Small-Scale Salinity Variability from Thermosalinographs: A Global Perspective

Kyla Drushka & Bill Asher
Applied Physics Laboratory, University of Washington

Ocean Sciences Meeting 2016

- 1. How does salinity variability affect satellite validation?
- 2.) Where does salinity drive submesoscale density variability?

Historical thermosalinograph (TSG) data

LEGOS Sea Surface Salinity Observation Service (Alory et al. 2015)

- Research vessels, voluntary observing ships, sailing ships
- ~8x10⁶ good measurements: 29 ships, 1000 transects, 1993-2015
- + data from R/V Polarstern (Alfred Wegener Institut)
 - 1989-2014: ~4.5 x 10⁵ good observations
- + data from M/V Oleander (NOAA; quality control by Clifford Hoang)
 - 2001-2014: 2x10⁶ good observations

Total number of TSG observations per 3°x3° box (*some have salinity only)

Quantifying "small-scale" variability

Small-scale salinity variability (σ_s)

Binned 100-km standard deviation (95th percentile of values in each bin)

Strongest where large-scale fronts are strong:

- Gulf Stream, Agulhas
- River outflow regions
- Ice-influenced regions

Part 1. Salinity variability on scales <100 km affects satellite salinity validation

Question 1:

Do "subfootprint-scale" salinity variations resemble satellite uncertainties?

Aquarius: 50-100 km footprint

SMOS: ~45 km footprint SMAP: ~40 km footprint

See Vinogradova & Ponte 2013 for a model-based estimate

Aquarius-Argo RMS difference

- Aquarius V4 L2 data, 2011-2015
- Matched to Argo profiles shallower than 5m within 50 km & 1 day.
- 2.1x10⁵ matchups. Mean difference (bias) is removed, then RMSD calculated from matchups in 5°x5° bins

Conclusion 1: Aquarius noise is largely consistent with small-scale salinity variability

Part 2. Impacts of small-scale salinity on density

Submesoscale surface density fronts have significant impacts on ocean dynamics.

- Laterally: affect turbulent transfers between scales (e.g. energy cascade from the mesoscale).
- Vertically: are associated with near-surface vertical velocity, transport between surface/mixed layer.

Question 2:

Where does salinity drive surface density variability on O(1)-O(10) km scales?

Small-scale density variability from TSG data (standard deviation over 100 km segments)

* gaps are from incomplete temperature data

Two considerations regarding drivers of surface density variability:

1. Density fluctuations are related to salinity & temperature fluctuations:

$$\frac{\Delta \rho}{\rho_0} = \beta \Delta S - \alpha \Delta \theta$$
Haline Thermal expansion coefficient coefficient

 α and β vary relative to each other high latitudes $\beta \sim 2\alpha$

2. Compensated fronts have no density anomaly

Example: Greenland

Ice melt drives strong variations in both T and S

Density is somewhat compensated –

But $\beta >> \alpha$, so salinity anomalies dominate density

Example: Amazon

T and S act together – strong density variability

Temperature and salinity both drive small-scale surface density

Summary

1. Aquarius-Argo noise can be explained by salinity variability smaller than the satellite footprint

- 2. Strong small-scale density variations are controlled by:
 - salinity (at high latitudes, near river outflows)
 - temperature (Gulf Stream, Agulhas, around Australia)

