Symmetry:  The Art of Mathematics                  Hillyard/Rasmussen

 

Class 16 Outline

 

I) Hand back assignment 13

           

II) Go over Assignment 14

 

III) Review of two-dimensional band ornaments: summary of our last class

 

A)   generated lots of examples using a rectangular grid

B)   introduced the concept of least restrictive grid for a pattern

          C) summary of the examples we found:

         

Example

Grid type

Least restrictive

 Rotations

Reflections

Glide Reflections

Example 1

Rectangle

R(360)=I

r(v)

None

Example 2

Rectangle

R(360)=I

None

Yes

Example 3

Rectangle

R(180)

R(360)=I

r(v), r(h)

None

Example 4

Rectangle

 

R(180)

R(360)=I

r(v)

Yes

Example 5, this example as drawn in class does not work

Rectangle

R(180),

R(360)=I

None

 

Yes

Example 6

Parallelogram

(we used a rectangular grid in class)

R(180), R(360)=I

None

None

 

 

 

 

 

 

 

 

Outline 16  continued

 

IV) Classification of two-dimensional band ornaments:  continued

 

A)   Add our examples from homework assignment 14 to above table

Example 7

Parallelogram

R(360)=I

None

 

None

Example 8

Square

R(90),R(180), R(270),R(360)=I

r(v), r(h)

None

 

 

B)   Team exercise, generating examples on a square grid

1)    hand out square grid

2)    see if you can make an example on the square grid that has only R(90), R(180), R(270), & R(360)=I and no vertical reflection and no horizontal reflection (and of course two translations)

3)    teams choose favorite and report

4)    teams look on table of grids for a square and see if there is another possible combination of symmetries possible for the square grid:  teams report

5)    hand out a square grid and see if they can make such a pattern

6)    teams report

7)    update our example table

 

V) Break

 

VI) Two-dimensional band ornaments  continued

 

C)  Team exercise, generating examples on a hexagon grid

1)    hand out hexagon grid

2)    see if you can make an example on the hexagon grid that has R(60), R(120), R(180), R(240), R(300) & R(360)=I and has a vertical reflection and a horizontal reflection ( and of course two translations)

3)    teams choose favorite and report

4)    see if you can make an example on the hexagon grid that has R(60), R(120), R(180), R(240), R(300) & R(360)=I and has no vertical reflection and no horizontal reflection ( and of course two translations)

5)    teams choose favorite and report

6)    update our example table

 

VII) Team Visual Presentations: Time for team to work on presentations

 

 

VIII) Homework: hand out assignment 15 due Monday, 5/22/06

          A) Get started early:  this assignment is longer than previous     assignments