m) 18 18 18 120 122 124 120 122 124 120 24°N 24°N 24°N From MITgcm: 22°N 22°N 22°N 20°N 20°N 20°N

18°N

18°N

A note on spatial sampling from gliders internal mesoscale total 22°N tides 0.07 24 24 0.06 23 23 23 22 0.05 From 42 glider 0.04 m missions: Gliders can map out 18 18 18 the spatial variability 122 120 122 120 120 of steric height 24°N 24°N components, From MITgcm: including internal 22°N 22°N 22°N tides – this can be 20°N 20°N exploited for SWOT 18°N validation.

Summary: combining model, in-situ observations, and remote sensing is key to interpreting spatial structure of steric height

- 1. Given a good internal tide model, SWOT should capture the mesoscale field (when the mesoscale is relatively strong).
 - Caution in interpreting data where internal tides are strong/incoherent!
- 2. The regional and temporal variability in the relative mesoscale/internal tide strength will affect our ability to extract the mesoscale.
- 3. The MITgcm reproduces the partitioning of internal tide and mesoscale steric height well compared to gliders.
 - Gliders can be used to map out this partitioning: a useful tool for SWOT cal/val.

Previously: data from one glider mission used to validate the internal tide field in the 1/48° MITgcm

Glider track Nov 2011–Mar 2012

Temperature, °C

MITgcm gets the internal tide components right

