
Matlab bootcamp – Class 3
Written by Kyla Drushka, modified from notes by Darcy Ogden for course SIO113

Aside: characters and strings
So far, we have just considered variables that are numeric. Variables can also be characters and arrays of
characters, or strings. Characters and strings are defined using single quotation marks:
>> g='h'
creates a variable named g, whose value is the letter h.
>> k='my string'
creates a variable named k whose value is the string of characters 'my string' ; k has length 9 (spaces are also
characters)

You can combine strings just like you would combine matrices, using square brackets and separating values
with commas (though commas are optional):
>> newstring=['this', 'is' , 'my','string']

newstring =

thisismystring

Note that we haven't included any spaces , and so the output doesn't contain spaces. You have to include them
explicitly:
>> stringwithspaces=['this', ' is' , ' my',' string']

stringwithspaces =

this is my string

You can combine string variables, also:
>> str1='my'
>> str2='string'
>> str3=[str1, ' ' str2]
(note that the ' ' inserts a space between str1 and str2)

str3 =

my string

Numbers can also be strings – but be careful here. You still have to surround them with single quotation marks
to indicate that they are numbers:

>> b='6' % defines the variable b, equal to the character '6'
>> b=6 % defines the variable b, equal to the number 6

You can do math with numbers, but not with characters!

* if you are combining characters with numbers to form a string, you must convert the numbers to strings
using the function num2str:

>> newname=['kyla' num2str(33)]
newname =

kyla33

If you don't convert the number to a string, Matlab will substitute the character corresponding to the ASCII
character codes, which are defined for integers 0 to 127:

>> newname=['kyla' 33] % forgot the num2str command

newname =

kyla!

...33 corresponds to an exclamation point in ASCII.

If statements

Syntax:
if expression
 statements
end

This evaluates an expression, and executes a group of statements if the expression is true. An evaluated
expression is true when the result is not empty and contains all nonzero elements (logical or numeric).

The expression (expression) can be anything that generates a logical or numerical value. Particularly
useful are relational operators (e.g. > , < , >= , <= , == , ~=) which produce a 1 if they are true. E.g.

>> if a>0 % the expression a>0 returns a 1 if a>0
>> disp(a); % display the value of a
>> end

Note that the indentation and spacing is optional, and just used to make things more clear. It works equally
well to write this:

>> if a>4; disp(a); end

...This can be useful if you are typing directly into the command line.

You can include multiple parts to an expression by using the logical operators && (and), || (or), ~ (not). E.g.

>> if a>b && b==2 % if a greater than b AND b equals 2,
>> c=a+b; % set c equal to a+b
>> end

expression can also have a numerical value. E.g.

>> if 1
>> a=0;
>> end

1 is *always* nonzero, so the statement a=0 will always be executed.

If any of the values in the evaluated expression are zero, the expression is false:

>> B=[1 2 3 4 0];
>> if B
>> disp(B);
>> end

The statement will not be executed because B contains a zero, so the expression if false.

else and elseif

By adding the word else, the first set of statements (statements1) will be executed if expression is
true. The second set of statements (statements2, below else) will be executed if expression is false.
 Here is the syntax:

if expression
 statements1
else

statements2
end

For example:

>> b=1;
>> if ~isempty(b) && b>2
>> c=b;
>> else
>> c=0;
>> end

The expression is only true if b is not empty *and* b is greater than 2; since b is only 1, Matlab does not
evaluate the first statement (c=b), and instead moves onto the next statement (c=0).

Adding elseif tells Matlab to evaluate a series of expressions and only perform the statements that follow
the first true expression it encounters. Here is the syntax:

if expression1
 statements1
elseif expression2

statements2
elseif expression3

statements3
end

elseif is like else, but it also has a condition attached to it. You can have as many elseifs as you need.
Matlab will go sequentially through the list of expressions until it finds one that is true. When it does, it will
only execute those statements after that elseif. It will then skip the remainder of the commands and go to
end. For example:

>> if x==3
>> u=10
>> elseif x==5
>> u=30
>> else
>> u=20
>> end

Loops: for and while
Using a loop, you can tell Matlab to execute a set of commands over and over again while a certain condition
is met. There are two main ways of doing this: for loops and while loops.

for loops
syntax:

for index = values
 statements
end

values is a vector (list of numbers), and is often defined with a colon, e.g.

>> for k=1:10
>> disp(k);
>> end

This runs through the values 1 to 10, and displays k each time.

Again, the indentation and line breaks are just for readability (although you have to include a semicolon after
each line in statements so that Matlab knows you are starting a new line); you can equivalently type

>> for k=1:10, disp(k); end

Loops are can be used for many different purposes. Any time you seem to be typing the same thing over and
over, consider using a loop instead. For example, say you want to plot a bunch of data, each on its own figure.

>> x=1:1000; % define a vector x
>> for i=1:5 % run through i=1,2,3,4,5

y=randn(size(x)); % this creates a vector the same size
 % as x and fills it with

% normally-distrbuted random numbers
figure(i); % open figure i

 clf; % clear the figure (in case
% something is already plotted there)

plot(x,y,'.') % plot y against x (using dots)
 disp(mean(y)) % print the mean value of y to the

% screen
>> end % end of the for loop

Another example: loading a bunch of files that have a similar name: data1.mat, data2.mat, data3.mat, etc...,
(don't forget to use num2str to convert the number to a string):

>> for k=1:10
 filename=['data' num2str(k) '.mat'];
 load(filename);
>> end

A long example: load Argo profile data. For each profile, calculate some basic statistics, and plot each
temperature and salinity profile in a new figure that you then save.

clear
whos('-file','argo_data.mat'); % lists the variables in the file
load('argo_data.mat'); % load the file
figure(1)
clf
plot(lon,lat,'.-') % plot lon vs lat
title('argo float trajectory')
xlabel('lon')
ylabel('lat');

% T and S are a 20x5 matrix containing temperature and salinity data at 20
% depths (given by the vector z) for 5 profiles.
%
% so, each column of T and S contains the data from a single profile.

% run through each profile and plot it on a new figure, and save the data
% to a new file:
for j=1:length(lon) % one profile per lon/lat pair
 figure(j) % open figure j
 clf % clear the figure, in case something is already plotted there

 % first, plot temperature as a function of depth
 subplot(1,2,1) % create a new subplot
 plot(T(:,j),z,'.-'); % plot temperature for the ith profile against z
 axis ij % this inverts the y axis (so depth can go from 0 to 200)
 title(['Temperature for profile ' num2str(j)])
 ylabel('depth, m')
 xlabel('temperature, degC')
 xlim([15 30]); % this will set the range for the x-axis...
 % note: it can be helpful to use the same x range for each
 % plot so that we can more easily compare them by eye.
 ylim([0 200]); % range for the y-axis

 % next, plot salinity
 subplot(1,2,2) % a second subplot beside the first one
 plot(S(:,j),z,'r.-'); % plot salinity for the ith profile in red
 axis ij % this inverts the y axis (so depth can go from 0 to 200)
 title(['Salinity for profile ' num2str(j)]) % you need to use num2str when
 % including numbers in titles,
 % because they are strings
 ylabel('depth, m')
 xlabel('salinity, psu')
 xlim([36.0 37.5]); % a different range for salinity than for temperature
 ylim([0 200]); % range for the y-axis

 % calculate some stuff for each profile:
 profile_mean_T(j)=mean(T(:,j));
 profile_max_T(j)=max(T(:,j));

 % save the figure as a PDF:
 print('-dpdf',['argo_profile_' num2str(j)]);
end

while loops
While loops execute a set of statements over and over while a given condition is true.

while expression
 statements
end

Whereas for loops execute an explicit number of times (e.g. a loop beginning for i=1:10 will execute 10
times), while loops execute statements indefinitely as long as expression remains true. To specify
expression, use the same rules as you did with if statements: anything that generates a logical or
numerical value. Particularly useful are relational operators (e.g. > , < , >= , <= , == , ~=) which
produce a 1 if they are true. E.g.

>> g=21;

 >> while g>10
 g=g-1;
 disp(g);
 >> end

Once it starts executing statements within the while loop, Matlab *will not stop* until expression is no
longer true!!! while loops should be written so that the variables in expression change when statements
are executed – otherwise you can get stuck in an infinite loop! E.g.

>> count=0;
>> g=10;
>> while g>1 % g doesn't change inside the loop, so the condition
g>1 will always be true and the loop will execute indefinitely
 count=count+1;
 disp(count);
>> end

This is where the CTRL+c command comes in handy!

Other useful commands in loops
A break statement in a for or while loop will terminate the loop and move immediately to the following
statement. Building on the previous example:

>> count=0;
>> g=10;
>> while g>1 % g doesn't change inside the loop, so the condition
g>1 will always be true and the loop will execute indefinitely
 count=count+1;
 disp(count);

 if count==10 % if count reaches 10, break out of the while
loop
 break

end

>> end

A continue statement in for or while loop will skip the rest of the instructions within the loop and begin
the next iteration.

Basic statistics
Basic statistics can be easily computed with Matlab. For example

>> x=rand(1000,1);

>> mean(x)
>> std(x)
>> var(x)
>> median(x)
>> mode(x)
>> max(x)
>> min(x)
>> range(x)

If x contains NaN values, mean, std, var, and median will all return NaN. You can deal with this in a few
ways:

- using the functions nanmean, nanstd, nanvar, and nanmedian. However, these functions are
in the "statistics toolbox" and so are not included in the basic version of Matlab, so you may have to
devise your own methods:

- remove the NaNs first using indexing:
>> nani=find(isnan(x));
>> x(nani)=[];

 ** setting matrix elements to be [] removes them from the matrix!
- use indexing to only compute non-nan values – e.g:

>> not_nan_index=find(~isnan(x)); % index of non-nan elements of
x
>> xmean=mean(x(not_nan_index)); % only compute the mean for
the elements in not_nan_index, i.e. the non-nan elements

Basic fitting
You may want to fit a line or a curve to your data. Matlab has several functions to do basic curve fitting, all of
which include some sort of uncertainty/error estimation. These include:

regress – multiple linear least-squares regression
robustfit – "robust" linear least-squares regression
polyfit – fits a polynomial function using least-squares regression

There is a few ins and outs to learning how and when to use these functions; I suggest reading the
documentation so that you get the syntax correct and properly understand the output. Also, Dan Rudnick goes
into fitting techniques in quite some detail in his statistics class (SIO221B), which is very useful. Here are a
couple of basic examples to get you started:

Create a line with a known slope and intercept, plus some noise, and use a linear regression to fit a line. E.g.
! = 2! − 10+ !, where ! is random noise.

>> x=(1:10); % x is a 10x1 column vector (column vectors are needed
for the "regress" function)
>> y=[-5 -1 1 7 8 1 15 -3 50 33]'; % y has the same size as x
>> plot(x,y,'.');
% we want to fit a line to the data in "y"
% to determine the intercept, it is necessary to include an extra
column of ones in the fit:
>> xfit=[x(:) , ones(size(x(:)))];
% xfit is a 10x2 matrix consisting of the column vector x (writing
x(:) ensures that x will be a column vector) and a column of ones
that is the same length as x.
>> [b bint] = regress(y,xfit) % note that y is specified first
b =

 4.2182
 -12.6000

bint =

 0.8928 7.5436
 -33.2334 8.0334

b gives the regression coefficients (slope, intercept – i.e. b(1)=slope, b(2)=intercept) and bint gives the 95%
confidence intervals for each coefficient.

The robustfit function is a little easier, because you don't have to add the column of ones, as the intercept
is included in the fit by default:

>> [b2,stats] = robustfit(x,y) % note that x is specified first
b2 =

 -10.2021
 3.9468

b gives the regression coefficients (intercept, slope – note that this is the reverse order as what regress
returned); stats gives some statistics for the fit.
Note that robustfit returns the intercept and then the slope – the opposite order of regress.

Let's see how well these fits did by reconstructing the line: (i.e. using the equation of a line to compute y for
each value of x)

>> y_reconstruct1=b(1)*x + b(2); % recall, b(1)=slope
>> y_reconstruct2=b2(2)*x + b2(1); % recall, b2(1)=intercept
>> hold on
>> plot(x,y_reconstruct1,'r--')
>> plot(x,y_reconstruct2,'k:')

An example of polyfit: create a line with a known slope and intercept, plus some noise, and use a linear
regression to fit a line. E.g. ! = 4!! − 3! + 4+ !, where ! is random noise

>> x=(1:100)'; % x is a 100x1 column vector
>> y=4*x.^2 - 3*x + 4; % y is a function of x
>> y=y+randn(size(y)); % add some random noise to y
>> figure(1),clf
>> plot(x,y,'.');
>> P = polyfit(x,y,2); % the third argument gives the degree of the
polynomial: in this case, 2 (i.e. x2 is the highest power)

P =

 4.0000 -2.9987 3.8829

This is interpreted the coefficients from the highest order (order 2) down to order zero, ie.
! = 4.0000!! − 2.9987! + 3.8829, which is a good estimate of our function.

Matlab has a handy function to reconstruct the polynomial: polyval , which requires a vector P as its
argument, where P specifies the coefficients for a polynomial whose order is equal to the length of P plus 1
(that is, the same format that is returned by the polyval function).

>> y_reconstruct_poly=polyval(P,x)
>> hold on
>> plot(x,y_reconstruct_poly,'r--','linewidth',2) % make the line
thick so we can see it...

Another polyval example: compute ! = !! + 3!! + 2! for a vector x ranging from -100 to 100:
>> x=-100:1:100;
>> P=[1 0 3 2 0];

The values in P indicate the coefficients for x4, x3, x2, x1, and x0, respectively. Zeros are used when a given
power doesn't exist in the function (e.g. x3 doesn't appear in our equation, so the second value in P,
corresponding to the coefficient in front of x3, is zero).

>> y=polyval(P,x); % evaluates the polynomial at each value of x
>> figure(3),clf
>> plot(x,y)

