Prerequisite

Good practice to remove all objects from the workspace
rm(list = ls())

Use library() for packages you need, or source() for other R files.
library(tidyverse)

Setting the seed ensures that we get the same random draw over and over again.
set.seed(20201009)

rnorm(5) # Check

[1] 0.8315079 -0.9818884 1.1522644 -0.4687453 -0.8344489

0. Calculate the following operations by hand (... meaning by R)

a)
\[\sum_{i=1}^{5} i = \]

b)
\[\prod_{i=1}^{5} i = \]

c)
\[5! \times 10^3 \times e^4 = \]

a)
sum(1:5)

[1] 15

b)
prod(1:5)

[1] 120

#Check
1*2*3*4*5

[1] 120
c)

factorial(5)

[1] 120

5*4*3*2*1

[1] 120

factorial(5) * 10^factorial(3) * exp(4)

[1] 6551778004

1. Build a Bernoulli distribution using the sample() function, where the probability of “success” is 0.7. Run “?sample” if you are unsure how the function works.

```r
# Create an imaginary person to flip the coin once for you
sample(x = c(0, 1),
       size = 1,
       prob = c(0.3, 0.7))

## [1] 1
```

2. How do you know if it is working properly? Conduct simulation to check if the assigned probabilities are matched with the empirics

```r
# Specify the number of simulations
sims <- 10000

# Specify the probability
ProbSuccess <- 0.7

# Create an empty vector as "container"
BernResult <- vector(mode = "numeric", length = sims)

# For loop
for (i in 1:sims) {
  BernResult[i] <- sample(c(0, 1),
                          size = 1,
                          prob = c(1 - ProbSuccess, ProbSuccess))
}

mean(BernResult)
```
```r
## [1] 0.6947

## Faster way w/o loop...but we want to build the intuition
sample(c(0, 1),
       size = sims,  
       replace = TRUE,  
       prob = c(0.3, 0.7)
)

## Or use rbinom (rmb: bernoulli is just a special case of binomial when N = 1)
rbinom(sims,  
       size = 1,  
       prob = 0.7)
```

3. Plot the above Bernoulli distribution

```r
# Base graphics
hist(BernResult)
```

![Histogram of BernResult](image)

```r
# ggplot2
BernDF <- tibble(Outcome = BernResult)

ggplot(BernDF, aes(x = Outcome)) +
```
Adding: `aes(y = stat(count / sum(count)))` in `geom_hist`; What does it do?

```r
ggplot(BernDF, aes(x = Outcome)) +
  geom_histogram(aes(y = stat(count/sum(count)))) +
  scale_x_continuous(breaks = c(0, 1), expand = c(1, 0)) +
  labs(y = "Prob", x = "x",
       subtitle = "Bernoulli Distribution: Probability") +
  theme_bw()
```
y = stat() means...
BernResult %>%
as_tibble %>%
count(value) %>%
mutate(TotalNum = sum(n),
 Prob = n/TotalNum)

A tibble: 2 x 4
value n TotalNum Prob
<dbl> <int> <int> <dbl>
1 0 3053 10000 0.305
2 1 6947 10000 0.695

4. Based on the above, generate a binomial distribution, with number of trials equal to 10, without using rbinom()

Create an imaginary person to flip the coin ten times for you
Let’s test it outside of the loop:
sample(c(0, 1),
 size = 10,
 replace = TRUE,
 prob = c(1- ProbSuccess,
 ProbSuccess)
)

Create number of simulations and an empty vector as container

```r
BinoResult <- vector(mode = "numeric", length = sims)
```

```r
for (i in 1:sims) {

# Create an imaginary person to flip the coin ten times for you
flips <- sample(c(0, 1),
    size = 10,
    replace = TRUE,
    prob = c(1 - ProbSuccess, ProbSuccess))

# Sum up the number of "success" for that person
count <- sum(flips)

# Store it into the container; repeat 10,000
BinoResult[i] <- count
}
```

Faster way w/o loop and sample()...but we want to build the intuition

```r
# rbinom(n = sims, 
# size = 10, 
# prob = ProbSuccess)
```

5. Plot the above binomial distribution

```r
# Base graphics
hist(BinoResult)
```
ggplot2

BinoResult %>%
 as_tibble %>% # Convert to data frame
 ggplot(aes(x = value)) +
 geom_histogram(aes(y = stat(count/sum(count)))) +
 scale_x_continuous(breaks = 1:10) +
 labs(y = "Prob", x = "x",
 subtitle = "Binomial Distribution") +
 theme_bw()

'stat_bin()' using ‘bins = 30’. Pick better value with ‘binwidth’.
6. Explore the `rbinom`, `dbinom`, `pbinom` functions. What do they do? Answer the following questions:

a) The probability of a coin landing on head is 0.7. If you were to flip the coin 10 times, what is the probability of getting exactly 7 heads?

b) What is the probability of getting 7 heads or less?

c) How do you know (b) is true?

```r
da) Pr(exactly 7 heads) \to PDF
``` 

dbinom(x = 7, size = 10, prob = 0.7)

```
## [1] 0.2668279
```

```r
# b) Pr(7 heads or less) \to CDF
``` 
pbinom(q = 7, size = 10, prob = 0.7)

```
## [1] 0.6172172
``` 

```r
pbinom(q = 7, size = 10, prob = 0.7, lower.tail = FALSE)
```

```
## [1] 0.3827828
```
```r
1 - pbinom(q = 7, size = 10, prob = 0.7)
```

```r
## [1] 0.3827828
```

```r
# c) Double check
dbinom(x = c(0:7), size = 10, prob = 0.7) %>%
sum()
```

```r
## [1] 0.6172172
```

How to plot?

```r
# PDF
# Create x axis in data.frame
tibble(x = seq(from = 0, to = 10, by = 1)) %>%
# Create y axis
mutate(y = dbinom(x = x, size = 10, prob = 0.7)) %>%
# Plot, map data in aesthetic
ggplot(aes(x=x,y=y))+
# Specify the type of plot
geom_line()+
# Specify x axis breaks
#scale_x_continuous(breaks = 0:10)+
scale_x_continuous(breaks = 0:10)+
# Add vertical line at x = 0.7
geom_vline(xintercept = 7, color = "red", linetype = "dashed")+
# Change label on y axis
labs(y="Prob", subtitle = "PDF")+
# (Optional: specify theme )
theme_bw()
```
CDF

Create x axis in data.frame
tibble(x = seq(from = 0, to = 10, by =1)) %>%

Create y axis
mutate(y = pbinom(q = x, size =10, prob=.7)) %>%

Plot, map data in aesthetic
 ggplot(aes(x=x,y=y)) +

Specify the type of plot
 geom_line() +

Specify x axis breaks
 scale_x_continuous(breaks = 0:10) +

Add vertical line at x = 0.7
 geom_vline(xintercept = 7, color = "red", linetype = "dashed") +

Change label on y axis
 labs(y="Prob", subtitle = "CDF") +

(Optional: specify theme)
 theme_bw()