Symmetry:  The Art of Mathematics                 

May 10, 2006                                                                                                   Hillyard/Rasmussen

Class 14 Outline

 

I)                  Assignment 12:

a.       problem 1 & 2, each team chose an example to share with the class using the giant grid paper or the whiteboard

b.       problem 3, each team chose an example to share with the class using the giant grid paper or the whiteboard

 

 

II)               Thinking about different parallelogram based grids.  If we paste parallelograms together to cover our plane, what types of symmetries can be admitted?  Let’s systematically investigate and fill out the following table to keep track.

 

Grid type

Rotations

Reflections

Glide Reflections

Arbitrary parallelograms

R(180)

 

None

None

Rectangles

R(180)

 

r(v), r(h)

Yes

Squares

R(180)

R(90)

R(270)

 

R(v), r(h)

r(45 diagonal)

r(135 diagonal)

Yes

Diamond (no 90 degree & no 120 degree)

R(180)

 

r(v), r(h)

Yes

Diamond (120,60 degree)  Forms a hexagon

R(60), R(120), R(180), R(240)

R(300)

 

6 total reflections

r(v),r(h),

 r(30 degree line) r(60 degree line), r(120 degree line),

r(150 degree line)

Yes

 

 

 

 

 

 

III)           Group time.  Instructors will circulate and answer any questions you have about the visual presentation.

 

 

IV)              Homework #13, Due Monday, May 15th:

 

1.        Go to http://www.incompetech.com/beta/hexagonalGraphPaper/hex.html and generate some hexagonal grid paper.  Use the hexagonal grid paper to make a 2-dimension pattern that has two translations (of course), a vertical reflection and a horizontal reflection.  Make at least 4 repeating rows and columns.

2.       Color  your design in (1) so that you lose the horizontal reflection.

3.       Could your design in (1) be made by tiling some sort of parallelogram?  Discuss.