SYSTEMS PROGRAMMING
IN PYTHON - WEEK ©

ASYNCHRONOUS NETWORK 1/0

Brian Dorsey
brian@dorseys.org

mailto:brian@dorseys.org
mailto:brian@dorseys.org

why do we care?

if you need lots of
simultaneous connections

chat
Service proxies
slow clients
anything that takes a while

big topic
&

I'm a newbie

the solutions in this talk are
only effective it your
applicaion is I/O bound

CPU bound problems will need different solutions, processes, multiple computers, etc...

of course, once you try to get them all talking to each other...
you have network I/O bound problems again. :)

telephone analogy

dNSWer

ask someone to get get info (they walk
across the building and back)

relay answer

hang up

el

el l :
LA 7 s e e -

blocking I/O

we’ve got a fantastic phone system, it can handle thousands of incoming calls, easily
we have 1 person answering the phones

what if you need to handle
more than one client?

threads
(& thread pools)

Django, CherryPy, etc
(mod_wsgi uses processes
and threads)

GIL?

(or... the internet says
Python can’t do real
threading)

this scales up
pretty darn well

emember my apache bench stats last quarter?

except when it doesn't

what if we get more traffic
than we can handle?

just keep adding people to answer phones

as long as each conversation
is short, we're OK

what if we need to ask a
question which takes a
while to answer?

as the conversations get
longer, we're tying up
resources even when we’re
not actively working

and eventually, we run out of space for more people to answer the phones

“Tt's time for web servers to handle ten thousand
clients simultaneously, don't you think? After all,
the web is a big place now.

And computers are big, too. You can buy a
1000MHz machine with 2 gigabytes of RAM and

an 1000Mbit/sec Ethernet card for $1200 or so. Let's
see - at 20000 clients, that's 50KHz, 100Kbytes, and
50Kbits/sec per client. It shouldn't take any more

horsepower than that to take four kilobytes from
the disk and send them to the network once a
second for each of twenty thousand clients. <...>
So hardware is no longer the bottleneck.”

Note the dated specs... this was said a *while* ago! http://www.kegel.com/cl1lOk.html

http://www.kegel.com/c10k.html
http://www.kegel.com/c10k.html

why does this happen?

slow clients

nature of the problem

(think chat applications, or
messaging servers)

something else is slow,
and you need to wait on it

networks are always ‘slow’, so DB and other service requests add up

until recently, most of us

didn’t need to worry about
this stuft

real time web, chat, events,
live updates are getting
more and more common

soon they’ll be expected
everywhere

= - .

TN S e

ey T
e D e e

12NOoring:
hardware interrupts

I/O callback functions
[/O completion ports

http://en.wikipedia.org/wiki/Asynchronous I/0

http://en.wikipedia.org/wiki/Asynchronous_I/O
http://en.wikipedia.org/wiki/Asynchronous_I/O

threads

(OS threads)

user threads

(lightweight threads)

select loop

e give list of file descriptors, block until
one is ready

e slows down if hundreds or thousands
of file descriptors

epoll, kqueue

e same as select loop, but only returns the
file descriptors which are ready

e fast even with many thousands of (idle)
file descriptors

these work only as long as
we're blocking on I/O

analogy - if the operator needs to do work themselves, all calls are slowe

d down

for both select and epol],
we have a main event loop

being programmers, the
next step is to add
abstraction layers

loop with inline code?

a reactor which owns the
loop and calls methods on
our objects?

register callbacks with the
loop to handle each
connection?

use coroutine magic to write
code which looks like it
blocks, but really hands
execution off to the loop
with a way to jump back
when ready?

all of those and more

wait, what’s a coroutine?

subroutines are called, then exit

coroutines call each other

Python generators are limited coroutines

el

el l
e
W 4

-

e e

there are tar, ftar
too many to cover

remember the echo server?

this is blocking I/O

1 operator answering the phones, getting answers, etc

aysyncore

e stdlib
e handles the select loop for you

e you subclass an object, create handers
to do the work

http://docs.python.org/library/asyncore.html

http://docs.python.org/library/asyncore.html
http://docs.python.org/library/asyncore.html

twisted

the original async framework in Python
large, etficient, steep learning curve
twisted

callback style programming, with
deferreds to keep things clean

if you already understand JavaScript
callbacks and jQuery detferreds, you
won’t be confused

http://twistedmatrix.com/trac/

http://twistedmatrix.com/trac/
http://twistedmatrix.com/trac/

gevent

e best of both worlds: "What you get is all
the performance and scalability of an
event system with the elegance and
straightforward model of blocking 10O
programing.”

* uses greenlets to cooperatively swap
state and switch between functions

http://www.gevent.org/

http://www.gevent.org
http://www.gevent.org

e e R R R e S Tt

if you have a c10k problem,
you probably need
async 1I/O

async I/O is really just:

do one thing at a time, very

quickly

there are a bunch of ways to
implement the async part,
with different trade ofts

there are a bunch of
abstractions to make it
easier to understand
async code

this whole talk is only
relevant when you're

I/O bound

el

el l :
LA 7 s e e -

