
Formal Speci�cation of Control Software for a

Radiation Therapy Machine

(Revised)

Jonathan Jacky

�

Michael Patrick

Jonathan Unger

Radiation Oncology Department RC-08

University of Washington

Seattle, WA 98195

Technical Report 95-12-01

January 9, 1997

Abstract

This report presents a formal (mathematical) speci�cation for the operator's console

of a computer-controlled radiation therapy machine equipped with a multileaf collima-

tor. This formal speci�cation, rather than the prose speci�cation, serves as the primary

reference source for programming and test planning.

Speci�ed functions include selecting treatment setups from a database of stored

prescriptions, setting up prescriptions on the treatment machine manually or semi-

automatically, checking that the setup conforms to the prescription (with provision for

overriding certain settings, with operator con�rmation), safety interlocking and essential

user interface features. The speci�cation supports physics and experimental procedures

as well as normal patient treatments.

The speci�cation is expressed in the Z notation. It formalizes the requirements in

a thorough informal (English prose) speci�cation. Its organization suggests a detailed

design.

�

email jon@radonc.washington.edu, telephone (206)-548-4117, fax (206)-548-6218

c

1994,1995,1996,1997 by Jonathan Jacky, Michael Patrick and Jonathan Unger

This work may not be copied or reproduced in whole or part for any commercial purpose.

Permission to photocopy in whole or part without payment of fee is granted for nonpro�t

educational and research purposes provided that all such copies include the following notice:

a notice that such copying is by permission of the authors; an acknowledgment of the authors

of the work; and all applicable portions of this copyright notice. All rights reserved.

1 Introduction

This report presents portions of a formal speci�cation for a real medical device, a radiation

therapy machine

1

. This speci�cation, rather than the informal prose description, serves as

the primary reference source for programming and test plannning. A paper [4] describes

the development of part of the program based on the contents of this report.

This formal speci�cation is based on a thorough informal (English prose) speci�cation pre-

sented as Chapters 2 and 8 in [2]. Here we attempt to formalize the requirements in that

source. We have included many cross-references. Decimal numbers and integers (as in 8.4,

191) refer to chapter, section and page numbers in [2], respectively.

The formal speci�cation is expressed in the Z notation [7]. We have corrected syntax and

type errors detected by a checker [6].

2 Overview

Much of the apparent complexity in the prose requirements arises from the interaction of

several subsystems which, by themselves, are simpler. In the formal speci�cation we parti-

tion the system into subsystems and describe simple operations on each. For each operation

on the system as a whole, we de�ne a separate operation on each a�ected subsystem. The

complex behaviors of the whole system emerge when we compose these simpler operations

together.

Each subsystem is modelled by a Z state schema and a number of operation schemas on

that state. This partition can itself be represented in Z.

TherapyControl

Session

Field

Intlk

: : :

Console

Session (section 5) models those aspects of the treatment session that are related to the

prescription database (section 4 models the database itself). Field (section 6) models the

many settings that characterize a single �eld. Intlk (section 7) models software interlocks

1

We plan to include additional portions in future versions of this report. The present version supercedes

an earlier report [3] and several earlier versions of this report.

1

and other
ags that indicate readiness. Console (section 8) models the user interface.

Section 9 combines operations from Session, Field and Console.

Related operations in di�erent subsystems are distinguished by su�x: ExptModeS , ExptModeF ,

and ExptModeC are operations in the Session, Field and Console subsystems, respectively.

Each user interface operation in the Console subsystem ensures that corresponding oper-

ations in the Session and Field subsystems are only invoked when their preconditions are

satis�ed. Therefore only the Console operations need to be total; usually there is no need to

de�ne total operations in the Session and Field subsystems. For example the ExptModeC

operation in the Console subsystem checks the precondition that only physicists can invoke

this operation; in Console we de�ne what happens when an operator who is not a physicist

attempts to enter experiment mode. Therefore ExptModeS and ExptModeF can assume

that this precondition has been satis�ed and need not cover the other cases.

3 System con�guration

Fixed aspects of the system con�guration are represented by Z global constants: sets,

functions and relations. This section introduces some of these constants. It should be

possible to accommodate some con�guration changes simply by changing their values. All

the basic types and global constants de�ned in this report are collected in Appendix C.

3.1 Settings and registers

The state of the therapy machine is largely determined by the values of named items. A

glossary of items appears in Appendix A. At this writing the list of items is

ITEM ::= nfrac j dose tot j dose j wedge j w rot j �lter j leaf 0 j leaf 39 j

gantry j collim j turnt j lat j longit j height j doseB j top j

pt mode j pt factor j press j temp j d rate j t fac j

calvolt1 j calvolt2 j p dose j p time j e time

For brevity we omit formal declarations of the other collimator leaves, leaf 1 : : leaf 38.

There are many items but we can identify di�erent subsets, where all of the members of each

subset are treated the same way for some particular purpose. A glossary of item groups,

and tables showing the group membership of each item, appear in Appendix B.

Settings are items which are included in �eld prescriptions. Other items are kept in registers.

2

In particular dose reg items include calibration factors and other items concerned with the

dosimetry system

2

.

setting ; dose reg : � ITEM

At this writing

hsetting ; dose regi partition ITEM

dose reg = fpt mode; pt factor ; press; temp; d rate; t fac;

calvolt1; calvolt2; p dose; p time; e timeg

Scales are items that are continously variable over some range; examples are gantry angle

and every collimator leaf position. Selections can only take on certain discrete values;

examples are wedge and
attening �lter selection. Counters accumulate during treatment

runs; examples are dose and the number of fractions.

scale; selection; counter : � ITEM

At this writing

hselection; scale; counteri partition ITEM

counter = fnfrac; dose tot ; doseg

selection = fwedge;w rot ;�lter ; pt modeg

A �eld is prescribed by determining the values of certain of its settings. Therapy �elds

are de�ned by the values of particular settings called prescriptions. Experiment �elds are

de�ned by the values of settings called presets (8.2, 171 third bullet; Table 8.2, 173). Readi-

ness is determined by checking all the preset settings in experiment mode, and all the prescr

settings (prescrip except the linear table motions) in therapy mode (8.9.8, 194). Most set-

tings are machine motions, and the actual values of most settings are measured by sensors.

The calibration constants are registers that are initially loaded with constants stored in the

calibration database. At this writing

leaves == fleaf 0; leaf 39g

preset == leaves [fwedge;w rot ;�lterg

motion == preset [fgantry ; collim; turnt ; lat ; longit ; heightg

prescrip == motion [counter

prescr == prescrip n flat ; longit ; heightg

sensor == setting n fnfrac; dose totg

cal const == fd rate; t fac; calvolt1; calvolt2g

2

In the C implementation setting and dose reg are two di�erent enumerations, separated so we can

e�ciently store and index zero-based C arrays. We may add other register enumerations in the future, for

example for the LCC calibration factors.

3

3.2 Values

The value of every item can be represented by a number.

VALUE == �

Each item will be implemented by an appropriate (possibly
oating point) numeric type. In

this report it is su�cient to say they are all numbers, to indicate that we can do arithmetic

with them.

Each item can assume a particular range of valid (physically achievable) values. For exam-

ple, the gantry angle can vary from 0 to 359

3

; the available wedge selections are no wedge,

30, 45 and 60. We use valid to do range checking on numbers that the operator types in,

and also on sensor readings, to check for faults

4

. Every setting s has some valid values, and

there is always a minimum and a maximum valid value. We de�ne an uninitialized or blank

value which is not valid for any setting. For each scale item, there is a tolerance within

which variations in value are acceptable.

blank : VALUE

tol : scale" VALUE

valid : ITEM "�

1

VALUE

8 s : ITEM � blank =2 valid s

4 Prescription database

The prescription database stores patients and �elds. We de�ne a basic type for the names

that identify them.

[NAME]

PATIENT == NAME ; FIELD == NAME

An item's name usually corresponds to the text string that identi�es it in screen displays

and log �les

5

.

We distinguish a special value to indicate that no name has been selected.

3

In the implementation gantry angle varies from 0.0 to 359.9. Decimal fractions are not built into Z.

4

The C implementation includes one valid array indexed by setting and another (with a di�erent name)

indexed by dose reg .

5

We de�ne one type for both kinds of names so the same speci�cations (and code) can be used to handle

lists of patients and �elds. In the implementation, elements of NAME are integer indices into arrays, usually

of C structures that include the name string as one member.

4

no name : NAME

no patient == no name; no �eld == no name

In experiment mode, we store �elds under studies which are analogous to patients. In our

model they have the same type.

studies; patients : �PATIENT

no patient =2 studies ^ no patient =2 patients

For each patient or study, several prescribed �elds are stored

6

. We must check against

delivering too many fractions or monitor units from the same �eld (8.9.4, 187 { 188), so the

accumulated values of the counters are also stored (for patient �elds only).

ACCUMULATION == counter"VALUE

PRESCRIPTION == prescrip"VALUE

Preset : studies" (FIELD� PRESCRIPTION)

Prescribed : patients" (FIELD� PRESCRIPTION)

Accumulated : patients" (FIELD�ACCUMULATION)

8 s : studies � no �eld =2 dom(Preset s)

8 p : patients � no �eld =2 dom(Prescribed p) ^ dom(Prescribed p) = dom (Accumulated p)

The exceeded predicate tests whether the prescribed fractional dose, total dose or number

of fractions have already been delivered.

exceeded : ACCUMULATION# PRESCRIPTION

8 counters : ACCUMULATION ; �elds : PRESCRIPTION �

exceeded(counters;�elds) , (9 c : counter � counters c � �elds c)

In the following discussion consider �eld f of patient p; let prescribed = Prescribed p f

and accumulated = Accumulated p f . The prescription includes the number of fractions

prescribed n and the total dose prescribed dose tot . We also keep track of the number

of fractions accumulated to date accumulated n, the number of monitor units delivered

since the beginning of the day accumulated dose and the total number of monitor units

accumulated to date accumulated dose tot . Table 1 shows the settings and values pictured

on each line of the �eld selection display (8.9.4, Fig. 83, 186).

6

This di�ers from [1], which describes a single collection of experiment �elds. Moreoever, for each

experiment �eld we now store the same prescrip settings as for therapy �elds, although we only check the

preset settings for agreement with the stored prescription

5

Field �eld

Fractions prescribed n

To date accumulated n

MU prescribed dose

Total prescribed dose tot

Expected accumulated n � prescribed dose

To date accumulated dose tot

Table 1: Settings and values in the �eld list display

4.1 Operators

Our OPERATOR type includes the operator's username and password. A special value

indicates no operator has logged in. Physicists are operators who are authorized to use the

equipment in its experiment mode (8.2, 170).

[OPERATOR]

no operator : OPERATOR

operators; physicists : �OPERATOR

physicists � operators

5 Session

In this section we model those aspects of the treatment session that are related to the

prescription database. In section 9, we will combine the operations de�ned here with user

interface operations described in section 8.

5.1 Session state

The Session state is determined by the treatment mode, the operator on duty, the currently

selected patient and �eld , the accessible names (patients or studies), and the accessible

prescribed �elds and their counters. We �rst de�ne SessionVars which declares all the

state variables and provides predicates to ensure that the operator is authorized for the

mode, and the names are consistent with the mode.

6

MODE ::= therapy j experiment

SessionVars

mode : MODE

operator : OPERATOR

patient : PATIENT

�eld : FIELD

names : �PATIENT

�elds : FIELD� PRESCRIPTION

counters : FIELD� ACCUMULATION

operator = no operator _ operator 2 operators

mode = experiment) operator 2 physicists

names = if mode = therapy then patients else studies

Next, we de�ne two cases. When no patient is selected, no prescribed �elds are accessible;

no �eld can be selected.

NoPatient

SessionVars

patient = no patient

�eld = no �eld

�elds = �

counters = �

When a patient is selected, that patient's �elds are accessible. If a �eld is selected, it must

be one of these.

PrescribedPatient

SessionVars

patient 6= no patient

patient 2 names

�eld = no �eld _ �eld 2 dom�elds

�elds = if mode = therapy then Prescribed patient else Preset patient

mode = therapy) counters = Accumulated patient

Together these de�ne the Session state.

Session b= PrescribedPatient _ NoPatient

The Session subsystem starts up in therapy mode with no operator and no patient.

7

InitSession

NoPatient

mode = therapy

operator = no operator

None of the Session state variables are sensor inputs; all are under program control.

5.2 Operations on Session

In the following subsections we model the operations on Session. We will put together the

operations de�ned in di�erent states in section 9, below.

5.2.1 Experiment mode

Physicists can toggle the session from therapy mode to experiment mode and back

7

. The

user interface ensures that only physicists can invoke this operation, so there is no need

here to de�ne a total operation that describes what happens when an operator who is not

a physicist attempts this operation. After switching modes, no patient (study) and no �eld

are selected (8.9.6, 190 { 191).

ExptModeS

�Session

operator 2 physicists

NoPatient

0

(mode

0

;names

0

) = if mode = therapy then (experiment ; studies)

else (therapy ; patients)

operator

0

= operator

5.2.2 Store Field

Store Field (8.9.5, 189 { 188) accepts a new �eld name, which becomes the selected �eld

and is also added to the list of �elds

8

.

7

This is a change from the original requirements in [1], where Experiment Mode switches to experiment

mode but Select Patient switches back to therapy mode.

8

The prose [2] also requires that the new �eld be added to the prescription database for the current

patient. We do not model this formally (in fact we model the prescription database as a constant). The

precondition patient 6= no patient is not explicit in the prose.

8

StoreFieldS

�Session

�eld? : FIELD

prescribed

0

: PRESCRIPTION

accumulated

0

: ACCUMULATION

patient 6= no patient

�eld

0

= �eld?

�elds

0

= �elds [f�eld

0

7! prescribed

0

g

mode = therapy) counters

0

= counters [f�eld

0

7! accumulated

0

g

mode

0

= mode

operator

0

= operator

patient

0

= patient

names

0

= names

Here prescribed

0

and accumulated

0

are just place holders; their values are de�ned in the

corresponding Field operation StoreFieldF .

5.2.3 Login

Login (2.5.2, 17 { 20; 8.9.1, 183) accepts a new operator?. The user interface ensures that

the new operator is authorized.

NewOperator

�Session

operator? : OPERATOR

operator

0

= operator?

operator

0

2 operators

There are two variations. Usually the new operator is su�ciently privileged to keep the

same mode. Otherwise the session reverts to therapy mode with no patient and no �eld

(8.9.6, 190).

9

Privileged

NewOperator

mode = therapy _ operator

0

2 physicists

mode

0

= mode

patient

0

= patient

names

0

= names

�eld

0

= �eld

�elds

0

= �elds

counters

0

= counters

Unprivileged

NewOperator

mode = experiment

operator =2 physicists

mode

0

= therapy

NoPatient

0

LoginS b= Privileged _ Unprivileged

5.2.4 Select Patient

In Select Patient (8.9.3, 184 { 185) the patient's prescribed �elds are loaded, but no �eld

is selected

9

. The user interface ensures that the new patient is in the prescription database.

SelectPatientS

�Session

patient? : PATIENT

patient? 2 names

patient

0

= patient?

�eld

0

= no �eld

�elds

0

= if mode = therapy then Prescribed patient

0

else Preset patient

0

mode = therapy) counters

0

= Accumulated patient

0

mode

0

= mode

operator

0

= operator

names

0

= names

9

The prose [1] says that if the patient list is selected in experiment mode, the session reverts to therapy

mode (8.9.3, 184 last paragraph). We have dropped this requirement.

10

5.2.5 Select Field

Select Field (8.9.4, 186 { 189) changes the current �eld. The user interface ensures this

operation cannot occur if there is no patient, and ensures that the new �eld is prescribed.

SelectFieldS

�Session

�eld? : FIELD

patient 6= no patient

�eld? 2 dom�elds

�eld

0

= �eld?

operator

0

= operator

mode

0

= mode

patient

0

= patient

�elds

0

= �elds

counters

0

= counters

6 Field

In this section, we look inside the machine state and deal with particular machine settings.

We model operations that involve the many settings that characterize a single �eld.

6.1 Field state

The Field schema includes the state variables that represent settings for the currently

selected �eld and mode. Sensors report measured setting values. Prescribed setting values

are read from the prescription database.

Computed and calibrated item values are entered by the operator or calculated from pre-

scribed settings and calibration constants; these are stored in registers. Certain calibration

constants are stored in �les (8.9.13, 213 �rst full paragraph; 215 last paragraph). Counters

hold setting values that are accumulated over successive runs. For example, the dose pre-

scribed for a single fraction may be have to be delivered in two or more treatment runs.

Some settings that do not match their prescribed values can be overridden by the operator

(8.4, 175 second paragraph; 8.8.1, 181). It is necessary to store the value of each setting

11

when it is overridden (see the requirement in the last paragraph under \override" on p.

181). Only settings that are prescribed can be overridden.

cal factor : cal const"VALUE

Field

prescribed : PRESCRIPTION

accumulated : ACCUMULATION

measured : sensor"VALUE

overridden : prescr�VALUE

computed ; calibrated : dose reg" VALUE

The measured settings are read from sensors so here we cannot write any predicates that

constrain them.

6.2 Relation to Session state

A few operations on Field read the mode and �eld state variables declared in Session.

In therapy mode, the prescribed settings in the Field state are those from the prescription

database entry for the currently selected mode and �eld in the Session state. (In experiment

mode the prescribed settings are also loaded from the prescription database but may be

changed subsequently. In therapy mode the counters are loaded from the prescription

database when the �eld is selected but may be changed subsequently. See section 6.4.2).

PrescribedField

Field

Session

�eld 6= no �eld

mode = therapy) prescribed = �elds �eld

When no �eld has been selected, prescribed settings and counters have no values and the

computed settings dose and time indicate no dose. (8.9.7, 192, second paragraph after the

bullets). No settings are overridden (8.9.8, 194; 8.9.9, 196; 8.9.10, 198).

no prescrip == (� p : prescrip � blank)

no counter == (� c : counter � blank)

no dose reg == (� d : dose reg � blank)

no dose == fp dose 7! blank ; p time 7! blankg

12

NoFieldF

Field

prescribed = no prescrip

accumulated = no counter

no dose � computed

overridden = �

NoFieldS b= [Session j �eld = no �eld]

NoField b= NoFieldF ^ NoFieldS

FieldSession expresses the combined invariant:

FieldSession b= PrescribedField _ NoField

6.3 Initialization

Field begins with no �eld. The calibration factors are initialized with the constants on �le

(8.9.13, 213, second paragraph after bullets) and the other registers hold no values.

InitField

NoFieldF

computed = calibrated = no dose reg � cal factor

6.4 Operations on Field

In the following subsections we model the operations on Field . We will put together the

operations de�ned in di�erent states in section 9, below.

6.4.1 Select Patient

SelectPatient also a�ects Field : when a patient is �rst selected, there is no �eld.

13

SelectPatientF

�Field

NoFieldF

0

computed

0

= computed � no dose

calibrated

0

= calibrated

6.4.2 Select Field

When a new �eld is selected, its prescribed settings are loaded and no settings are over-

ridden. This operation requires read-only access to the �elds state variable in the Session

schema.

NewFieldF

�FieldSession

prescribed

0

= �elds �eld

0

overridden

0

= �

There are two variants of SelectField . Experiment mode is much simpler because there is

no prescribed dose. The prescribed settings are loaded. The dose and time do not change

(8.9.11, 202, second paragraph from bottom).

SelectExptFieldF

NewFieldF

mode = experiment

computed

0

= computed

calibrated

0

= calibrated

Selecting rectangular �elds in experimental mode (8.9.4, 188 { 189) is not modelled formally.

In therapy mode, the dose for the treatment run and the treatment backup time are calcu-

lated. Treatment backup time is calculated from the dose and two calibration factors, the

machine's nominal dose rate computed d rate and the treatment time factor computed t fac

(8.9.11, 200, last paragraph; 202, second paragraph; 8.9.13, 213, �rst two paragraphs after

bullets)

10

.

10

The backup time is given by t backup = factor � dose=rate. For example with prescribed dose 100.0

MU, dose rate 50.0 MU/min and factor 1.50 the backup time is 3.00 minutes. We do not attempt to model

this
oating-point calculation in Z.

14

SETTING PRESCR PRESET ACCUM

DOSE A prescribed dose computed p dose measured dose

DOSE B prescribed dose computed p dose measured doseB

TIME calibrated p time computed p time calibrated e time

Table 2: Settings and values in the dosimetry display

DOSE == VALUE ; RATE == VALUE ; FACTOR == VALUE ; TIME == VALUE

t backup : (DOSE � RATE � FACTOR)� TIME

8 d : valid dose; r : valid d rate; f : valid t fac �

(d ; r ; f) 2 dom t backup ^ t backup(d ; r ; f) 2 valid p time

We keep track of the number of monitor units delivered since the beginning of the day

accumulated dose. When the prescribed �eld settings are loaded, the computed dose is

adjusted to deliver the remaining daily dose. This makes it easy to set up another treatment

run for the same �eld if the earlier attempts had to be interrupted for any reason, or were

used to make a port �lm. The treatment backup time is calculated from this adjusted dose,

not the prescribed dose.

The adjusted dose and corresponding backup time are stored in computed p dose and

calibrated p time (computed p dose may di�er from prescribed dose). There is also a reg-

ister computed p time where the user may optionally enter a backup time di�erent than

calibrated p time (section 6.4.3, below). Table 2 shows the settings and values pictured on

the dosimetry display (8.9.11, Fig. 8.8, 199; Fig. 8.9, 203; Fig 8.10, 207; Fig. 8.11, 208).

DoseTime

�Field

(let t == t backup(computed

0

p dose; computed

0

d rate; computed

0

t fac) �

calibrated

0

= calibrated � f p time 7! tg)

computed

0

p time = calibrated

0

p time

fp dose; p timeg� computed

0

= fp dose; p timeg� computed

NewTherapyField

NewFieldF

DoseTime

mode = therapy

accumulated

0

= counters �eld

0

15

There are two cases. The normal case occurs when the user interface con�rms that the

prescribed fractional dose, total dose and number of fractions are not yet exceeded . The

dose is read from the prescription, and no settings are overridden (8.9.4, 187).

SelectTherapyFieldF

NewTherapyField

computed

0

p dose = prescribed dose � accumulated dose

overridden

0

= �

Together these make the simple case

SelectSimpleFieldF b= SelectExptFieldF _ SelectTherapyFieldF

The other case occurs when the user interface acquires the preset dose from the operator

(often when one or more of the counter settings is exceeded . If this di�ers from the prescribed

dose then dose is overridden, and any exceeded settings are also overridden (8.9.4, 188).

SelectComplexFieldF

NewTherapyField

dose? : VALUE

computed

0

p dose = dose?

(let ovr == (� c : counter j accumulated

0

c � prescribed

0

c � accumulated c) �

overridden

0

= if dose? = prescribed

0

dose

then ovr else ovr [fdose 7! dose?g)

Here we have made a few small changes from the prose requirements. According to the

prose (8.9.4, 187 { 188), the Select Field operation includes a dialog with the operator to

enter a new dose or treatment time in some cases. In our formal speci�cation it is necessary

for the operator to explicitly select the Edit operation after Select Field in order to enter

a new dose or treatment time. These minor adjustments achieve the intent of the prose

and simplify the program. As required by the prose, our SelectComplexFieldF overrides

exceeded settings (after operator con�rmation, enforced by the user interface)

11

.

6.4.3 Edit setting

The edit operation updates a prescribed or computed item value.

11

We also considered the slightly simpler alternative of omitting the operator con�rmation and leaving

overridden = � in the exceeded case. In that alternative, the Intlk subsystem (section 7) would make

the o�ending settings not ready to prevent the �eld being delivered unless the operator explicitly edits or

overrides those settings.

16

EditF

�Field

item? : ITEM

value? : VALUE

accumulated

0

= accumulated

calibrated

0

= calibrated

The prose actually describes four Edit operations. Some features are common to all. The

�rst variation is for preset settings; the user interface ensures this can be invoked in experi-

ment mode only (8.8.1, 180). The prescribed value is changed, and that setting is no longer

overridden.

EditPresetF

EditF

item? 2 preset

prescribed

0

= prescribed � fitem? 7! value?g

overridden

0

= fitem?g � overridden

computed

0

= computed

The second variation is for calibration factors; again, the user interface only provides this

in experiment mode (8.9.3, 215). Calibration factors that users can edit are modelled as

computed settings in registers. Calibration factors are never considered overridden.

EditCalF

EditF

item? 2 dose reg n fp dose; p timeg

computed

0

= computed � fitem? 7! value?g

prescribed

0

= prescribed

overridden

0

= overridden

The third variation is for dose (8.9.11, 201{202). The computed (not prescribed) value is

changed, and the dose is considered overridden (8.9.4, 188; 8.9.11, 202). The treatment

times are recalculated.

17

EditDoseF

EditF

DoseTime

item? = p dose

computed

0

p dose = value?

overridden

0

= overridden � fdose 7! value?g

prescribed

0

= prescribed

The fourth and last variation is treatment backup time, which can be edited in both modes

(8.9.11, 202). Here again the computed value is changed; time is not a prescribed setting,

so it cannot be overridden.

EditTimeF

EditF

item? = p time

computed

0

= computed � fp time 7! value?g

prescribed

0

= prescribed

overridden

0

= overridden

Here is the combined operation:

EditSettingF b= EditCalF _ EditPresetF _ EditDoseF _ EditTimeF

EditSettingF is not a total operation (it does not handle all possible values of ITEM) but

the user interface ensures that its preconditions are always satis�ed.

We now provide the EditDoseF and EditTimeF operations instead of the dialog after Select

Field proposed in [2] (8.9.4, 187 { 188).

6.4.4 Override

Certain items can be overridden.

OverF

�Field

item? : ITEM

prescribed

0

= prescribed

accumulated

0

= accumulated

computed

0

= computed

calibrated

0

= calibrated

18

We add a newly overridden setting and its currently measured value to the overridden

function (8.4, 175 second paragraph; 8.8.1, 181). If the setting is already overridden, the

override is cancelled.

OverrideSetting

OverF

item? 2 prescr

overridden

0

=

if item? =2 dom overridden

then overridden � fitem? 7! measured item?g

else fitem?g� overridden

Dose and time are special cases; overriding either makes dose overridden with its accumu-

lated (not measured) value as the overridden value. The counters total dose dose tot and

number of fractions nfrac can only be overridden (after operator con�rmation) as part of

the SelectFieldF operation.

OverrideDose

OverF

item? 2 fp dose; p timeg

overridden

0

=

if dose =2 dom overridden

then overridden � fdose 7! accumulated doseg

else fdoseg� overridden

OverrideF b= OverrideSetting _ OverrideDose

6.4.5 Store Field

This operation (8.9.5, 189 { 190) makes the prescribed settings equal to the actual machine

settings, except there is no prescribed dose and the number of fractions is set to one. The

accumulators are reset to zero.

zero counter == (� c : counter � 0)

19

StoreFieldF

�FieldSession

computed

0

= computed � no dose

prescribed

0

= prescribed � (prescrip �measured) � no counter � fnfrac 7! 1g

accumulated

0

= zero counter

overridden

0

= �

calibrated

0

= calibrated

6.4.6 Experiment Mode

This operation toggles modes with no �eld. There are no dose and time (8.9.11, 202, second

paragraph from bottom).

ExptModeF

�Field

NoFieldF

0

computed

0

= computed � no dose

calibrated

0

= calibrated

6.5 Calibration factors

6.5.1 Dosimetry calibration

Dosimetry calibration factors, including the dose rate and treatment time factor used to

calculate the backup time, appear on the Dosimetry Calibration display (8.9.13, 213 {

214)

12

. Table 3 shows part of a possible design for this display. The calibrated values in the

left column are read from �les or measured by sensors, while the computed values in the

right column are computed by the control program or entered by the operator using the

EditCalF operation.

The pressure-temperature correction factors are used to adjust the standard calibration volt-

ages for the dosimetry system (8.9.13, 213 { 215). The calibrated calvolt1 and calibrated calvolt2

represent the standard calibration voltages on �le (8.9.13, 213, second paragraph from bot-

tom), while computed calvolt1 (etc.) represent the calibration voltages actually in e�ect,

12

Called Cal Factors in [2], since renamed to distinguish it from the forthcoming LCC Calibration etc.

20

MEASURED/CALIBRATED ADJUSTED

P/T MODE computed pt mode (automatic=manual)

PRESSURE calibrated press computed press

TEMPERATURE calibrated temp computed temp

P/T CORR. calibrated pt factor computed pt factor

CALVOLT 1 calibrated calvolt1 computed calvolt1

CALVOLT 2 calibrated calvolt2 computed calvolt2

DOSE RATE calibrated d rate computed d rate

TIME FACTOR calibrated t fac computed t fac

Table 3: Dosimetry calibration display

which are obtained by adusting the standard calibration voltage by a barometric pres-

sure/temperature correction factor (8.9.13, 213 bottom paragraph, 214 top paragraph)

13

.

PRESSURE == VALUE ; TEMPERATURE == VALUE

pt formula : (PRESSURE � TEMPERATURE)� FACTOR

8 p : valid press; t : valid temp �

(p; t) 2 dom pt formula ^ pt formula(p; t) 2 valid pt factor

The computed press and computed temp are the pressure and temperature entered by the op-

erator, and while calibrated temp and calibrated press are measured continously by sensors.

The computed pt factor stores the barometric pressure/temperature correction factor of the

day calculated from the readings entered by the operator (8.9.13, 214, third paragraph),

while calibrated pt factor stores the automatic pressure/temperature correction factor cal-

culated from sensor readings (8.9.13, 214, fourth paragraph). The pressure-temperature

interlock (section 7) accounts for the possibility that the pressure or temperature values

might be invalid or expired.

The operator sets computed pt mode = automatic to use the automatic pressure/temperature

correction factor, and computed pt mode = manual to use the correction factor that is based

on the manually entered values (8.9.13, 214, �fth paragraph).

automatic;manual : VALUE

The ScanPT operation computes the correction factors and updates the registers with the

new values.

13

The pressure-temperature factor is given by pt factor = (press=1013)� (295=(temp +273)), where press

and temp are in mbar and deg. C, respectively. We do not attempt to model this
oating-point calculation

in Z.

21

ScanPT

�Field

calibrated

0

pt factor = pt formula(calibrated press; calibrated temp)

computed

0

pt factor = pt formula(computed press; computed temp)

(let pt corr == if computed pt mode = automatic

then calibrated

0

pt factor else computed

0

pt factor �

computed

0

calvolt1 = pt corr � calibrated calvolt1 ^

computed

0

calvolt2 = pt corr � calibrated calvolt2)

fpt factorg� calibrated

0

= fpt factorg� calibrated

fpt factor ; calvolt1; calvolt2g � computed

0

= fpt factor ; calvolt1; calvolt2g � computed

prescribed

0

= prescribed

accumulated

0

= accumulated

overridden

0

= overridden

ScanPT is scheduled by the control program itself; it is not invoked by the user.

7 Software interlocks and status
ags

(To come)

22

8 User interface

The user may provide input at the workstation at any time (by typing, pressing function

keys or cursor arrow keys | in our implementation we do not use the mouse). We model

each keystroke and the actions it invokes as an Event that accepts an input? that may

change the Console state.

Event

�Console

input? : INPUT

We do not attempt to formalize any \look and feel" aspects of the user interface, such as

the appearance of the display. They are already described in su�cient detail in [2], chapters

2 and 8.

INPUT is the set of inputs (keypresses) the user can provide

14

. Here is the list of inputs

at this writing.

INPUT ::= �lter wedge j leaf collim j dose intlk j gantry psa j dose cal j

startup j help j messages j select patient j select �eld j �eld summary j

login j edit setting j edit dose reg j log message j store �eld j override cmd j

cancel run j password j auto setup j expt mode j cancel j refresh j shutdown j

select j ret j character j backspace j delete key j

left arrow j right arrow j up arrow j down arrow j ignored

Many operations are invoked by pressing keys, so it is often convenient to identify operations

with the corresponding input. Therefore we assign them to the same type. Here is the list

of operations at this writing.

OP : � INPUT

OP = f�lter wedge; leaf collim; dose intlk ; gantry psa; dose cal ;

startup; help;messages; select patient ; select �eld ;�eld summary ;

login; edit setting ; edit dose reg ; log message; store �eld ; override cmd ;

cancel run; password ; auto setup; expt mode; cancel ; refresh; shutdown; selectg

The user interface shows many displays, for example the login display (Fig 8.1, 178), the

patient list display (Fig. 8.2, 185), the leaf collimator display (Fig. 8.7, 197) etc. The

operator can choose any display by pressing a key, so we can identify displays with these

operations.

14

In the implementation, inputs are X window system events and the values of INPUT correspond to X

keysyms [5].

23

DISPLAY : �OP

DISPLAY = f�lter wedge; leaf collim; dose intlk ; gantry psa; dose cal ;

startup; help;messages; select patient ; select �eld ;

�eld summary ; loging

8.1 Console state

This section describes the variables in the Console state.

The �rst variable indicates the mode of interaction. If no interaction is in progress the

console is available, or there may be a dialog in progress where the user is typing text into

a dialog box, or there may be a menu displayed, or the user may be asked to con�rm some

operation by providing a yes/no answer (this mode can also be used to present informational

messages).

INTERACTION ::= available j dialog j menu j con�rm

The op variable keeps track of which top-level operation (described in [2]) is underway.

The display variable indicates which of the screen designs pictured in the informal speci�ca-

tion is currently visible on the display. The display variable determines which items appear

and helps determine which operations are available.

The item state variable holds the item which the operator has selected from a tabular

display, for example the setting which the operator is editing.

The nlist state variable holds the list of names (of patients or �elds) that appear on a list

display, and list item indicates the currently selected name.

Themenu item state variable holds the index of the current menu selection (a small integer).

nmax :

SELECTION == fi :
 j i � nmaxg

The bu�er state variable models the (possibly incomplete) string that the user edits in

dialog mode.

[STRING]

24

empty : STRING

The keyswitch must be unlocked to allow the console to be used (8.7, 179).

KEYSWITCH ::= locked j unlocked

Some operations are available only when a treatment is being set up, and are locked out

while a treatment run is in progress (8.8.2, 183).

RUN ::= setup j running

The keyswitch and run variables depend on sensor inputs; they are not constrained here.

Together, these variables describe the state of the user interaction.

Console

keyswitch : KEYSWITCH

run : RUN

display : DISPLAY

op : OP

interaction : INTERACTION

item : ITEM

nlist : �NAME

list item : NAME

menu item : SELECTION

bu�er : STRING

When the control program starts up, the login process begins (section 8.3.13)

15

.

InitConsole

Console

op = login

display = login

interaction = dialog

bu�er = empty

8.2 Elements of user interaction

All user interactions are built up from a few elements. In this section we de�ne the constants,

states and operations that serve as building blocks.

15

When the implementation starts up, the startup screen appears �rst. The login process does not begin

until the various Init : : : conditions are established. We do not model this formally.

25

The caption type models messages or other output to the operator that appear temporarily

at the console (in dialog boxes or perhaps even from the speaker, see 2.2.3, 9). Captions

are distinguished from log messages which appear in a di�erent location on the console and

are also stored in log �les along with timestamps other information (2.2.4, 9).

[CAPTION ;MESSAGE]

Ignore is the default do-nothing operation that is invoked when a key is pressed but the

preconditions for the associated operation are not satis�ed. Ignore does not change the

state, but issues an alert (such as sounding the workstation bell) to notify the user that the

input was received but the operation is not enabled.

alert : CAPTION

Ignore

Event

�Console

caption! : CAPTION

caption! = alert

The keyswitch must be unlocked for any operation to occur. When the keyswitch is locked,

input is ignored:

Unlocked b= [Console j keyswitch = unlocked]

EventUnlocked b= Event ^ Unlocked

Many operations are invoked by pressing the select key.

Select b= [EventUnlocked j input? = select]

It is convenient to describe the operations that can occur in each of the interaction modes.

Each mode is described in a following subsection.

8.2.1 Available

Most of the top-level operations described in [2] can only be selected when the console is

available.

Available b= [Console j interaction = available]

26

Op

EventUnlocked

Available

input? 2 OP

Certain operations have stronger preconditions: they cannot occur when a run is in progress

(8.8.2, 183). A few operations occur only when a run is in progress (8.9.11, 209-210).

Setup b= [Available j run = setup]

Running b= [Available j run = running]

When the console is available, the user may select a new display . The console remains

available.

SelectDisplay

Op

input? 2 DISPLAY

display

0

= input?

op

0

= display

0

Available

0

SelectDisplay operations may change item and list item (see below) but do not change

other state variables (for brevity we omit the x

0

= x \nothing changes" predicates).

When an interaction is in progress, the console is Engaged . The Done operation schema

describes what happens when an interaction completes: the console returns to the Available

state, and op returns to its value when the display was selected.

Engaged b= [Console j interaction 6= available]

Done

EventUnlocked

Engaged

op

0

= display

display

0

= display

Available

0

The Cancel operation is used to end an interaction without making permanent changes to

the underlying machine state.

Cancel b= [Done j input? = cancel]

27

8.2.2 Lists

Certain displays show a list of names (patients or �elds). When a list display is selected,

nlist is loaded, and the default list item is assigned. If the list is not empty, the List state

results (the patient list might be empty if there are no patients on �le; the �eld list is

always empty when there is no patient, and may be empty if there are no �elds on �le for

the selected patient).

list : �DISPLAY

default name : �

1

NAME" NAME

8 list : �

1

NAME � default name list 2 list

List b= [Available j display 2 list ^ nlist 6= � ^ list item 2 nlist]

SelectList

SelectDisplay

input? 2 list

((nlist = � ^ list item

0

= no name)

_ (List

0

^ list item

0

= default name nlist

0

))

Here display 2 list ^ nlist 6= � distinguishes the List state, and this test occurs explicitly in

the implementation. In contrast, list item 2 nlist is an invariant. It need not be coded as

an explicit test but it must be maintained or else the implementation might abort (because

list item is used as an index into nlist).

The console indicates list item (for example by placing a highlight or cursor over that name

in the list). Subsequently the user can choose a new name from the list by using the up

and down-arrow keys. The function aname calculates the new name by \dead reckoning"

from the old name, the list, and the arrow key (it is not necessary for the program to poll

the console for the cursor position). The list remains visible.

v arrow == fup arrow ; down arrowg

aname : (v arrow �NAME � �

1

NAME)" NAME

8 a : v arrow ; n : NAME ; list : �

1

NAME � aname(a;n; list) 2 list

Continue b= [�Console j interaction

0

= interaction ^ op

0

= op ^ display

0

= display]

28

GetListArrow

EventUnlocked

�List

input? 2 v arrow

list item

0

= aname(input?; list item;nlist)

Continue

This is a Continue operation that does not change interaction, op, or display . Here list item

is the only state variable that changes. We do not completely specify default name and

aname; we leave that to the implementation. Here we merely provide the predicates needed

to ensure that the implementation does not abort.

The user presses the select key to choose the current list item for some purpose. The

selection is logged; nmessage converts the name to a log message.

selected msg : NAME"MESSAGE

SelectName

Select

name! : NAME

message! : MESSAGE

List

name! = list item

message! = selected msg name!

GetListArrow and SelectName are not total operations; they do not handle the case where

nlist = �. The latter case is handled by a default do-nothing operation, IgnoreOthers

(section 8.4).

8.2.3 Tables

Certain displays show a table of items (settings for one subsystem, calibration factors etc.).

The constant table items tells which items on each table can be selected for editing or

overriding (additional items may be displayed as well). When a tabular display is selected,

the default item is assigned, and the Table state results.

table : �DISPLAY

29

default item : table" ITEM

table items : table"�

1

ITEM

8 d : table � default item d 2 table items d

Table b= [Available j display 2 table ^ item 2 table items display]

SelectTable

SelectDisplay

input? 2 table

item

0

= default item display

0

Table

0

Subsequently the user can indicate a new item on the table by using all four arrow keys.

arrow == fright arrow ; left arrowg [v arrow

asetting : (arrow � ITEM � table)" ITEM

8 a : arrow ; s : ITEM ; d : table � asetting(a; s; d) 2 table items d

GetSettingArrow

EventUnlocked

�Table

input? 2 arrow

item

0

= asetting(input?; item; display)

Continue

Here item is the only state variable that changes.

Items can be selected from tabular displays for editing or overriding. Editing or overriding

is only enabled in the Setup state (when a treatment run is not in progress, see 8.8.2,

183). Pressing the select key when certain tabular displays are present invokes an editing

operation: edit setting if the selected item is a setting and edit dose reg if it is a dose reg

(notice that here op

0

is not the same as input?). Therefore it is necessary to separate setting

and dose reg items on di�erent tables

16

.

16

Because the implementation cannot distinguish setting from dose reg based on item alone; item values

are just C enum values (integers).

30

setting table; dose reg table : � table

8 d : setting table � table items d � setting

8 d : dose reg table � table items d � dose reg

SelectItem

Select

Setup

Table

item

0

= item

(op

0

= edit dose reg ^ display 2 dose reg table _

op

0

= edit setting ^ display 2 setting table)

The postcondition here implies Editing , the invariant of the editing state

17

.

Editing

Console

interaction 2 fdialog ;menug

(op = edit dose reg ^ item 2 dose reg _

op = edit setting ^ item 2 setting)

The Setup precondition of SelectItem prevents the console entering the Editing state when

a run is in progress. Other mechanisms prevent the machine from beginning a run while in

the Editing state.

8.2.4 Con�rm

Con�rm interactions present a query (\Are you sure : : : ?") and wait for the user to provide

a yes/no answer, indicated by the select or cancel keys (for example see 8.9.11, 210). Each

Con�rm operation presents a con�rmation box (a sort of dialog box) with a caption that

identi�es the operation, and the query . The display under the con�rmation box does not

change.

Con�rm b= [Console j interaction = con�rm]

ocaption : OP" CAPTION

17

The implementation uses op to determine whether item is an index into setting or dose reg .

31

Con�rmOp

Op

caption!; query ! : CAPTION

caption! = ocaption op

0

display

0

= display

Con�rm

0

AcceptCon�rm b= Con�rm ^ Select ^ Done

8.2.5 Menu

When the console is Available the user can invoke a menu, then make a selection from the

menu. Each menu includes a caption and a list of menu entries. The display does not

change.

default selection : SELECTION

Menu b= [Editing j interaction = menu]

MenuOp

Op

caption! : CAPTION

menu! : iseqCAPTION

menu item

0

= default selection

display

0

= display

Menu

0

Here op also changes; the other state variables retain the same values.

Menus are used to choose new values for selection items; valid selection values are small

integers. Combining MenuOp with SelectItem yields the MenuEdit operation. The menu

shows the item name and a sequence of descriptive strings indexed by the corresponding

item values. Here again, the Editing postcondition of SelectItem guarantees that op can be

used to help look up selection values item.

setting info name : ITEM " CAPTION

setting value : selection" iseqCAPTION

8 s : selection � dom (setting value s) = valid s

32

MenuEdit

MenuOp

SelectItem

item 2 selection

caption! = setting info name item; menu! = setting value item

There are functions to return the default menu selection and the new selection after each

up or down-arrow keypress.

amenu : (v arrow � SELECTION � selection)" SELECTION

8 s : selection � (let n == #(valid s) �

8 a : v arrow ; i : SELECTION � default selection � n ^ amenu(a; i ; s) � n)

GetMenuArrow

EventUnlocked

�Menu

input? 2 v arrow

menu item

0

= amenu(input?;menu item; item)

Continue

Here item is the only variable that changes.

The user presses select to accept the current menu item and the console becomes available

again.

AcceptMenu b= Menu ^ Select ^ Done

MenuSettingC

AcceptMenu

item! : ITEM

value! : VALUE

Editing

item! = item

value! = menu item

8.2.6 Dialog

When the console is Available the user can begin a dialog, then type and edit text in a

dialog box. The dialog box contains a caption and a prompt that may include the values of

other state variables. The display under the dialog box does not change.

33

Dialog b= [Console j interaction = dialog]

DialogOp

Op

caption!; prompt ! : CAPTION

caption! = ocaption op

0

display

0

= display

Dialog

0

Here only interaction, bu�er , and op change. The bu�er may be emptied, or may be

�lled with a convenient default value. We'll describe changes to op later, with each dialog

operation.

The console remains in Dialog while the user types and edits. The GetChar operation gets a

single character and updates the bu�er as described by themodify function (append printing

characters to the end of bu�er , and do the appropriate things with editing characters).

CHAR : � INPUT

modify : (STRING � CHAR)" STRING

GetChar

EventUnlocked

�Dialog

input? 2 CHAR

bu�er

0

= modify(bu�er ; input?)

Continue

Here bu�er is the only variable that changes.

When a dialog is done, the dialog box disappears and the console becomes available again.

At any time the user can cancel the dialog and discard the input. To submit the input,

the user presses a terminator key; the program can Accept the input or Reprompt (the user

may also Cancel the dialog).

terminator : � INPUT

Accept

Done

Dialog

input? 2 terminator

34

Reprompt

EventUnlocked

�Dialog

input? 2 terminator

bu�er

0

= empty

Continue

Here again, bu�er is the only variable that changes.

Dialogs are frequently used to edit item values. Combining DialogOp with SelectItem yields

the DialogEdit operation. Dialog box editing begins if the selected item is not a selection

(does not have just a few discrete values). The program captions the dialog box with the

item name and the minimum and maximum valid item values

18

.

MIN == VALUE ;MAX == VALUE

setting info : ITEM �MIN �MAX " CAPTION

DialogEdit

DialogOp

SelectItem

item =2 selection

prompt ! = (let v == valid item � setting info(item;min v ;max v))

The implementation uses the value of op guaranteed by the Editing postcondition of SelectItem

to look up valid item; there are separate valid arrays for dose reg and setting .

When the user presses a terminator key, the program attempts to convert the bu�er contents

to a (numeric) value (non-numeric strings are always converted to an out-of-range value).

If the conversion succeeds and the value is valid for the item, the dialog ends and the item

and its value are reported; otherwise, the program reprompts.

sval : STRING"VALUE

EditSettingC

Accept

item! : ITEM

value! : VALUE

Editing

item! = item

(let v == sval bu�er � v 2 valid item ^ value! = v)

18

The dialog box caption also includes the units, but we do not model this formally.

35

InvalidSetting b= [Reprompt j Editing ^ sval bu�er =2 valid item]

In the implementation it is convenient to combine these two operations

19

.

EditOrInvalidSetting b= EditSettingC _ InvalidSetting

8.2.7 Summary

Table 4 lists the schemas de�ned in the preceding subsections. Underlined names are state

schemas, others are operation schemas.

The table shows the schema inclusion hierarchy. Schemas are indented under the state

schemas they include (for example the SelectDisplay operation and the List state both

include the Available state). State schemas indented at the same level are mutually exclusive

or independent of one another (List and Table are mutually exclusive while List and Setup

are independent). Operation schemas are followed in parentheses by the operation schemas

they include (so DialogEdit includes the SelectItem and DialogOp operations).

The table also shows transition involving certain state variables, especially interaction and

op. Operation schema names are followed by their postconditions, so the postconditions

of the DialogOp include the Dialog state and the postcondition of SelectItem include the

Editing state. Only postconditions that indicate state changes are shown; x

0

= x \no

change" postconditions are not shown. Postconditions are not shown when they can be

inferred from included operations, for example DialogEdit includes both DialogOp and

SelectItem, so its postcondition includes both Dialog and Editing .

The table shows how the program can alternate between Available and Engaged states.

Under Available the DialogOp, MenuOp, and Con�rmOp operations result in Dialog , Menu

and Con�rm, respectively, under Engaged . From there, the Done operations Accept and

Cancel (etc.) return to Available.

The tables shows changes in op: SelectDisplay and Done set op

0

= display

0

, SelectItem sets

op

0

to one of the edit operations. GetChar , the GetArrow operations and Reprompt do not

change op. Other changes to op

0

are determined in the speci�c operations in the application

(below), not these building blocks.

19

In EditOrInvalidSetting , the two outputs item! and value! are not used in the Invalid case.

36

Unlocked

Select

Available

Op

SelectDisplay (Op), op

0

= display

0

= input?

SelectList (SelectDisplay), List

0

SelectTable (SelectDisplay), Table

0

Con�rmOp (Op), Con�rm

0

MenuOp (Op), Menu

0

DialogOp (Op), Dialog

0

List

GetListArrow

SelectName (Select)

Table

GetSettingArrow

Setup

(Table)

SelectItem (Select), Editing

0

, op

0

= edit setting _ op

0

= edit cal

MenuEdit(SelectItem, MenuOp)

DialogEdit(SelectItem, DialogOp)

Running

Engaged

Done, Available

0

, op

0

= display

Cancel (Done)

Con�rm

AcceptCon�rm (Select, Done)

Menu

GetMenuArrow

AcceptMenu (Select, Done)

(Editing)

MenuSettingC (AcceptMenu)

Dialog

GetChar

Accept (Done)

Reprompt

(Editing)

EditOrInvalidSetting (Accept or Reprompt)

Table 4: User interface building blocks

37

8.3 Therapy console operations

In this subsection we present the operations described in [2], in the order their constituent

building blocks appear in Table 4.

Several building block operations require no further elaboration: SelectDisplay , SelectTable,

GetListArrow , GetSettingArrow , Cancel , GetMenuArrow , MenuSettingC , GetChar , and

EditOrInvalidSetting and are already complete. Others require further specialization in the

following subsections.

8.3.1 Relation to Session state

A few Console operations read (but do not change) variables from the Session state (sec-

tion 5). When the Console shows the patient or �eld list, its nlist state variable holds the

patients or �elds from the Session state. This is expressed by the ConsoleSession invariant:

ConsoleSession

Console

Session

display = select patient) nlist = names

display = select �eld) nlist = dom�elds

8.3.2 Op operations

Several operations are based only on Op. They are Continue operations because they do

not involve any ongoing interaction, just a single keypress.

SimpleOp b= Op ^ Continue

Experiment Mode (8.9.6, 190):

ExptModeC

SimpleOp

�Session

�ConsoleSession

Setup

input? = expt mode

operator 2 physicists

38

Auto Setup (8.8.1, 181):

auto setup display == f�eld summary ;�lter wedge; leaf collim; dose intlkg

AutoSetupC

SimpleOp

�ConsoleSession

subsystem! : auto setup display

Setup

�eld 6= no �eld

display 2 auto setup display

input? = auto setup

subsystem! = display

8.3.3 SelectDisplay operations

There are a few simple displays that provide no selections or interactive editing, Field

Summary (8.9.7, 191) and the help display (not discussed in [2]):

simple display == f�eld summary ; helpg

8.3.4 SelectList operations

The specializations of SelectList are Select Patient (8.9.3, 184) and Select Field (8.9.4,

186). The latter operation only makes sense when a patient has been selected:

list = fselect patient ; select �eldg

SelectPatientList

SelectList

�Session

�ConsoleSession

input? = select patient

nlist

0

= names

39

SelectFieldList

SelectList

�Session

�ConsoleSession

patient 6= no patient

input? = select �eld

nlist

0

= dom�elds

8.3.5 SelectTable operations

The table displays are Gantry/PSA (8.9.8, 193), Filter/Wedge (8.9.9, 194), Leaf Col-

limator (8.9.10, 196), Dosimetry/Therapy Interlocks (8.9.11, 199) and Calibration

Factors (8.9.13, 213):

table = fgantry psa;�lter wedge; leaf collim; dose intlk ; dose calg

The constant table items tells which items on each table can be selected for editing or

overriding (additional items may be displayed as well).

table items = fgantry psa 7! fgantry ; collim; turntg;�lter wedge 7! f�lter ;wedge;w rotg;

leaf collim 7! leaves; dose intlk 7! fp dose; p timeg;

dose cal 7! fpt mode; press; temp; d rate; t facgg

It is necessary to separate setting and dose reg items on di�erent tables:

setting table = fgantry psa;�lter wedge; leaf collimg

dose reg table = fdose intlk ; dose calg

Now that these constants are de�ned, the previously de�ned SelectTable operation requires

no further specialization.

8.3.6 Con�rmOp operations

To begin Cancel Run (8.9.11, 209 { 210):

cancel run query : CAPTION

40

SelectCancelRun

Con�rmOp

Running

input? = cancel run

op

0

= input?

query ! = cancel run query

The complementary AcceptCon�rm operation is CancelRunC (below).

8.3.7 MenuOp operations

At this writing there are no simple MenuOp operations, only MenuEdit operations (under

Setup, below).

8.3.8 DialogOp operations

type message prompt ; store �eld prompt : CAPTION

To begin Write Log Message (2.5.1, 17):

TypeMessage

DialogOp

input? = log message

op

0

= input?

prompt ! = type message prompt

To begin Store Field (8.9.5, 189 { 188):

EditField

DialogOp

Setup

input? = store �eld

op

0

= input?

prompt ! = store �eld prompt

These two operations are completed by the complementaryAccept operations,WriteMessageC

and StoreFieldC (below).

41

8.3.9 Setup operations

Under Setup, there are SelectName, SelectItem, MenuEdit and DialogEdit operations.

Select Patient (8.9.3, 184 { 185):

SelectPatientC

SelectName

Setup

display = select patient

Continue

At this writing, SelectPatient is a Continue operation; the patient list remains on the

screen

20

.

SelectField (8.9.4, 186 { 189): There are three cases. The simplest case occurs during ex-

periment mode, or when the chosen �eld has not yet been delivered today and the prescribed

total dose and number of fractions has not yet been exceeded (8.9.4, 187).

NewFieldC

SelectName

ConsoleSession

Setup

display = select �eld

SelectSimpleFieldC

NewFieldC

mode = experiment

_ (counters name! dose = 0 ^ : exceeded(�elds name!; counters name!))

Continue

The more complicated cases arise in therapy mode when the operator must be warned of

some unusual condition (8.9.4, 187-188). These are DialogOp operations. The name of the

new �eld must be stored during the dialog. The operator may enter a preset dose or cancel

the dialog (so no new �eld is selected).

20

We also considered establishing display

0

= select �eld in SelectPatientC . It would not be di�cult to

adopt this alternative later.

42

Console1

ConsoleSession

new �eld : FIELD

new �eld 2 dom�elds

DoseDialogOp

NewFieldC

DialogOp

�Console1

op

0

= select �eld

new �eld

0

= name!

mode = therapy

There are two such cases. The �rst arises when the same �eld has already been delivered

on the same day but the prescribed daily dose has not yet been reached; the remaining dose

is o�ered as the default (8.9.4, 187):

sprintf : VALUE" STRING

delivered prompt : NAME �VALUE �VALUE �VALUE" CAPTION

SelectDeliveredField

DoseDialogOp

counters new �eld

0

dose > 0

: exceeded(�elds new �eld

0

; counters new �eld

0

)

(let d == �elds new �eld

0

dose; c == counters new �eld

0

dose �

(let default dose == d � c �

bu�er

0

= sprintf default dose ^

prompt ! = delivered prompt(new �eld

0

; d ; c; default dose)))

The other case arises when the daily dose, the total dose or the number of fractions has

been exceeded (8.9.4, 188). No default dose is provided.

exceeded prompt : NAME �ACCUMULATION �ACCUMULATION" CAPTION

SelectExceededField

DoseDialogOp

exceeded(�elds new �eld

0

; counters new �eld

0

)

prompt ! = exceeded prompt(new �eld

0

;�elds new �eld

0

; counters new �eld

0

)

bu�er

0

= empty

43

The complete operation is composed of all these cases.

SelectFieldC b= SelectSimpleFieldC _ SelectDeliveredField _ SelectExceededField

After SelectSimpleFieldC , nothing more need be done. SelectExceededField and SelectDeliveredField

are succeeded by the SelectFieldOp state, which is handled by the SelectComplexFieldS op-

eration.

SelectFieldOp

Console1

Dialog

op = select �eld

Override (8.4, 175; 8.8.1, 181; 8.8.2, 183) is also a Con�rmOp operation, enabled only

when a �eld has been selected. The name of the item that the operator selected is echoed

in the con�rmation dialog. To begin Override:

override table == f�lter wedge; leaf collim; gantry psa; dose intlkg

override query : CAPTION " CAPTION

SelectOverride

Con�rmOp

SelectItem

�Session

�eld 6= no �eld

display 2 override table

input? = override cmd

op

0

= input?

query ! = override query(setting info name item)

The complementary AcceptCon�rm operations is OverrideC (below).

Edit: There are three cases. Calibration factors can be edited in experiment mode (8.9.13,

215), preset dose and time can be edited in both modes when a �eld is selected (8.9.11,

201{202), and other preset items can be edited in experiment mode when a �eld is selected

(8.8.1, 180{181; 8.9.8, 194; 8.9.9, 196; 8.9.10, 198).

cal table == fdose calg

dose table == fdose intlkg

preset table == f�lter wedge; leaf collimg

44

CalTable b= [ConsoleSession j mode = experiment ^ display 2 cal table]

The precondition �eld 6= no �eld occurs elsewhere so it is convenient to collect two cases

together.

SettingTable

ConsoleSession

display 2 dose table _ (mode = experiment ^ display 2 preset table)

Finally

SelectCalMenu b= CalTable ^ MenuEdit

SelectCalDialog b= CalTable ^ DialogEdit

SelectSettingMenu b= SettingTable ^ MenuEdit

SelectSettingDialog b= SettingTable ^ DialogEdit

The complementary operations are EditSettingC and MenuSettingC (section 8.2, above).

8.3.10 Cancel operations

There is a special cancel operation for the login process (below) so we have to strengthen

the preconditions on Cancel :

LoggedIn b= [Console j op =2 flogin; passwordg]

CancelOp b= LoggedIn ^ Cancel

8.3.11 AcceptCon�rm operations

To complete Override (8.4, 175; 8.8.1, 181; 8.8.2, 183):

OverrideC

AcceptCon�rm

item! : ITEM

op = override cmd

item! = item

To complete Cancel Run (8.9.11, 209 { 210):

CancelRunC b= [AcceptCon�rm j op = cancel run]

45

8.3.12 Accept operations

To complete Write Log Message (2.5.1, 17). The smessage function turns a string into

a log message by prepending the timestamp and other information.

log msg : STRING"MESSAGE

WriteMessageC

Accept

message! : MESSAGE

op = log message

message! = log msg bu�er

To complete Store Field (8.9.5, 189 { 188)

21

.

sname : STRING"NAME

store msg : NAME"MESSAGE

StoreFieldC

Accept

�eld ! : NAME

message! : MESSAGE

op = store �eld

�eld ! = sname bu�er

message! = store msg �eld !

The complex variants of Select Field (8.9.4, 187{188) are handled by SelectComplexFieldC ,

which is similar to EditSettingC :

SelectComplexFieldC

�Console1

Accept

�eld ! : FIELD

dose! : VALUE

SelectFieldOp

�eld ! = new �eld

(let d == sval bu�er � d 2 valid dose ^ dose! = d)

21

The message! output from StoreFieldC is not mentioned in [2]; here we correct the omission.

46

We have to make the operation total

InvalidDose b= [Reprompt ; �Console1 j SelectFieldOp ^ sval bu�er =2 valid dose]

ComplexOrInvalidField b= SelectComplexFieldC _ InvalidDose

8.3.13 Logout and login

The Login process (Fig. 2.6, 19) can be seen as editing the value of operator . Messages are

logged at logout and login. Logout (2.5.2, 17 { 18; 8.9.2, 184) is is similar to SelectDisplay

and DialogOp; it reads Session for the operator's ID in the logout message.

o msg ; lo msg : OPERATOR"MESSAGE

Logout

Op

�Session

message! : MESSAGE

Setup

input? = login

display

0

= input?

op

0

= display

0

bu�er

0

= empty

message! = lo msg operator

Dialog

0

A successful Login (2.5.2, 17 { 20; 8.9.1, 183) occurs when a user enters a valid operator

identi�cation. The process of logging back in is broken into two steps. In the �rst step, the

user types their username into the bu�er. When the user types a terminator the username

is saved in another bu�er; the Console1 state is Console with this bu�er added

22

. The

console remains logged out after this step. This EnterUsername operation is similar to

Accept and Continue.

Console2

Console

username : STRING

22

The password is also typed into bu�er so the GetChar operation can be used.

47

EnterUsername

�Console2

�Dialog

EventUnlocked

op = login

input? 2 terminator

username

0

= bu�er

bu�er

0

= empty

op

0

= password

display

0

= display

In the second step, the user enters their password. If their username, password pair is found

in operator database, the user is logged in, the help screen is displayed, and the console

becomes available. This LoginC operation is similar to Accept and SelectDisplay .

The operator authorization �le is modelled by Z global constants operators and physicists

(physicists are authorized to use the equipment in its experiment mode, see 8.2, 170). Values

of OPERATOR include the operator's password in addition to the operator's printed name.

USERNAME == STRING ; PASSWORD == STRING

soper : (USERNAME � PASSWORD)"OPERATOR

LoginC

�Console2

EventUnlocked

operator ! : OPERATOR

message! : MESSAGE

op = password

soper(username; bu�er) 2 operators

input? 2 terminator

display

0

= help

op

0

= display

operator ! = soper(username; bu�er)

message! = o msg operator !

Available

0

If the username, password pair is not found in the authorization �le, the console remains

logged out.

48

Unauthorized

�Console2

Reprompt

op = password

soper(username; bu�er) =2 operators

username

0

= username

LoginOrUnauthorized b= LoginC _ Unauthorized

Users may cancel a login attempt while entering their username or password. The login

process begins anew.

CancelUsername

�Console2

�Dialog

EventUnlocked

op 2 flogin; passwordg

input? = cancel

op

0

= login

bu�er

0

= empty

username

0

= empty

display

0

= display

8.3.14 Other operations

Several operations not described in [2] are included for development purposes

23

. They are

always enabled.

Refresh b= [Event j input? = refresh]

Shutdown b= [Event j input? = shutdown]

This concludes our presention of the states and operations in the user interface.

8.3.15 Summary

Table 5 shows all of the top-level operations that the user can invoke, in almost the same

format as the building block operations in Table 4. Some building block operations also

23

Shutdown will not be included in production versions.

49

appear in Table 5; new operations are followed in parentheses by the names of the building

block operations they use.

8.4 Implementation

In [4] we describe how to implement a user interface speci�ed in our style. The method

requires that each operation be expressed as a conjunction of three separate schemas: a

state schema for the preconditions involving the state variables, a state schema for the

preconditions involving the input variable, and an operation schema. From the operation

schemas we have already de�ned, we factor out the following schemas for states and inputs:

Physicist b= [ConsoleSession j operator 2 physicists]

PatientList b= [Console j display = select patient ^ nlist 6= �]

PatientSelected b= [ConsoleSession j patient 6= no patient]

FieldList b= [Console j display = select �eld ^ nlist 6= �]

FieldSelected b= [ConsoleSession j �eld 6= no �eld]

AutoSetupDisplay b= [Console j display 2 auto setup display]

OverrideTable b= [Console j display 2 override table]

MenuItem b= [Console j item 2 selection]

DialogItem b= [Console j item =2 selection]

LoggedOut b= [Console j op 2 flogin; passwordg]

OverrideOp b= [Console j op = override cmd]

CancelRunOp b= [Console j op = cancel run]

LogMessageOp b= [Console j op = log message]

StoreFieldOp b= [Console j op = store �eld]

UsernameOp b= [Console j op = login]

PasswordOp b= [Console j op = password]

Input b= [input? : INPUT]

DisplayKey b= [Input j input? 2 simple display]

PatientKey b= [Input j input? = select patient]

FieldKey b= [Input j input? = select patient]

50

TableKey b= [Input j input? 2 table]

MessageKey b= [Input j input? = log message]

VArrowKey b= [Input j input? 2 v arrow]

SelectKey b= [Input j input? = select]

ArrowKey b= [Input j input? 2 arrow]

ExptModeKey b= [Input j input? = expt mode]

AutoSetupKey b= [Input j input? = auto setup]

StoreFieldKey b= [Input j input? = store �eld]

LoginKey b= [Input j input? = login]

OverrideKey b= [Input j input? = override cmd]

CancelRunKey b= [Input j input? = cancel run]

CancelKey b= [Input j input? = cancel]

CharKey b= [Input j input? 2 CHAR]

TerminatorKey b= [Input j input? 2 terminator]

RefreshKey b= [Input j input? = refresh]

ShutdownKey b= [Input j input? = shutdown]

Table 6 (essentially Table 5 reformatted) expresses the entire user interface in the format

required by our implementation method [4]

24

. The table represents ConsoleOp: all the top

level operations from Table 5 combined into a single operation.

ConsoleOp b= SelectDisplay _ SelectPatientList _ SelectFieldList _ : : : _ IgnoreOthers

IgnoreOthers is the default do-nothing operation.

IgnoreOthers b= [Ignore j : : :]

IgnoreOthers ensures that ConsoleOp is total; its precondition is the negation of the dis-

junction of the preconditions of all the other operations. We do not de�ne this precondition

explicitly; we code the implementation so control reaches IgnoreOthers when no other op-

erations are enabled.

ConsoleOp de�nes a state transition system where each disjunct de�nes a single transition.

Table 6 is the state transition table. There is an entry (row) in the table for each top-level

operation schema. The �rst column names the state precondition, the second column names

24

The L

a

T

E

X source for Table 6 and code skeletons for the implementation (in C) are generated automat-

ically (by sed and awk scripts) from the same text �le.

51

Refresh

Shutdown

Unlocked

Available

SelectDisplay (Op)

SelectPatientList (SelectList)

SelectTable (SelectDisplay)

TypeMessage (DialogOp)

List

GetListArrow

Table

GetSettingArrow

PatientSelected

SelectFieldList (SelectList)

Setup

Logout (similar to SelectDisplay, DialogOp)

ExptModeC (Op)

(List)

SelectPatientC (SelectName)

SelectFieldC (SelectName, DialogOp)

(PatientSelected)

EditField (DialogOp)

(CalTable)

SelectMenuItem (MenuEdit)

SelectDialogItem (DialogEdit)

(FieldSelected)

AutoSetupC (Op)

SelectOverride (SelectItem, Con�rmOp)

(SettingTable)

SelectMenuItem (MenuEdit)

SelectDialogItem (DialogEdit)

Running

SelectCancelRun (Con�rmOp)

Engaged

(LoggedIn)

CancelOp (Cancel)

Con�rm

OverrideC (AcceptCon�rm)

CancelRunC (AcceptCon�rm)

Menu

GetMenuArrow

(Editing)

MenuSettingC (AcceptMenu)

Dialog

GetChar

WriteMessageC (Accept)

ComplexOrInvalidField (Accept or Reprompt)

StoreFieldC (Accept)

(Editing)

EditOrInvalidSetting (Accept or Reprompt)

(LoggedOut)

CancelUsername (similar to Cancel)

EnterUsername (similar to Accept, Continue)

LoginOrUnauthorized (similar to Accept and SelectDisplay , or Reprompt)

Table 5: Therapy operations

52

State precondition Input precondition Operation

0 Z True RefreshKey Refresh

0 Z True ShutdownKey Shutdown

0 Unlocked NoKey NoOp

1 Available DisplayKey SelectDisplay

1 . PatientKey SelectPatientList

1 . TableKey SelectTable

1 . MessageKey TypeMessage

2 List VArrowKey GetListArrow

2 Table ArrowKey GetSettingArrow

2 PatientSelected FieldKey SelectFieldList

2 Setup LoginKey Logout

3 Physicist ExptModeKey ExptModeC

3 PatientList SelectKey SelectPatientC

3 FieldList SelectKey SelectFieldC

3 PatientSelected StoreFieldKey EditField

3 CalTable NoKey NoOp

4 MenuItem SelectKey SelectMenuItem

4 DialogItem SelectKey SelectDialogItem

3 FieldSelected NoKey NoOp

4 AutoSetupDisplay AutoSetupKey AutoSetupC

4 OverrideTable OverrideKey SelectOverride

4 SettingTable NoKey NoOp

5 MenuItem SelectKey SelectMenuItem

5 DialogItem SelectKey SelectDialogItem

2 Running CancelRunKey SelectCancelRun

1 Engaged NoKey NoOp

2 LoggedIn CancelKey CancelOp

2 Con�rm NoKey NoOp

4 OverrideOp SelectKey OverrideC

4 CancelRunOp SelectKey CancelRunC

2 Menu VArrowKey GetMenuArrow

3 Editing SelectKey MenuSettingC

2 Dialog CharKey GetChar

3 LogMessageOp TerminatorKey WriteMessageC

3 SelectFieldOp TerminatorKey ComplexOrInvalidField

3 StoreFieldOp TerminatorKey StoreFieldC

3 Editing TerminatorKey EditOrInvalidSetting

3 LoggedOut CancelKey CancelUsername

3 UserNameOp TerminatorKey EnterUsername

3 PasswordOp TerminatorKey LoginOrUnauthorized

Table 6: Therapy console state transition table

53

the input precondition, and the last column names the operation schema itself. In this table

the operations appear in the same order as they do in Table 5.

In our table, sequence order and nesting level (indicated by indentation and the number in

the �rst column) represent the nesting of states that is expressed in Z by schema inclusion.

A greater nesting level indicates that a table entry is a substate of preceding entries at

lesser nesting levels. The full state precondition of a substate is formed by conjoining the

state preconditions of the preceding entries at lesser nesting levels. For example, the full

state precondition for the SelectPatientC operation is Unlocked ^ Available ^ Setup ^

PatientList . When the �rst column in a row is blank, the substate is the same as the

last preceding nonblank column at the same nesting level: the precondition for the Logout

operation is Unlocked ^ Available ^ Setup. Each line also applies to any included substates,

so DisplayKey elicits the SelectDisplay operation in the Available state, and also in its

substates Setup and Running , and in its sub-substates PatientList and FieldList etc.

The table requires these place holders.

True b= Console

NoOp b= �Console

NoKey b= [Input j false]

9 Combining the subsystems

In this section we combine related operations from the Console, Session and Field subsys-

tems. In cases where no data is transferred between subsystems, we can simply conjoin the

separate operations:

ExptMode b= ExptModeC ^ ExptModeS ^ ExptModeF

Here the conjunction just expresses that the named operations in all three subsystems are

triggered by the expt mode input at the console. In this report both ExptModeC and

ExptModeS contain the precondition operator 2 physicists, but this predicate only needs

to appear once; we include it in both schemas for clarity

25

.

In other cases, data is transferred. For example, in the Override operation, the item! output

from the Console subsystem is consumed by the item? input in the Field subsystem (the

Session subsystem does not participate in this operation). We wish to express

25

In our implementation, we observe the convention that preconditions of combined operations are always

tested in the Console operations. For example operator 2 physicists is tested by code in zconsole.c, not

zsession.c.

54

Override

OverrideC

OverrideF

item! = item?

This can be expressed more concisely using the Z pipe operator pipe, which has the e�ect

of connecting corresponding input and output variables ([7], p. 78)

26

.

Override b= OverrideC >> OverrideF

In Login, the new operator name operator !=operator? is the piped variable.

Login b= LoginC >> LoginS

In EditSetting , both the item name item!=item? and the new setting value value!=value?

are piped:

EditSetting b= EditSettingC >> EditSettingF

Sometimes the output from the Console subsystem is piped to inputs in both the Session

and Field subsystems. In StoreField , the new �eld name �eld !=�eld? is the piped variable:

StoreField b= StoreFieldC >> (StoreFieldS ^ StoreFieldF)

Here the conjunction StoreFieldS ^ StoreFieldF ensures that prescribed

0

in �elds

0

= �elds[

f�eld

0

7! prescribed

0

g from StoreFieldS is the same as prescribed

0

in prescribed

0

= prescribed�

measured : : : from StoreFieldF .

In SelectPatient , the new patient name patient !=patient? is the piped variable (patient?

does not appear in SelectPatientF).

SelectPatient b= SelectPatientC >> (SelectPatientS ^ SelectPatientF)

There are two variations of SelectField . In both variants �eld !=�eld? is piped from the

SelectFieldC variant to SelectFieldS . In the complex variant, dose!=dose? is piped from

SelectComplexFieldS to SelectComplexFieldF .

SelectSimpleField b= SelectSimpleFieldC >> (SelectFieldS ^ SelectSimpleFieldF)

SelectComplexField b= SelectComplexFieldC >> (SelectFieldS ^ SelectComplexFieldF)

26

The Z pipe operator also hides the piped variables.

55

References

[1] Jonathan Jacky, Ruedi Risler, Ira Kalet, and Peter Wootton. Clinical neutron therapy

system, control system speci�cation, Part I: System overview and hardware organization.

Technical Report 90-12-01, Radiation Oncology Department, University of Washington,

Seattle, WA, December 1990.

[2] Jonathan Jacky, Ruedi Risler, Ira Kalet, Peter Wootton, and Stan Brossard. Clinical

neutron therapy system, control system speci�cation, Part II: User operations. Technical

Report 92-05-01, Radiation Oncology Department, University of Washington, Seattle,

WA, May 1992.

[3] Jonathan Jacky and Jonathan Unger. Formal speci�cation of control software for a

radiation therapy machine. Technical Report 94-07-01, Radiation Oncology Department,

University of Washington, Seattle, WA, July 1994.

[4] Jonathan Jacky and Jonathan Unger. From Z to code: A graphical user interface for a

radiation therapy machine. In J. P. Bowen and M. G. Hinchey, editors, ZUM '95: The

Z Formal Speci�cation Notation, pages 315 { 333. Ninth International Conference of Z

Users, Springer-Verlag, 1995. Lecture Notes in Computer Science 967.

[5] Adrian Nye. Xlib Programming Manual. O'Reilly and Associates, Inc., Sebastopol, CA,

1988.

[6] J. M. Spivey. The fuzz Manual. J. M. Spivey Computing Science Consultancy, Oxford,

second edition, July 1992.

[7] J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, New York, second

edition, 1992.

56

A Glossary of items

A.1 Settings

These are the elements of setting :

collim Collimator rotation angle (8.9.8, Fig. 8.5, 193 { 194).

dose Dose per fraction. The prescribed value is the dose prescribed to be delivered from

the current �eld in a single fraction. It is read from the prescription �le, and appears

in the MU column of the �eld list display (Fig 8.3, 186) and the PRESCR column

of the dosimetry display (Fig. 8.8, 199 etc.). The same prescribed values appear in

both the A and B rows of the dosimetry display. The measured value is the dose

accumulated in DMC channel A since it was last reset, in monitor units. It appears in

the ACCUM column in the dosimetry display. The accumulated value is the total dose

accumulated in all treatment runs since the beginning of the day, in monitor units

(8.9.4, 187 bottom half { 188 top half). See also the dose reg element p dose, below.

doseB Dose accumulated in DMC channel B since it was last reset, in monitor units. This

backup to channel A is used internally by the DMC but its only role in our control

program is to be displayed in the ACCUM column in the dosimetry display.

dose tot Total dose intended to be delivered from the current �eld over the entire course

of treatment, in monitor units. The prescribed value is from the prescription �le, and

appears in the Total column of the �eld list display (Fig 8.3, 186). The accumulated

value is the dose actually delivered to date, in monitor units (8.9.4, Fig 8.3, 186; 187

bottom half { 188 top half), and appears in the last To date column on the �eld list

display (Fig 8.3, 186).

�lter Flattening �lter selection (no �lter, small �eld, large �eld) (8.9.9, Fig. 8.6, 194 {

196).

gantry Gantry rotation rotation angle (8.9.8, Fig. 8.5, 193 { 194).

height Couch height position. Table positions are not included in determining ready status,

but may be stored in prescription �le (8.9.8, Fig. 8.5, 193 { 194).

lat Couch lateral position (8.9.8, Fig. 8.5, 193 { 194).

leaf 0; leaf 39 Collimator leaf positions (8.9.10, Fig. 8.7, 196 { 198). There are actually forty

leaves, not just two, but for brevity we omit leaf 1: : leaf 38 from the formal description.

Our leaf 0 has the same valid values as leaf 1 : : leaf 19, and leaf 39 has the same valid

values as leaf 20 : : leaf 38.

57

longit Couch longitudinal position (8.9.8, Fig. 8.5, 193 { 194).

nfrac Intended total number of fractions for this �eld, over the entire course of treatment

(8.9.4, 188). The prescribed value appears in the �rst Fractions column on the �eld list

display (Fig 8.3, 186). The accumulated value is the number of fractions accumulated

for this �eld to date (8.9.4, 187 { 188), and appears in the �rst To date column on the

�eld list display (Fig 8.3, 186).

top Couch top swivel rotation (8.9.8, Fig. 8.5, 193 { 194).

turnt Turntable rotation (8.9.8, Fig. 8.5, 193 { 194).

w rot Wedge rotation (8.9.9, Fig. 8.6, 194 { 199).

wedge Wedge selection (8.9.9, Fig. 8.6, 194 { 199).

A.2 Registers

These are the elements of dose reg :

calvolt1 DMC standard calibration voltage. The calibrated value is read from a �le, while

the computed value is computed from the calibrated value by adjusting by a pressure-

temperature correction factor (8.9.13, 213 { 214). The computed value is actually

loaded into the DMC before each run.

calvolt2 DMC standard calibration voltage, etc.

d rate Nominal dose rate, \dose rate of the day," used to calculate treatment backup time,

p time (8.9.11, 200, last paragraph, 202, second paragraph; 8.9.13, 213, �rst two

paragraphs after bullets). The calibrated value is read from a �le; the computed value

is initialized to the same value but may be edited by the operator.

e time Elapsed time. The calibrated e time is the beam-on time elapsed since the DMC

was last reset, and appears in ACCUM column in dosimetry display (8.9.11, Fig. 8.8,

199 etc.)

p dose Preset dose loaded into the DMC at the beginning of each treatment run. The

computed value is computed by the control program when the �eld is selected and

is usually set equal to the prescribed dose, except (for example) after an interrupted

treatment run. Subsequently it may be edited by the operator (8.9.4, 187 - 188; 8.9.11,

201 { 202). It appears in the PRESET column of the dosimetry display. The same

computed values appear in both the A and B rows of the dosimetry display. See also

the setting elements dose and doseB .

58

p time Preset time, the treatment backup time. The calibrated p time is initially calcu-

lated from preset dose p dose, dose rate d rate, and time factor t fac (8.9.11, 202;

8.9.13, 213); it appears in PRESCR column in dosimetry display (Fig 8.8, 199 etc.).

The computed p time is initially set equal to calibrated p time but may be edited by

the operator (8.9.11, 202; 8.9.13, 213). The computed p time is actually loaded into

the DMC before each run.

press Barometric pressure used to compute pressure/temperature correction factor. The

calibrated value is measured continuously, while the computed value is entered by the

operator (8.9.13, 213 { 214).

pt factor Pressure/temperature correction factor used to compute computed calvolt1 and

computed calvolt2 (8.9.13, 214). The calibrated value is computed from calibrated press

and calibrated tempo measured from sensors, while the computed value is computed

from computed press and computed tempo entered by the operator.

pt mode Pressure/temperator correction factor selection (either automatic or manual) (8.9.13,

214). In automatic mode, computed calvolt1 and computed calvolt2 are calculated from

calibrated pt factor derived from sensor readings, while in manual mode they are cal-

culated from the computed pt factor derived from values entered by the operator.

t fac Treatment time factor (8.9.11, 200, last paragraph, 202, second paragraph; 8.9.13,

213, �rst two paragraphs after bullets). The calibrated value is read from a �le; the

computed value is initialized to the same value but may be edited by the operator.

temp Temperature used to compute pressure/temperature correction factor. The calibrated

value is measured by sensors, while the computed value is entered by the operator

(8.9.13, 213 { 214).

59

B Groups of items

cal const Calibration constants stored in �les: d rate, t fac, calvolt1 and calvolt2 (8.9.13,

213).

counter Items whose actual values increase during a treatment run (such as dose) or over

the entire course of treatment (such as the number of fractions nfrac and total dose

dose tot). Domain of accumulated in Field . Counters in prescr can only be ready

when their accumulated values are less than their prescribed values. The only three

counters are dose, n and dose tot .

dose reg Calibration factors and other items related to the dosimetry system which are

not stored prescription �les. Some are stored in calibration �les, others are computed

or entered by the operator. Domain of calibrated and computed in Field . They are

pt mode, pt factor , press, temp, d rate, t fac, calvolt1, calvolt2, p dose, p time,

and e time.

motion Settings that represent internal or external motions (for example, wedge rotation

and gantry rotation, respectively). Each motion is either enabled or disabled (8.5,

bottom 176 { top 177). The domain of drive in Intlk . They are all the leaves including

leaf 0 and leaf 39, the �lter settings wedge, w rot , �lter , the rotations gantry , collim,

turnt , and the linear table motions height , lat and long .

prescrip Settings whose values are read from the prescription �le for the selected patient and

�eld. Subsequently, some may be edited by the operator. The domain of prescribed

in Field . They are all the motions and all the counters (8.2, 171, third bullet).

prescr Settings whose prescribed values are checked against measured values in therapy

mode. The domain of status in the Intlk schema. Same as prescrip except it excludes

the three linear table motions, height , lat and long .

preset Settings whose values are read from the �le of presets for the selected experiment

�eld. They include only the leaves and the �lter settings, omitting the external mo-

tions and the counters.

scale Items that vary continuously over some range, such as leaf position or gantry rotation.

Scales in prescr are ready when their measured values lie within tolerance of their

prescribed values. The domain of the global function tol . They include all the motions

except the �lter settings, and all the registers except the pressure-temperature factor

correction mode.

selection Items that only take on discrete values, such as
attening �lter selection. Selec-

tions are ready only when their measured values are exactly equal to their prescribed

values. They are the three �lter selections �lter , wedge, and w rot and the pressure-

temperature factor correction mode pt mode.

60

sensor Settings whose values are measured by sensors. Domain of function measured in

Field schema. They are all the settings except the two counters nfrac and dose tot .

setting All the items stored in the prescription database, with doseB and top as well.

This information is summarized in Table 7.

61

ITEM setting d reg : cal : prescrip prescr preset motion scale sel : counter

nfrac � � � �

dose tot � � � �

dose � � � �

wedge � � � � � �

w rot � � � � � �

�lter � � � � � �

leaf 0 � � � � � �

leaf 39 � � � � � �

gantry � � � � �

collim � � � � �

turnt � � � � �

lat � � � �

longit � � � �

height � � � �

doseB �

top �

pt mode � �

pt factor �

press �

temp �

d rate � �

t fac � �

calvolt1 � �

calvolt2 � �

p dose �

p time �

e time �

Table 7: Groups of items

62

C Types and constants

This appendix collects together the types and constants that de�ne the system con�guration.

C.1 Settings and registers

From section 3.1.

ITEM ::= nfrac j dose tot j dose j wedge j w rot j �lter j leaf 0 j leaf 39 j

gantry j collim j turnt j lat j longit j height j doseB j top j

pt mode j pt factor j press j temp j d rate j t fac j

calvolt1 j calvolt2 j p dose j p time j e time

setting ; dose reg : � ITEM

hsetting ; dose regi partition ITEM

dose reg = fpt mode; pt factor ; press; temp; d rate; t fac;

calvolt1; calvolt2; p dose; p time; e timeg

scale; selection; counter : � ITEM

hselection; scale; counteri partition ITEM

counter = fnfrac; dose tot ; doseg

selection = fwedge;w rot ;�lter ; pt modeg

leaves == fleaf 0; leaf 39g

preset == leaves [fwedge;w rot ;�lterg

motion == preset [fgantry ; collim; turnt ; lat ; longit ; heightg

prescrip == motion [counter

prescr == prescrip n flat ; longit ; heightg

sensor == setting n fnfrac; dose totg

cal const == fd rate; t fac; calvolt1; calvolt2g

63

C.2 Values

From section 3.2.

VALUE == �

blank : VALUE

tol : scale" VALUE

valid : ITEM "�VALUE

8 s : ITEM � blank =2 valid s

C.3 Prescription database

From section 4.

[NAME]

PATIENT == NAME ; FIELD == NAME

no name : NAME

no patient == no name; no �eld == no name

studies; patients : �PATIENT

no patient =2 studies ^ no patient =2 patients

ACCUMULATION == counter"VALUE

PRESCRIPTION == prescrip"VALUE

Preset : studies" (FIELD� PRESCRIPTION)

Prescribed : patients" (FIELD� PRESCRIPTION)

Accumulated : patients" (FIELD�ACCUMULATION)

8 s : studies � no �eld =2 dom(Preset s)

8 p : patients � no �eld =2 dom(Prescribed p) ^ dom(Prescribed p) = dom (Accumulated p)

exceeded : �(ACCUMULATION � PRESCRIPTION)

8 counters : FIELD�ACCUMULATION ; �elds : FIELD� PRESCRIPTION �

exceeded(counters;�elds) , (9 c : counter � counters c � �elds c)

64

C.3.1 Operators

From section 4.1.

[OPERATOR]

operators; physicists : �OPERATOR

physicists � operators

C.4 Session

From section 5.

MODE ::= therapy j experiment

C.5 Field

From section 6.

automatic;manual : VALUE

cal factor : cal const"VALUE

PRESSURE == VALUE ; TEMPERATURE == VALUE

DOSE == VALUE ; RATE == VALUE ; FACTOR == VALUE ; TIME == VALUE

t backup : (DOSE � RATE � FACTOR)� TIME

pt formula : (PRESSURE � TEMPERATURE)� FACTOR

65

C.6 User interface

From section 8.

[CAPTION ;MESSAGE]

alert : CAPTION

ocaption : OP" CAPTION

RUN ::= setup j running

KEYSWITCH ::= locked j unlocked

INTERACTION ::= available j dialog j menu j con�rm

INPUT ::= �lter wedge j leaf collim j dose intlk j gantry psa j dose cal j

startup j help j messages j select patient j select �eld j �eld summary j

login j edit setting j edit dose reg j log message j store �eld j override cmd j

cancel run j password j auto setup j expt mode j cancel j refresh j shutdown j

select j ret j character j backspace j delete key j

left arrow j right arrow j up arrow j down arrow j ignored

OP : � INPUT

OP = f�lter wedge; leaf collim; dose intlk ; gantry psa; dose cal ;

startup; help;messages; select patient ; select �eld ;�eld summary ;

login; edit setting ; edit dose reg ; log message; store �eld ; override cmd ; cancel run;

password ; auto setup; expt mode; cancel ; refresh; shutdown; selectg

DISPLAY : �OP

DISPLAY = f�lter wedge; leaf collim; dose intlk ; gantry psa; dose cal ;

startup; help;messages; select patient ; select �eld ;

�eld summary ; loging

66

list ; table : �DISPLAY

default item : table" ITEM

table items : table"� ITEM

setting table; dose reg table : � table

8 d : table � default item d 2 table items d

8 d : setting table � table items d � setting

8 d : dose reg table � table items d � dose reg

v arrow == fup arrow ; down arrowg

arrow == fright arrow ; left arrowg [v arrow

asetting : (arrow � ITEM � table)" ITEM

aname : (v arrow �NAME � �

1

NAME)" NAME

8 a : arrow ; s : ITEM ; d : table � asetting(a; s; d) 2 table items d

8 a : v arrow ; n : NAME ; list : �

1

NAME � aname(a;n; list) 2 list

nmax :

SELECTION == fi :
 j i � nmaxg

default selection : SELECTION

MIN == VALUE ;MAX == VALUE

setting info name : ITEM " CAPTION

setting value : selection" iseq

1

CAPTION

setting info : ITEM �MIN �MAX " CAPTION

8 s : selection � dom (setting value s) = valid s

[STRING]

empty : STRING

CHAR : � INPUT

terminator : � INPUT

sprintf : VALUE" STRING

modify : (STRING � CHAR)" STRING

67

C.6.1 Therapy console operations

From section 8.3.

log msg : STRING"MESSAGE

o msg ; lo msg : OPERATOR"MESSAGE

selected msg ; store msg : NAME"MESSAGE

cancel run query : CAPTION

override query : CAPTION " CAPTION

type message prompt ; store �eld prompt : CAPTION

delivered prompt : NAME �VALUE �VALUE �VALUE" CAPTION

exceeded prompt : NAME �ACCUMULATION �ACCUMULATION" CAPTION

USERNAME == STRING ; PASSWORD == STRING

soper : (USERNAME � PASSWORD)"OPERATOR

list = fselect patient ; select �eldg

table = fgantry psa;�lter wedge; leaf collim; dose intlk ; dose calg

setting table = fgantry psa;�lter wedge; leaf collimg

dose reg table = fdose intlk ; dose calg

table items = fgantry psa 7! fgantry ; collim; turntg;�lter wedge 7! f�lter ;wedge;w rotg;

leaf collim 7! leaves; dose intlk 7! fp dose; p timeg;

dose cal 7! fpt mode; press; temp; d rate; t facgg

simple display == f�eld summary ; helpg

auto setup display == f�eld summary ;�lter wedge; leaf collim; dose intlkg

override table == f�lter wedge; leaf collim; gantry psa; dose intlkg

cal table == fdose calg

dose table == fdose intlkg

preset table == f�lter wedge; leaf collimg

68

D States and invariants

D.1 Session

From section 5.

SessionVars

mode : MODE

operator : OPERATOR

patient : PATIENT

�eld : FIELD

names : �PATIENT

�elds : FIELD� PRESCRIPTION

counters : FIELD� ACCUMULATION

operator = no operator _ operator 2 operators

mode = experiment) operator 2 physicists

names = if mode = therapy then patients else studies

NoPatient

SessionVars

patient = no patient

�eld = no �eld

�elds = �

counters = �

PrescribedPatient

SessionVars

patient 6= no patient

patient 2 names

�eld = no �eld _ �eld 2 dom�elds

�elds = if mode = therapy then Prescribed patient else Preset patient

mode = therapy) counters = Accumulated patient

Session b= PrescribedPatient _ NoPatient

69

InitSession

NoPatient

mode = therapy

operator = no operator

D.2 Field

From section 6.

Field

prescribed : PRESCRIPTION

accumulated : ACCUMULATION

measured : sensor"VALUE

overridden : prescr�VALUE

computed ; calibrated : dose reg" VALUE

PrescribedField

Field

Session

�eld 6= no �eld

mode = therapy) prescribed = �elds �eld

no prescrip == (� p : prescrip � blank)

no counter == (� c : counter � blank)

no dose reg == (� d : dose reg � blank)

no dose == fp dose 7! blank ; p time 7! blankg

NoFieldF

Field

prescribed = no prescrip

accumulated = no counter

no dose � computed

overridden = �

70

NoFieldS b= [Session j �eld = no �eld]

NoField b= NoFieldF ^ NoFieldS

FieldSession b= PrescribedField _ NoField

InitField

NoFieldF

computed = calibrated = no dose reg � cal factor

E User interface

From section 8.

Console

keyswitch : KEYSWITCH

run : RUN

display : DISPLAY

op : OP

interaction : INTERACTION

item : ITEM

nlist : �NAME

list item : NAME

menu item : SELECTION

bu�er : STRING

InitConsole

Console

op = login

display = login

interaction = dialog

bu�er = empty

ConsoleSession

Console

Session

display = select patient) nlist = names

display = select �eld) nlist = dom�elds

71

Console1

Console

new �eld : FIELD

new �eld 2 dom�elds

Console2

Console

username : STRING

72

F Reference material

Field �eld

Fractions prescribed n

To date accumulated n

MU prescribed dose

Total prescribed dose tot

Expected accumulated n � prescribed dose

To date accumulated dose tot

Table 8: Settings and values in the �eld list display

SETTING PRESCR PRESET ACCUM

DOSE A prescribed dose computed p dose measured dose

DOSE B prescribed dose computed p dose measured doseB

TIME calibrated p time computed p time calibrated e time

Table 9: Settings and values in the dosimetry display

MEASURED/CALIBRATED ADJUSTED

P/T MODE computed pt mode (automatic=manual)

PRESSURE calibrated press computed press

TEMPERATURE calibrated temp computed temp

P/T CORR. calibrated pt factor computed pt factor

CALVOLT 1 calibrated calvolt1 computed calvolt1

CALVOLT 2 calibrated calvolt2 computed calvolt2

DOSE RATE calibrated d rate computed d rate

TIME FACTOR calibrated t fac computed t fac

Table 10: Dosimetry calibration display

73

State precondition Input precondition Operation

0 Z True RefreshKey Refresh

0 Z True ShutdownKey Shutdown

0 Unlocked NoKey NoOp

1 Available DisplayKey SelectDisplay

1 . PatientKey SelectPatientList

1 . TableKey SelectTable

1 . MessageKey TypeMessage

2 List VArrowKey GetListArrow

2 Table ArrowKey GetSettingArrow

2 PatientSelected FieldKey SelectFieldList

2 Setup LoginKey Logout

3 Physicist ExptModeKey ExptModeC

3 PatientList SelectKey SelectPatientC

3 FieldList SelectKey SelectFieldC

3 PatientSelected StoreFieldKey EditField

3 CalTable NoKey NoOp

4 MenuItem SelectKey SelectMenuItem

4 DialogItem SelectKey SelectDialogItem

3 FieldSelected NoKey NoOp

4 AutoSetupDisplay AutoSetupKey AutoSetupC

4 OverrideTable OverrideKey SelectOverride

4 SettingTable NoKey NoOp

5 MenuItem SelectKey SelectMenuItem

5 DialogItem SelectKey SelectDialogItem

2 Running CancelRunKey SelectCancelRun

1 Engaged NoKey NoOp

2 LoggedIn CancelKey CancelOp

2 Con�rm NoKey NoOp

4 OverrideOp SelectKey OverrideC

4 CancelRunOp SelectKey CancelRunC

2 Menu VArrowKey GetMenuArrow

3 Editing SelectKey MenuSettingC

2 Dialog CharKey GetChar

3 LogMessageOp TerminatorKey WriteMessageC

3 SelectFieldOp TerminatorKey ComplexOrInvalidField

3 StoreFieldOp TerminatorKey StoreFieldC

3 Editing TerminatorKey EditOrInvalidSetting

3 LoggedOut CancelKey CancelUsername

3 UserNameOp TerminatorKey EnterUsername

3 PasswordOp TerminatorKey LoginOrUnauthorized

Table 11: Therapy console state transition table

74

