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ABSTRACT

Surface salinity variability on O(1–10) km lateral scales (the submesoscale) generates density variability

and thus has implications for submesoscale dynamics. Satellite salinity measurements represent a spatial

average over horizontal scales of approximately 40–100 km but are compared to point measurements for

validation, so submesoscale salinity variability also complicates validation of satellite salinities. Here, we

combine several databases of historical thermosalinograph (TSG)measurements made from ships to globally

characterize surface submesoscale salinity, temperature, and density variability. In river plumes; regions

affected by ice melt or upwelling; and the Gulf Stream, South Atlantic, and Agulhas Currents, submesoscale

surface salinity variability is large. In these regions, horizontal salinity variability appears to explain some of

the differences between surface salinities from theAquarius and SMOS satellites and salinitiesmeasured with

Argo floats. In other words, apparent satellite errors in highly variable regions in fact arise becauseArgo point

measurements do not represent spatially averaged satellite data. Salinity dominates over temperature in

generating submesoscale surface density variability throughout the tropical rainbands, in river plumes, and in

polar regions. Horizontal density fronts on 10-km scales tend to be compensated (salinity and temperature

have opposing effects on density) throughoutmost of the global oceans, with the exception of the south Indian

and southwest Pacific Oceans between 208 and 308S, where fronts tend to be anticompensated.

1. Introduction

Salinity varies over a range of horizontal scales due to

oceanic dynamics and surface forcing from river runoff,

evaporation, precipitation, and freezing/thawing of ice.

The primary focus of this paper is submesoscale (defined

here as smaller than 20km) horizontal surface salinity

variability, which affects density variability and therefore

ocean dynamics. Submesoscale density fronts are often

associated with strong vertical velocities in the mixed

layer and thus can drive exchange of gases, salt, heat,

carbon, and nutrients between the surface and the ther-

mocline (e.g., Lévy et al. 2001; Lapeyre and Klein 2006;

Thomas et al. 2008; Klein et al. 2015). Submesoscale

density fronts can occur as a result of gradients in salinity

or temperature, or both. Collocated temperature and

salinity fronts can have opposing effects on density, so

that although there are gradients in both properties,

density remains approximately constant across the

fronts. The weak density signature across these

‘‘compensated fronts’’ makes themmore stable, allowing

them to persist. In contrast, noncompensated density

fronts with large density gradients tend to slump due to

gravity, which increases mixing, and hence they have

shorter lifetimes (Rudnick and Ferrari 1999; Rudnick and

Martin 2002).

Salinity variations on scales , 100km (i.e., the sub-

mesoscale tomesoscale regimes) impact interpretation of

salinity measurements from satellite-based microwave

radiometers [Aquarius, Soil Moisture and Ocean Salinity

(SMOS), and Soil Moisture Active Passive (SMAP)].

These remote sensing measurements are typically vali-

dated with in situ data from Argo floats, moorings, and

surface drifters. After atmospheric effects have been re-

moved, radiometers provide the microwave brightness

temperature of the top centimeter of the ocean that is the

weighted spatial average over the radiometer ground

footprint (;40–100kmacross depending on the satellite).

In contrast, in situ measurements are made at a single

point and typically at a depth between 0.5 and 5m, at leastCorresponding author: Kyla Drushka, kdrushka@apl.uw.edu
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an order of magnitude deeper than the satellite mea-

surement. If the in situ sensor samples a point that does

not represent the spatially averaged value of the satellite

due to vertical and/or horizontal salinity variability, this

causes a mismatch between the satellite and in situ sa-

linity measurements, leading to apparent errors in the

satellite products (Boutin et al. 2016).While the impact of

the vertical salinity structure (e.g., due to rainfall-induced

near-surface stratification or evaporatively formed salin-

ity gradients) has been studied (e.g., Henocq et al. 2010;

Boutin et al. 2014; Drucker and Riser 2014; Asher et al.

2014a,b; Tang et al. 2014; Drushka et al. 2016), there have

been fewer investigations into the implications of hori-

zontal variability (Lagerloef et al. 2010; Maes et al. 2013;

Vinogradova and Ponte 2013).

The first objective of this work is to characterize

submesoscale sea surface salinity variability, including

changes in variability in each ocean basin, processes that

generate variability, and the impact of salinity variability

on density. The second objective is to determine where

salinity variations smaller than the spatial footprint of

satellite radiometers can contribute to apparent errors

in satellite salinity. We combine measurements from

several databases of thermosalinograph (TSG) data to

obtain near-global coverage of surface temperature and

salinity measurements at 2.5-km horizontal resolution.

We also examine errors and uncertainties in the sea

surface salinity measured by the Aquarius, SMAP, and

SMOS satellite missions based on this near-global sa-

linity database.

2. Background

Drivers of submesoscale sea surface salinity (SSS)

variability include stirring by mesoscale eddies (e.g.,

Legal et al. 2007; Pietri et al. 2013) and turbulence

(Desprès et al. 2011a) near large-scale salinity gradi-

ents; precipitation (e.g., Reverdin et al. 2012; Maes

et al. 2013); riverine freshwater input (e.g., Brando

et al. 2015); upwelling (Capet et al. 2008); ice–ocean–

atmosphere interaction (Backhaus and Kämpf 1999;

Manucharyan and Thompson 2017); and nonlinear

buoyant adjustment to external forcing (Soloviev and

Lukas 1997). Where and when these processes drive

salinity variability, and the spatial and temporal scales of

the salinity gradients they produce, remain open ques-

tions. A number of studies have used TSG measure-

ments from voluntary observing ships to characterize

regional SSS variability (Delcroix et al. 2005; Desprès
et al. 2011b; Maes et al. 2013; Kolodziejczyk et al. 2015;

SenaMartins et al. 2015). Consistent with the hypothesis

that different processes can create horizontal variability

in salinity, these studies demonstrate that submesoscale

salinity fronts can exist over a range of geographic loca-

tions having different local atmospheric and ocean con-

ditions and forcing mechanisms.

a. Implications of submesoscale salinity variability
for ocean dynamics

Salinity and temperature control seawater density, so

variability in density is driven by variability in either or

both properties. Submesoscale density fronts slump due

to gravity, energizingmixed layer instabilities and causing

themixed layer to stratify (Boccaletti et al. 2007; D’Asaro

et al. 2011; Thompson et al. 2016). Submesoscale dy-

namics generate strong vertical velocities in the mixed

layer, transporting dissolved gases, salt, heat, inorganic/

organic carbon, and nutrients between the ocean surface

and the base of the thermocline (e.g., Lévy et al. 2001;

Thomas et al. 2008). However, much of our current un-

derstanding of submesoscale dynamics is derived from

idealized numerical simulations over small spatial scales

(e.g., Capet et al. 2008) or from high-resolution ocean

general circulation models (e.g., Menemenlis et al. 2014),

with in situ data available fromonly a handful of localized

process studies (e.g., Hosegood et al. 2008; Shcherbina

et al. 2015; Thompson et al. 2016; Ramachandran et al.

2018). As the spatial resolution of global-scale models

improves so as to better resolve the submesoscale range,

ensuring that the details of the model physics are accu-

rately described becomes important. This motivates

an observations-based approach to characterize sub-

mesoscale ocean physics. To our knowledge, a global

observational characterization of the prevalence of sub-

mesoscale density variability, and its relation to salinity

and temperature variability, has not been undertaken.

Submesoscale density fronts at the sea surface are often

associated with strong vertical velocities in the mixed

layer (e.g., Thomas et al. 2008), so understanding where

density variability is strong and whether it is caused by

temperature and/or salinity is important in understanding

upper-ocean mixing. On scales smaller than the Rossby

deformation radius for the mixed layer, density fronts

tend to slump due to gravity, with the isopycnals tilting

from the vertical to the horizontal, which disperses the

fronts (Rudnick and Martin 2002). In contrast, compen-

sated salinity/temperature fronts for which there is little

change in density are not subject to slumping and hence

are expected to persist (Rudnick and Ferrari 1999;

Rudnick and Martin 2002). Rudnick and Ferrari (1999)

showed that these compensated salinity/temperature

fronts in the ocean mixed layer are ubiquitous on sub-

mesoscale distances from 20m to 10km, with horizontal

temperature and salinity gradients canceling each other

out to produce a nearly uniform density field. If only SST

(or SSS) measurements are available, the picture of the
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density variability could thus be incomplete and poten-

tiallymisleading. Rudnick andMartin (2002) showed that

compensated fronts are found in all ocean basins on

3–4-km scales, particularly when mixed layers are rela-

tively deep, but they did not examine spatial patterns

of compensation on regional scales within each basin.

Making a consistent global estimate of submesoscale

variability globally is challenging. Remote sensing of sa-

linity and temperature can provide spatially extensive

sampling, but there are issues with each in terms of re-

solving submesoscale variability. Satellite salinity mea-

surements do not have high enough spatial resolution to

capture submesoscale salinity variability (see below). In

contrast, although satellite-mounted infrared imagers

have high enough spatial resolution to capture sub-

mesoscale variability in SST, it is not clear whether or

where SST alone dominates submesoscale density. In

addition, high-resolution SST data are available only in

clear-sky conditions, which are linked to downwelling

solar radiation, so satellite-derived estimates of SST

variability might be biased if variability is correlated

with downwelling solar radiation.

b. Implications of submesoscale to mesoscale surface
salinity variability for satellite validation

L-band radiometers measure salinity as a weighted

spatial average over a large footprint: for satellite

instruments, these footprints are approximately 45 km

for SMOS, 40 km for SMAP, and 80–100 km for

Aquarius (Boutin et al. 2016; Meissner et al. 2017).

However, the area-averaged satellite salinity mea-

surements are typically validated with in situ obser-

vations that represent salinity at a single point inside

the footprint of the radiometer. In the presence of

strong salinity variability on spatial scales smaller

than one satellite footprint (i.e., submesoscales to

mesoscales), the spatially averaged satellite data can

potentially disagree with in situ point measurements.

This disagreement would not be due to errors or bias

in the satellite measurement, but because the spatial

scales of the satellite sampling are so different from the

in situ sampling.

Lagerloef et al. (2010) estimated the impact of spatial

averaging on Aquarius salinity uncertainties by com-

paring raw ship-based TSG measurements to TSG

measurements smoothed with a 150-km Gaussian filter.

The difference, representing the uncertainty in Aquar-

ius measurements due to comparison with point salinity

measurements, was typically smaller than 0.1 psu except

in strong frontal regions such as the Gulf Stream, where

the difference approached 1 psu.

Using output from a numerical simulation, Vinogradova

and Ponte (2013) estimated sub-footprint-scale salinity

variability globally using a 1/128 solution from the Hybrid

Coordinate Ocean Model (HYCOM): model salinities

were binned into 18 3 18 grid boxes and the standard

deviation of salinity taken as an estimate of the salinity

sampling error, which is expected to be equivalent to the

difference between a point measurement and a footprint-

averaged measurement of SSS. Vinogradova and Ponte

(2013) found the highest sampling errors of 1 psu were

located in coastal regions with strong large-scale hori-

zontal salinity gradients. Somewhat smaller sampling er-

rors of 0.2 psu were found in regions with river outflow

and boundary currents. Vinogradova and Ponte (2013)

also found that in some places the sampling error due

to small-scale salinity could be large enough to affect

Aquarius validation.

3. Data and methods

a. Thermosalinograph data

This study is based on historical TSG data from the

databases listed in Table 1. Only data for which the data

providers have applied at least minimal quality control

(QC), for example, removing data outside climatologi-

cal ranges, were used. For data not designated ‘‘research

quality,’’ we applied further QC according to the pro-

cedure described below. The largest source of data was

version 4 of the Surface Ocean CO2 Atlas (SOCAT)

database (Bakker et al. 2016; https://www.socat.info),

which contains TSG measurements along with the CO2

measurements from research vessels. SOCAT temper-

ature and salinity measurements are only minimally

controlled such that they are reasonable for calculating

surface water CO2 flux, so they were subjected to full

QC for the present analysis. SOCAT data were supple-

mented with data from three additional databases. First,

delayed-mode data from the French Sea Surface Salinity

Observation Service (SSS-OS) have undergone a thor-

ough QC procedure that includes comparison to bot-

tle measurements, available float data, and climatology

(Alory et al. 2015; http://www.legos.obs-mip.fr). How-

ever, temperature measurements from SSS-OS have

only been checked with an automated processing code

(Alory et al. 2015). Second, the Shipboard Automated

Meteorological and Oceanographic System (SAMOS;

http://samos.coaps.fsu.edu) provides TSG and meteoro-

logical data collected on research vessels and a select

number of voluntary observing ships. Only SAMOS data

with either ‘‘intermediate’’ or research-quality processing

were used here; for the latter, no additional QC was

performed. Third, the Global Ocean Surface Underway

Data (GOSUD) project (www.gosud.org) is an interna-

tional initiative to assemble in situ near-surface ocean
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temperature and salinity observations. GOSUD provides

delayed-mode TSG data from research vessels and sail-

ing ships. Data from several additional research vessels

were obtained from the Japan Agency for Marine-Earth

Science and Technology (JAMSTEC; R/V Mirai; http://

www.godac.jamstec.go.jp/darwin/); PANGAEA data

publisher (R/VPolarstern; https://www.pangaea.de/); and

the Australian Ocean Data Network (AODN; R/V

Astrolabe, R/V Southern Surveyor, R/VAuroraAustralis,

R/V Tangaroa, R/V Cape Ferguson, and R/V Solander;

https://portal.aodn.org.au/). Finally, TSG measurements

in the North Atlantic made from the container ship M/V

Oleander were acquired from Stony Brook University

(http://po.msrc.sunysb.edu/Oleander/).

We applied the additional QC procedures described

in ‘‘TSG Data Quality Control’’ published by the

National Oceanic and Atmospheric Administration’s

Atlantic Oceanographic and Meteorological Labora-

tory (NOAA/AOML; http://www.aoml.noaa.gov/phod/

tsg/data/qc.php) to each dataset. Specifically, large data

spikes and gradients and repeated occurrences of one

value (i.e., stuck values) were flagged; then the data

were visually inspected for any outliers and abnormali-

ties (e.g., large spikes or unrealistic values that were not

captured by the automated algorithms). Further QC

removed data within 50 km of land, data points with

salinity values outside the range of 0–40 psu or tem-

perature values outside the range from228 to 358C, and
measurements made when the ship was moving slower

than 2ms21 or faster than 10m s21. Data with dates

or locations that were physically impossible were also

discarded.

Following the initial QC, the TSG data were com-

pared to climatological temperature and salinity based

on the Roemmich and Gilson (2009) Argo product, a

18 3 18, monthly gridded product available from 2004 to

present. The gridded values were linearly interpolated

to the ship times and locations (with ship measure-

ments before 2004 compared to the climatological av-

erage at their locations). TSG measurements were also

compared to 5-m data from individual Argo floats

that were found within 0.58 and 2 days of the TSG

measurements. TSG data were often in better agree-

ment with Argo float profile data than with the gridded

Argo data, which are smoothed in time and space and

therefore can miss transient values in space or time that

are captured by the TSG and individual Argo profile

data. This necessitated a two-stage QC procedure when

using the Argo data to validate the TSG dataset. The

first stage was to flag all TSG data points for which either

salinity or temperature deviated more than 62.5 psu

or 6108C, respectively, from either the gridded Argo

data or the Argo profile data. The second stage removed

the flags from TSG data points in cases where the salinity

measurement was within 0.5 psu and the temperature

measurement was within 28C of the Argo profile values.

Depending on the amount of prior quality control,

approximately 20%–50% of the raw measurements in

each dataset were removed during the quality control

procedure. Once the final quality control was com-

pleted, the different TSG datasets were merged. As

there is some overlap between the TSG databases, care

was taken to exclude data duplicated across multiple

databases. Geographical and temporal data densities of

the 2.4 3 107 individual TSG measurements resulting

from the QC procedures are shown in Fig. 1. The spa-

tial distribution of TSG measurements is shown in

Fig. 1a: measurement density is high in shipping lanes

(e.g., the North Pacific and North Atlantic Oceans),

where a data density of more than 5000 measurements

per 38 3 38 grid box is common. The northern Indian

Ocean is reasonably well covered, though with a more

moderate data density of approximately 2000 mea-

surements per grid box. The Southern Hemisphere

basins have relatively sparse coverage, particularly the

Indian Ocean. A histogram showing the distribution of

TSG data as a function of time in Fig. 1b shows the

majority of data were collected after 2005. The quality-

controlled TSG data used in this work are publicly

available at https://github.com/kdrushka/tsg-data/.

The response of conductivity sensors used in most

TSGs is known to drift over time scales of weeks to

months (Alory et al. 2015). This drift will lead to long-

term changes in the reported salinity values. However,

TABLE 1. Databases of TSG measurements used for the present study.

Data provider No. of ships No. of data points after QC Date range Reference

SOCAT 112 6.6 3 106 1990–2015 Bakker et al. (2016)

SSS-OS 29 4.9 3 106 1996–2016 Alory et al. (2015)

SAMOS 33 2.8 3 106 2006–17 Smith et al. (2009)

GOSUD 40 3.3 3 106 1997–2016 Gaillard et al. (2015)

JAMSTEC 1 2.3 3 106 1998–2016 JAMSTEC (2016)

M/V Oleander 1 2.0 3 106 2001–14 Rossby (2001)

AODN 4 1.2 3 106 2002–16 —

PANGAEA 2 5.3 3 105 1991–2016 Fahrbach et al. (2007)

1672 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 49

http://www.godac.jamstec.go.jp/darwin/
http://www.godac.jamstec.go.jp/darwin/
https://www.pangaea.de/
https://portal.aodn.org.au/
http://po.msrc.sunysb.edu/Oleander/
http://www.aoml.noaa.gov/phod/tsg/data/qc.php
http://www.aoml.noaa.gov/phod/tsg/data/qc.php
https://github.com/kdrushka/tsg-data/


because this study is concerned with horizontal salinity

variations on scales less than 100 km (covered in a few

days, at most, by ships moving at ;5m s21), long-term

drift in conductivity sensors is not a concern and was

ignored for this study. In addition, because the TSG is

located in the ship’s engine room, temperature mea-

surements collected with shipboard TSGs often have a

warm bias of order 0.18C that varies with the configu-

ration of the TSG system on a given ship (Delcroix and

McPhaden 2002; Maes et al. 2013; Alory et al. 2015).

This bias was assumed to be unimportant for charac-

terizing variability on relatively small scales, and was

ignored. It should be noted that the depth of the TSG

water intake ranges between ships (typically between

5 and 10m; Alory et al. 2015). Since the upper;10m of

the ocean are typically well mixed, we assume that

differences in TSG intake depth do not significantly

affect the estimates of horizontal variability, and that

the TSG salinity measurements provide a reasonable

estimate of the;1-cm depth salinitymeasured by L-band

radiometers. An exception is low-wind, rainy regions

where precipitation can produce strong vertical salinity

gradients in the upper meters of the ocean (Asher et al.

2014a; Drushka et al. 2016); the implications of this are

discussed further below. Near-surface vertical salinity

gradients might also be present in regions where ice melt

is a significant factor in upper-ocean salinity variability,

but this has not been measured in the field.

b. Characterizing submesoscale variability

Submesoscale variability was estimated as fluctuations

on lateral scales smaller than 20km. Each individual ship

transect was divided into nonoverlapping segments,

each 20 km in length. A segment was rejected if the

average spacing of measurements within the segment

was greater than 2.5 km, if the ship took longer than

3 h to complete the segment, or if more than one of the

data points in the segment were missing or flagged as

suspect by the QC procedure. Globally, this resulted

in a dataset consisting of over 830 000 20-km seg-

ments. Over the entire dataset, the number of points

per 20-km segment was not constant due to differ-

ences in ship speed and sampling rate between ships.

To avoid biases in estimating variability resulting from

segments having different numbers of data points, sa-

linity S and temperature T measurements within each

segment were interpolated to have 2.5-km spacing,

providing 9 data points per 20-km segment, including

the endpoints. Because segments with data spaced

farther apart than 2.5 km were rejected, interpolation

did not generate unrealistic small-scale variability.

Density r was computed for each pair of interpolated

T and S.

For each segment, the mean of temperature, salinity,

and density (Tseg, Sseg, and rseg) as well as the position

(xseg, yseg) of the ship and the time (tseg) at the segment

midpoint were computed. To quantify submesoscale

variability, the standard deviation of temperature, sa-

linity, and density were computed from the interpolated

data within each segment, giving sTseg
, sSseg, and srseg.

Finally, these means and standard deviations were bin-

ned into 38 3 38 grid boxes. Grid boxes containing fewer

than 10 ship-track segments were rejected. The median

values of the sTseg, sSseg, and srseg values within each grid

box were then computed, giving sS(x, y), sT(x, y), and

sr(x, y), where x and y refer to the center of a grid box.

To estimate the contribution of sub-footprint-scale

salinity variability to satellite uncertainties, the analysis

of salinity measurements was repeated for segments

100 km in length (for a total of 160 000 segments, with

41 points per segment). In this case, the 95th percentile

(rather than the median) of the sSseg values within each

grid box were computed in order to estimate an upper

limit on the variability in salinity.

c. Density variability and compensation

The compensation of density fronts is typically char-

acterized using the density ratio R:

R5
aDT

bDS
, (1)

where DT and DS are the salinity difference over some

horizontal distance Dx, and a and b are the thermal ex-

pansion and haline contraction coefficients of seawater,

FIG. 1. Number of quality-controlled TSG data: (a) in each 38 3
38 grid box and (b) per year. Grid boxes with fewer than 100 data

points are masked out in gray.
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respectively. When R5 1, temperature and salinity have

equal and opposite effects on density, so there is no

density difference over Dx, that is, the front is com-

pensated (Rudnick and Ferrari 1999). Fronts for

which R is positive are at least partially compensated,

with R . 1 indicating that temperature has a stronger

impact on density than salinity and 0 , R , 1 in-

dicating that salinity dominates. Fronts with R, 0 are

anticompensated: salinity and temperature act con-

structively to create differences in density. These sit-

uations have the potential to produce strong density

fronts; however, horizontal density gradients can

slump due to gravity and may not persist (Rudnick

and Ferrari 1999).

Because R tends toward infinity as DS approaches

zero, the Turner angle (Tu) is often used in place of the

density ratio to characterize front compensation:

Tu5 arctan(R) , (2)

where Tu can be in the range from2p/2 to1p/2. Tu. 0

implies density compensation is present since Rmust be

positive definite, with Tu 5 p/4 indicating a fully com-

pensated front having R 5 1. Tu , 0 indicates anti-

compensation, meaning that changes in temperature

and salinity are working together to create a density

gradient. When Tu 5 0, changes in salinity are causing

any observed density gradient whereas when jTuj5 p/2

changes in temperature alone are driving density dif-

ferences. Here, we compute the Turner angle over

10-km horizontal distances, chosen because this is

typical of the mixed layer Rossby deformation radius at

most latitudes, and hence compensation is expected to

be most common at this scale or smaller (Rudnick and

Martin 2002).

In this study, we estimate the prevalence of surface

front compensation globally. We also introduce the

density variability ratio Rr, an analog to the den-

sity ratio that quantifies the relative contributions

of temperature and salinity variability (rather than

the contributions of well-defined fronts) to density

variability:

R
r
5

as
T

bs
S

, (3)

where sT and sS are the standard deviations of tem-

perature and salinity, respectively, as described above.

Because both sT and sS are greater than or equal to

zero, the values for Rr can range from zero to ap-

proaching infinity, so it is also helpful to convert Rr into

an angle, denoted ur, using

u
r
5 arctan(R

r
) , (4)

where ur lies within the range from 0 to p/2. A value of

ur .p/4 (i.e., Rr . 1) indicates that temperature vari-

ance is more important than salinity variance in gen-

erating density variability, and ur ,p/4 indicates that

salinity variability dominates variability in density.

d. Satellite comparisons to Argo salinity

Individual Level 2 (not gridded) Aquarius, SMOS,

and SMAP satellite salinity measurements were com-

pared to Argo data. For this analysis, we used Aquarius

version 5.0 data (NASA Aquarius Project 2017), which

were obtained from NASA’s Physical Oceanography

Distributed Active Archive Center (PO.DAAC). The

footprints for the three Aquarius radiometers are el-

lipsoidal and have the following dimensions: 76 km

(along track) 3 94km (cross track), 84 km 3 120 km,

and 96km3 156 km. Each of the beams was considered

separately. Quality flags were applied to the Aquarius

data following the Aquarius User Guide, with the ad-

ditional step of flagging data that were moderately or

severely contaminated by radio frequency interference

(RFI). Aquarius data are available from August 2011 to

June 2015. For this version of the Aquarius product,

each salinity measurement is accompanied by an

associated estimate of both random and systematic

uncertainty (Meissner et al. 2018). The estimated sys-

tematic uncertainties are dominated by the effects of

undetected RFI as well as uncertainties in the SST and

wind speed used for the Aquarius corrections. Esti-

mated random uncertainties are considered to have

short time and space scales, and thus average out to

some degree for monthly products; they are domi-

nated by the effects of radiometer noise and wind

speed. All uncertainties are enhanced at colder SSTs,

where the sensitivity of the radiometer to salinity

is lower (Meissner et al. 2018). Although the V5.0

Aquarius data product includes Argo surface salinity

measurements that are collocated with the satellite

footprints, in order to ensure consistency in how the

Argo and Aquarius data were collocated, we per-

formed our own collocation (described below). For all

satellite products, data within 100 km of the coast

were masked out and only data between 608S and 608N
were considered.

The SMAP Level 2B Combined Active Passive (CAP)

Sea Surface Salinity V4.0 Validated Dataset, produced

by the NASA Jet Propulsion Laboratory (Fore et al.

2016), was also compared to Argo. The SMAP radi-

ometer has an elliptical footprint of 38 km 3 49 km,

which is scanned conically over a circular swath with

a diameter of approximately 1000 km. It should be

noted that although the word ‘‘active’’ in CAP implies

the use of radar measurements to correct for surface
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roughness in the data product, in fact the radar aboard

SMAP failed soon after launch (in July 2015) so the

SMAP CAP algorithm does not include an active term

in the cost function (Tang et al. 2017). The algorithm

used in the CAP product retrieves salinity from bright-

ness temperatures by correcting for roughness estimated

using wind speed from NOAA’s Global Data Assim-

ilation System (Fore et al. 2016). SMAP data from

April 2015 to December 2017 were obtained from the

PO.DAAC. The SMAP salinity data and associated

uncertainty estimates were only used if their quality

flag (bit 0) defined them as ‘‘usable data.’’

Finally, we made comparisons between Argo and the

SMOS L2Q Level-2 Ocean Salinity product (CATDS

2017). The SMOS radiometer uses a synthetic array

antenna, resulting in elliptical footprints whose di-

mensions are a function of look angle. The average

footprint size is ;43 km (Kerr et al. 2010), which is

comparable to the 40-km footprint size of SMAP ob-

servations (Meissner et al. 2017). Only measurements

within 6300 km of the center of the swath were used.

Data were used if they were classified as having valid

salinities (flag class 1) and were rejected if they were

classified as being outliers (flag class 28) by the SMOS

algorithm. The SMOS L2Q product includes an un-

certainty estimate for each salinity measurement.

Long-term systematic errors have been removed from

the product, so this uncertainty primarily represents

random error (Boutin et al. 2018).

All delayed-mode Argo data from the relevant

satellite time periods were obtained from the Argo

repository at Institut Français de Recherche pour

l’Exploitation de la Mer (IFREMER; Argo 2019).

The shallowest salinity measurement from each pro-

file was used; if the shallowest depth was deeper than

5m, data from that profile were discarded. Argo data

were matched to each of the three satellite products

by identifying satellite measurements made within a

search radius approximating the satellite footprints and

within61 day of a given Argo measurement. The size of

the search radius and number of matchups for each

satellite product are shown in Table 2.

Satellite–Argo salinity differences were estimated by

sorting thematchedArgo–satellite pairs into 58 3 58 grid
boxes: the bias (mean difference between the Argo and

satellite salinities) in each grid box was removed, then

the root-mean-square (RMS) difference between the

Argo and debiased satellite salinity measurement was

computed (Table 2). By removing the bias, we isolated

differences that are due to random noise or spatial

mismatches between the Argo and satellite data. Grid

boxes with fewer than 15 Argo–satellite pairs were

masked out.

The uncertainty estimates provided with each satel-

lite product were also binned into 58 3 58 grid boxes. The
RMS of the individual uncertainty estimates was used to

estimate to be the mean uncertainty for each grid box.

The global-mean uncertainty was then estimated as the

average of the gridded uncertainties.

4. Results

a. Global patterns of submesoscale surface variability

Examples of TSG measurements made in four dif-

ferent regions are shown in Fig. 2. Each example is

representative of observations from that region. South

of Tasmania in the Southern Ocean, fronts tend to be

compensated: temperature and salinity vary together,

and the resulting density variability is weak (Fig. 2a). In

the southern IndianOcean west of Australia, fronts tend

to be strongly anticompensated, with temperature and

salinity anomalies contributing constructively to form

strong density gradients (Fig. 2b). In the Amazon

plume region, fronts can be weakly anticompensated,

with salinity contributing more to density variabil-

ity than temperature, resulting in moderately strong

density variability that resembles salinity (Fig. 2c).

Finally, in the southwest Pacific southeast of Australia,

salinity variability is weak, and temperature domi-

nates the strong density variability (Fig. 2d). These

examples demonstrate that density fronts are con-

trolled by the strength of the temperature and/or sa-

linity gradients, and by the degree of compensation

TABLE 2. Statistics for Argo–satellite matchups and satellite uncertainties. Mean RMS difference is computed as the global mean

average of the bin-averaged RMS differences between Argo and satellite salinities shown in Figs. 9a, 10a, and 11a. The ‘‘equal area’’

values of RMS difference in parentheses were computed only for the grid boxes in which all three satellites have data. Mean satellite

uncertainties were computed for all satellite measurements (i.e., not only the matchup data). All statistics were computed for data

between 608S and 608N.

Satellite Date range Search radius No. of matchups

Mean RMS difference

(equal area) (psu)

Mean satellite

uncertainty (psu)

Aquarius Aug 2011–Jun 2015 50 km 45 000 0.28 (0.28) 0.33

SMAP Apr 2015–Dec 2017 25 km 69 000 0.83 (0.75) 0.93

SMOS Jan 2011–Dec 2016 25 km 140 000 0.57 (0.51) 0.88
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between temperature and salinity. The local values of

the haline contraction and thermal expansion coeffi-

cients also help determine the relative impacts of

temperature and salinity on density [Eqs. (1) and (3)].

At higher latitudes, a is relatively small and b relatively

large (see Fig. 3). However, this does not imply that

salinity necessarily dominates density variability at

high latitudes, nor that temperature dominates at low

latitudes. For instance, in the Amazon plume region

(Fig. 2c), salinity variability dominates density (Rr , 1)

even though a is relatively large there (Fig. 3). In con-

trast, south of Tasmania, b is relatively large and thus

salinity variability dominates density (Rr , 1) despite

the strong temperature variability (Fig. 2a).

Figure 4 shows the global distribution of submesoscale

salinity, temperature, and density, and Fig. 5 shows the

mean surface salinity, temperature, and density, where

all properties are calculated from the TSG dataset as

described above. Comparing Fig. 4 with Fig. 5 does not

reveal any obvious correlation between the magnitude

of a mean surface property and the magnitude of its

corresponding variance. However, commonalities be-

tween the processes that govern variance are seen when

looking at the data on a region-by-region basis.

Figure 4a shows that regions influenced by river out-

flows have strong submesoscale salinity variability, with

sS . 0.05 psu seen in the western equatorial Atlantic

Ocean (AmazonRiver), southwesternAtlantic (RioPlata),

northern Bay of Bengal (Ganges–Brahmaputra River),

Gulf of Guinea (Congo and Niger Rivers), and Gulf of

Mexico (Mississippi River). Submesoscale salinity vari-

ability is also strong (sS . 0.05 psu) in the Gulf Stream,

where the large-scale fronts generate submesoscale

variance. Additionally, large-scale salinity gradients

FIG. 2. Examples of TSG data in four regions: (a) southwest of Tasmania (data from 1–2 Jan 2015) showing compensated density fronts;

(b) west of Australia (13–14 Jul 2014) showing anticompensated density fronts; (c) the Amazon plume (14–15 Mar 2004) showing that

salinity dominates the density variability; and (d) southeast of Australia (10–11 Feb 2015) showing that temperature dominates the density

variability. (left) A map with one example ship track. (center) Salinity and temperature along that track: for each example, the y axes for

both salinity and temperature have been scaled with the local a and b such that both represent the same density range. Values of a and

b for each example are as follows: a5 1.93 1024 (8C)21, b5 7.53 1024 psu21 in (a); a5 2.73 1024 (8C)21, b5 7.33 1024 psu21 in (b);

a 5 3.1 3 1024 (8C)21, b 5 7.2 3 1024 psu21 in (c); and a 5 2.6 3 1024 (8C)21, b 5 7.3 3 1024 psu21 in (d). (right) Density. Values of

median sS, sT, sr, and Rr over 20-km scales for each transect are displayed.
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appear to generate submesoscale variability in a narrow

(,58) zonal band that varies in latitude between 308 and
508S in all basins, and in the North Pacific between 308
and 508N. These zonal bands both correspond to rela-

tively strong meridional gradients in mean salinity

(Fig. 5a), suggesting the importance of instabilities at,

or displacements of, large-scale fronts in generating

submesoscale salinity variability (e.g., Kolodziejczyk

et al. 2015). Ocean regions that are influenced by ice

melt, such as waters east and west of Greenland and the

North Sea west of Scandinavia, also have strong salinity

variability. Consistent with results from recent field ex-

periments (e.g., Bosse et al. 2015), submesoscale salinity

variability is found to be strong in the western Medi-

terranean Sea. Finally, submesoscale salinity variability

is moderately enhanced (sS ; 0.025 psu) in the tropics,

from the western Pacific through the central tropical

Atlantic. These are the tropical rain belts, where the

horizontal (and vertical) variability of salinity is large

due to the ‘‘lenses’’ of buoyant fresher water that sit on

the ocean surface for a number of hours after it rains

(e.g., Asher et al. 2014a; Drushka et al. 2016). It is pos-

sible that sS is underestimated in these areas since these

rain-generated fresh layers are typically O(1) m deep,

with a typical surface salinity anomaly of up to

several psu that decays rapidly with depth (Drushka

et al. 2016). As a result, in these regions ships’ TSGs

sampling at 5–10-m depth in these regions likely capture

relatively weaker salinity variance compared to the sa-

linity variability at the surface. It is also likely that some

mixing occurs due to flow around the ship, reducing the

small-scale gradients; this effect cannot be estimated

from the TSG dataset, but it is expected to be small.

Although evaporation produces surface salinity anom-

alies, it is not expected that evaporation will produce sig-

nificant submesoscale salinity variability over the depths

sampled by TSGs. First, evaporation only produces

weak salinity anomalies at the sea surface (Asher et al.

2014b); when mixed to the 5–10-m depth of the TSG

measurements, the salinity anomaly would be undetect-

able. Second, conditions leading to evaporative near-

surface salinity anomalies (high downwelling shortwave

radiation coupled with low wind speed) tend to be similar

over broad spatial scales and hence will not produce

small-scale variability. In contrast, freshwater forcing

from rain or rivers tends to be relatively localized and

hence can generate horizontal variance on small scales.

FIG. 3. Longitudinally averaged (a) thermal expansion coefficient

and (b) haline contraction coefficient.

FIG. 4. Variability of submesoscale sea surface (a) salinity,

(b) temperature, and (c) density, computed as the standard de-

viation along 20-km ship transects. Regions with insufficient TSG

data are masked out.
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Submesoscale salinity variability is low (sS , 0.02 psu)

throughout much of the open ocean, in particular far

away from coastal boundaries, river plumes, regions af-

fected by ice melt, and strong currents where instability

generates submesoscale variability.

In regions for which seasonal phenomena (ice melt,

river runoff, monsoon rainfall) generate the horizontal

salinity variance, salinity variance is also expected to

vary seasonally. Although the data coverage is not ad-

equate to explore this in detail over the entire globe,

several examples from specific regions are shown in

Fig. 6. Maximum river outflow results in lower salinity

(noting that there can be a delay between maximum

outflow and minimum SSS): this is seen during May–

November in the Amazon plume region (Fig. 6a) and

during July–September in the Gulf of Mexico (Fig. 6b).

An increase in river outflow leads to enhanced fronts

and filaments, and hence an increase in submesoscale

salinity variability, as can be seen from the corre-

sponding increases in sS in both plume regions. Sim-

ilarly, the sea surface east of Greenland is freshest in

July–September, when ice is melt is strongest, and this

summertime freshening also correlates with a sharp en-

hancement in submesoscale salinity variability (Fig. 6c).

Submesoscale temperature variability sT is strongest

(sT . 0.158C) in major currents (e.g., Kuroshio, Gulf

Stream, Agulhas), and in the Arctic Ocean (see Fig. 4b).

The large mean meridional temperature gradient from

308 to 508S (Fig. 5b) also results in strong submesoscale

temperature variability throughout that zonal band.

Eastern boundary regions such as the California,

Canary, and Peru–Chile Currents display strong tem-

perature variability near the coast, where upwelling of

cold water drives strong temperature gradients and

hence submesoscale features (e.g., Capet et al. 2008). In

many cases, regions with high sS are coincident with

highsT regions: for example, theGulf Stream, theNorth

Atlantic east and west of Greenland, and the Agulhas

Current. However, there are also regions with high

sS but low sT, primarily in areas influenced by river

FIG. 5. Mean sea surface (a) salinity, (b) temperature, and

(c) density from TSG measurements.

FIG. 6. Monthly estimates of sS (red) and mean salinity (black):

(a) in the Amazon outflow region (48–168N, 608–358W); (b) in the

northern Gulf of Mexico (218–308N, 1008–858W); and (c) east of

Greenland (558–698N, 588–388W).
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plumes (e.g., Amazon plume, Bay of Bengal, Gulf of

Guinea) or strong tropical rains (intertropical con-

vergence zones and South Pacific convergence zone).

Conversely, the 308–508S region in the Southern Ocean

has high sT but generally low sS apart from the thin

band described above.

Figure 4c shows the global pattern of submesoscale

surface density variability sr and Fig. 5c shows the global

pattern of mean density. Unsurprisingly, submesoscale

density variability is strongest (sr . 0.06kgm23) in re-

gions with large sS and/or sT: western boundary currents,

river plumes, eastern boundary upwelling regions, and

regions influenced by ice melt (see Fig. 4c). The density

variability ratio [Eq. (4)] is a simple metric for diagnosing

where salinity versus temperature drives submesoscale

density variability (Fig. 7). Salinity variability drives

submesoscale density variability (ur , p/4) at high

latitudes (where b is much greater than a; see Fig. 3) and

in regions with high freshwater input, such as occur in

the tropics or in river plumes. Temperature dominates

submesoscale density variability (ur . p/4) over sub-

tropical and subpolar latitudes, where the large-scale

meridional temperature gradient is strong (Fig. 5b) so

that sT is also large (Fig. 4b).

Although Fig. 7 describes the relative importance of

salinity and temperature in generating sr, it does not show

whether salinity and temperature fronts tend to have op-

posing effects on density (i.e., density-compensated fronts)

or if they act together to produce strong density fronts

(i.e., anticompensated fronts, which are expected to

slump). Figure 8 shows a global map of the Turner angle

[Tu; Eq. (2)] computed over 10 km lateral distances with

regions containing compensated fronts (Tu. 0) shaded

in pale colors and regions with noncompensated fronts

(Tu , 0) shaded in darker tones. Regions containing

fronts for which salinity dominates are blue (Tu near

zero), and those for which temperature dominates are

red or pink (Tu near6p/2). Unsurprisingly, Fig. 8 tells a

similar story to Fig. 7 in terms of where submesoscale

density fronts are dominated by salinity (generally, in

the high latitudes and tropics) versus temperature

(midlatitudes and subpolar latitudes). Figure 8 addi-

tionally demonstrates that fronts on 10-km lateral scales

tend to be at least somewhat compensated globally,

consistent with previous findings (Rudnick and Martin

2002). The exception is in the south Indian and south-

west Pacific Oceans between 158 and 308S, where

anticompensation dominated by temperature fronts

(red colors) is seen. In these regions, temperature vari-

ability is moderate (sT ; 0.088C; Fig. 4b), and salinity

variability, though weak (Fig. 4a), contributes con-

structively to density, so the resulting sr is moderately

strong (;0.03 kgm23; Fig. 4c). This is demonstrated

by the example in Fig. 2b. Thin zonal bands of anti-

compensated fronts are also seen in each basin at

the transitions between the salinity-dominated and

temperature-dominated regions (e.g., around ;208N in

the Pacific, 58–158S in theAtlantic, and;558S in all basins;
Fig. 8). This is consistent with the temperature-dominated,

anticompensated fronts observed previously in the Pacific

at 288N (Hosegood et al. 2006). This analysis does not

provide sufficient information to indicate whether density

fronts tend to persist in these areas rather than slump and

disperse horizontally, or if they are short-lived features

that occur frequently and thus happen to be sampled often.

While there is a tendency to have compensated fronts

(i.e., positive Turner angle) over much of the globe, there

are few regions for which submesoscale temperature and

FIG. 7. Density ratio angle ur [Eq. (4)] computed from the standard deviation of temperature

and salinity over 20-km segments of ship track.
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salinity are exactly compensated (Tu5 p/4, pale purple

in Fig. 8). As expected, these regions where fronts are

fully compensated generally correspond to regions with

small sr (Fig. 4c). For example, south of Australia, sS is

relatively small (Fig. 4a), but b is large (Fig. 5a), so the

contribution of salinity variability to density variability

is large enough to compensate for the relatively strong

temperature fronts (also seen in Fig. 2a). In the mid-

latitude North Pacific and North Atlantic east of the

western boundary current extensions, fronts tend to be

compensated, which explains why sr is relatively small

despite moderate sS and sT values. Similarly, at the

eastern edge of the South Atlantic Current, both tem-

perature and salinity fronts are strong and compensated,

leading to much weaker density fronts and low sr. In

most other regions where fronts are compensated,

temperature and salinity fronts are both weak, so den-

sity fronts are weak regardless of the compensation (e.g.,

the eastern Pacific and Atlantic between 158 and 308S).

b. Uncertainties in satellite salinity

TSG measurements have been used to demonstrate

that submesoscale salinity variability is a major driver of

submesoscale density variability in a number of regions

(Fig. 7). We now consider the impact of surface salinity

variability on satellite salinity validation. The footprints

of the salinity satellites range from ;40 to 100 km in

diameter, so we compute sS within 100-km segments of

data, taking the 95th percentile value of the estimates

within each grid box in order to estimate the upper

end of sub-footprint-scale salinity variability, as shown

in Fig. 9a. A comparison of Fig. 4a and Fig. 9a shows that

the broad patterns of horizontal salinity variability are

the same whether computed over 20- or 100-km scales.

Indeed, sS patterns are generally independent of the

scale over which they are calculated (at least for scales

smaller than a few hundred kilometers). This is because

the phenomena generating the salinity variability (e.g.,

river plumes, ice melt, large-scale gradients) are larger

than this scale. In addition, the standard deviations

computed from individual ship tracks are binned into

38 3 38 grid boxes, obscuring differences between 20-

and 100-km scales. (Note that the sS values computed

over 100-km scales have larger amplitudes than those

computed over 20-km scales. This is because there are

41 data points per 100-km segment and 9 per 20-km

segment, including end points, and because the 95th

percentile value is used for the 100-km segments com-

pared to the median for 20-km segments).

Averaged globally, TSG-derived salinity variability

(Fig. 9a) has a median value of 0.05 psu over 100-km

scales, with 95% of the values smaller than 0.2 psu.

These results are consistent with variability estimates

produced by Vinogradova and Ponte (2013) using nu-

merical data from the HYCOMmodel. Figure 9b shows

mean salinity differences between Aquarius and collo-

cated Argo measurements: globally, the root-mean-

square difference between Aquarius and Argo salinity

is 0.28 psu (Table 2). This is close to the global average

of the uncertainty estimate of the Aquarius salinity

product (sum of the systematic and random uncertainty

estimates; Figs. 9c,d), which has a value of 0.33 psu

(Table 2). The Aquarius–Argo differences generally

resemble the systematic plus random uncertainty esti-

mates on Aquarius data, as noted by Meissner et al.

(2018). They are largest (0.5 psu) at latitudes higher than

408 in both hemispheres. This is primarily because the

accuracy of the satellite salinity retrievals is worse at

colder temperatures, which is reflected in both the ran-

dom and systematic Aquarius uncertainties (Figs. 9c,d).

FIG. 8. Turner angle [Tu; Eq. (2)] computed over 10-km horizontal scales.
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The estimated random uncertainties are.0.4 psu at high

latitudes and ,0.2 psu equatorward of 408 (Fig. 9c).

Systematic uncertainties are relatively low (,0.1 psu)

throughout most of the ocean apart from high latitudes.

In a number of regions, the Aquarius–Argo differences

are relatively large (0.3 psu) but systematic and random

uncertainties are low: for example, in the Bay of Bengal,

Gulf Stream, Amazon plume, eastern equatorial Pacific,

and equatorial Atlantic. These are all regions for which

sub-footprint-scale salinity variability is strong (order

0.5 psu; Fig. 9a). Indeed, a comparison of the panels in

Fig. 9 suggests that the Aquarius–Argo salinity differ-

ences that are not due to random or systematic uncer-

tainties appear to arise from sub-footprint-scale salinity

variability. This finding is significant because it implies

that in regions with large sS, the large Aquarius–Argo

differences do not represent errors in satellite retrieval

of salinity; rather, they reflect the fact that Argo point

measurements cannot represent spatially averaged sat-

ellite data when salinity is highly variable on scales

smaller than one satellite pixel.

Figure 10a shows the mean salinity differences

between SMAP and collocated Argo measurements.

SMAP salinity measurements are much noisier than

Aquarius measurements when compared to Argo, with

a global-mean RMS difference of 0.83 psu (Table 2).

Figure 10b shows that the estimated uncertainties of

SMAP data (part of the SMAP data product), while

larger than those for Aquarius (mean 0.93 psu; Table 2),

cannot account for the SMAP-Argo differences, and

there is no clear enhancement of SMAP–Argo differ-

ences in regions with strong small-scale salinity vari-

ability such as in river plumes (Fig. 9a). In other words,

noise in the SMAP product appears to dominate the

SMAP–Argo mismatches and hides the effect of sub-

footprint-scale salinity variability that is seen in Aquarius

data. Note that SMAP displays considerably better per-

formance when compared with a monthly gridded Argo

salinity product (Tang et al. 2017).

Figure 11a shows global SMOS–Argo RMS differ-

ences. Globally, the mean difference is 0.57 psu: larger

than that of Aquarius but lower than that of SMAP

(Table 2). Although earlier SMOS products had prob-

lems near coastlines, particularly in capturing fresh sig-

nals due to river plumes, the L2Q product used here has

been shown to perform well in these regions (Boutin

et al. 2018). The estimated uncertainties for the SMOS

measurements are similar to those for SMAP, with a

global mean of 0.88 psu (Fig. 11b; Table 2). However,

unlike both SMAP and Aquarius, these estimated un-

certainties aremuch larger than themean satellite–Argo

RMS differences. Outside of the high-latitude bands,

where uncertainty due to cold SSTs is known to be large

(Fig. 11b), SMOS–Argo differences are strongest in

the same regions where sS is large: the Bay of Bengal,

Panama Bight, Amazon plume, and the South Atlantic

Current (see also Fig. 9a). Therefore, in accord with

the Aquarius–Argo mismatches, the SMOS–Argo mis-

matches can be attributed, at least in part, to salinity

FIG. 9. (a) Variability of sea surface salinity on ,100-km scales,

computed as the standard deviation of SSS along 100-km ship

transects. (b) Bin-averaged RMS difference between Argo surface

salinities and Aquarius (v5 L2 data) salinities within 650 km of

the Argo floats. (c) Random and (d) systematic uncertainty on

Aquarius salinity measurements from the Aquarius product.
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variability within SMOS pixels. In addition, contami-

nation of SMOS salinity retrievals from RFI is prob-

lematic in certain regions (e.g., Bay of Bengal, Arabian

Sea; Boutin et al. 2018), and likely accounts for some of

the Argo–SMOS differences. In the intertropical con-

vergence zone and South Pacific convergence zone, the

SMOS–Argo differences are much more prominent

than seen in Aquarius–Argo comparisons (Fig. 9b). This

difference is likely because Aquarius is processed with

different algorithms for rainy conditions; the SMOS

L2Q processing algorithm does not flag fresh values in

regions with high salinity variance such as the rainbands

(Boutin et al. 2018). In addition, SMOS has a smaller

spatial footprint than Aquarius, so the surface freshen-

ing from small tropical rain cells, which are typically

O(1–10) km in horizontal scale, covers a greater fraction

of a SMOS pixel and hence tends to cause a greater

mismatch with Argo measurements made at depths of

a few meters (e.g., Boutin et al. 2014).

5. Summary and discussion

More than 2.4 3 107 individual temperature and sa-

linity measurements, combined from several databases

of historical ship data, were combined to give a view

of regional patterns of submesoscale variability of tem-

perature, salinity, and density at the sea surface with

unprecedented spatial resolution. We demonstrate the

importance of salinity variability on scales smaller than

20km for generating surface density variability. In river

plumes (particularly the Amazon plume, in the Bay of

Bengal, Gulf of Guinea, and Gulf of Mexico), east

and west of Greenland, and in the Gulf Stream, South

Atlantic, and Agulhas Currents, submesoscale surface

salinity variability is large (sS . 0.05 psu over 20-km

scales; Fig. 4a). Surface density variability sr also tends

to be strong in these regions (Fig. 4c). Horizontal salinity

variability appears to explain some of the discrepancies

when Aquarius satellite salinity measurements are com-

pared to in situ salinity measurements from Argo floats:

specifically, outside of the high latitudes (where both

random and systematic errors in Aquarius are large), the

mismatch between Argo and Aquarius is largest in re-

gions with large sS (Fig. 9). The SMOS–Argo differences

in these same regions can also be explained to some ex-

tent by sub-footprint-scale salinity variability (Fig. 11a).

In contrast, the SMAP salinity product is much noisier

than either Aquarius or SMOS and it does not appear

that sub-footprint-scale salinity variability has a signifi-

cant effect on SMAP-Argo comparisons (Fig. 10).

Figure 7 highlights the important role of salinity

variability in generating submesoscale surface density

variability: throughout the tropical rainbands, river

outflow regions, and in polar regions, density vari-

ability is dominated by salinity rather than tempera-

ture. In these regions, characterizing submesoscale

FIG. 10. (a) Bin-averaged RMS difference of salinity difference

between Argo surface salinities and SMAP (v4 L2 data) salinities

within 625 km of the Argo floats. (b) Total (systematic plus ran-

dom) uncertainty on SMAP salinitymeasurements from the SMAP

product. Note that scaling is different than in Fig. 9.

FIG. 11. (a) Bin-averaged RMS difference of salinity difference

between Argo surface salinities and SMOS (L2Q data) salinities

within 625 km of the Argo floats. (b) Total uncertainty on SMOS

salinity measurements from the SMOS product.
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ocean dynamics requires an understanding of the sa-

linity variability. This has been explored through

several recent field campaigns, including the Air–Sea

Interactions Regional Initiative experiment in the

Bay of Bengal (MacKinnon et al. 2016), the ArcticMix

experiment in the Arctic (MacKinnon et al. 2016), and

the second Salinity Processes in the Upper Ocean Re-

gional Study in the rainband of the tropical eastern

Pacific Ocean (Lindstrom et al. 2019).

In regions where density variability is dominated by

temperature, submesoscale temperature fronts (which can

be tracked with high-resolution satellite SST maps; e.g.,

Cayula and Cornillon 1992; Belkin and O’Reilly 2009)

likely explain much of the density variability. In contrast,

submesoscale density fronts in salinity-dominated re-

gions cannot be easily examined from satellite mea-

surements, as the resolution of current satellite salinity

products is too coarse (40–100 km) to capture the sa-

linity variations that drive density.

On 10-km horizontal scales, fronts tend to be com-

pensated to at least some degree throughout most of the

global oceans, consistent with the suggestion of Rudnick

and Martin (2002) that compensated fronts are ubiqui-

tous because noncompensated fronts tend to slump and

disperse horizontally. An exception is in the south

Indian and southwest Pacific Oceans between 208 and
308S, where fronts tend to be anticompensated, leading

to relatively strong density variability. Fronts are not

generally perfectly compensated (i.e., where tempera-

ture and salinity impacts on density cancel out exactly).

The regions where both temperature and salinity vari-

ability are strongest—the Kuroshio, Gulf Stream, South

Atlantic, and Agulhas Currents—tend to be compen-

sated at their eastern edges, reducing the eastward ex-

tent of submesoscale density variability associated with

these energetic currents.
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