
Experience with ZDeveloping a Control Program for aRadiation Therapy MachineJonathan Jacky �, Jonathan Unger, Michael Patrick and Ruedi RislerRadiation OncologyBox 356043University of WashingtonSeattle, WA 98195-6043Submitted to:ZUM '97 Tenth International Conference of Z UsersSeptember 19, 1996
AbstractWe are developing a control program for a unique radiation therapy machine. Theprogram is safety-critical, executes several concurrent tasks, and must meet real-timedeadlines. Development employs both formal and traditional methods: we produce aninformal speci�cation in prose (supplemented by tables, diagrams and a few formulas)and a formal description in Z. The Z description includes an abstract level that expressesoverall safety requirements and a concrete level that serves as a detailed design, whereZ paragraphs correspond to data structures, functions and procedures in the code. Wevalidate the Z texts against the prose speci�cation by inspection. We derive most of thecode from the Z texts by intuition and verify it by inspection but a small amount of codeis derived and veri�ed more formally. We have produced about 250 pages of informalspeci�cation and design description, about 1200 lines of Z and about 6000 lines of code.Experiences developing a large Z speci�cation and writing the program are reported,and some errors we discovered and corrected are described.�email jon@radonc.washington.edu, telephone (206)-548-4117, fax (206)-548-6218

c1996 by Jonathan Jacky, Jonathan Unger, Michael Patrick and Ruedi RislerThis work may not be copied or reproduced in whole or part for any commercial purpose.Permission to photocopy in whole or part without payment of fee is granted for nonpro�teducational and research purposes provided that all such copies include the following notice:a notice that such copying is by permission of the authors; an acknowledgment of the authorsof the work; and all applicable portions of this copyright notice. All rights reserved.

1 IntroductionThis paper reports on the development of the control program for the therapy operator'sconsole for a unique radiation therapy machine, including our use of formal methods withthe Z notation.(Authors' note to reviewers: At this writing (August 1996) the program is not yet completeand has not been placed in clinical use. We hope to have data from acceptance testing andclinical use in time for the �nal paper submission or the meeting itself.)2 PurposeThis was not a pilot study or demonstration project. The purpose of the project was todevelop the program that we will use to administer neutron therapy at our clinic. Weanticipate using this program (or similar versions) for at least ten years, with more than athousand patients.The purpose of the therapy console program is to help ensure that patients are treated cor-rectly, as directed by their prescriptions. The treatment console computer stores a databaseof prescriptions for many patients. Each patient's prescription usually includes several dif-ferent beam con�gurations called �elds. Each �eld is de�ned by about �fty machine settings(positions, dose etc.) that must be set properly to deliver the prescribed treatment. Theconsole program enables the therapist to choose �elds from the prescription database. Theprogram sets some settings automatically, but others (external motions that present col-lision hazards) must be set manually by the therapist. The program checks all settingsagainst the prescription and ensures that the radiation beam can only turn on when thecorrect settings for the chosen �eld have been achieved (subject to override by the therapistfor some settings in some circumstances). The therapist can turn on the therapy beam (bya separate nonprogrammable mechanism) after the program indicates that the machine isready.The program provides a user interface (so the therapist can select prescriptions and viewmachine status) and controls devices. Low-level device control (such as turning the beamon and o� and guiding machine motions) is performed by other nonprogrammable mech-anisms, programmable logic controllers (PLC's), and simple embedded computers. Thetherapy console program provides some of these low-level controllers with endpoints (suchas positions and doses), and it enables (or disables) motions and activation of the beam.This program is just one component of a large control system that includes other pro-1

grams, several computers and many non-programmable elements (for example, interlocksimplemented in \hard-wired" relay logic). The delegation of functions among the softwareand hardware components was a prerequisite to the work discussed here and is describedelsewhere [9, 10].2.1 SafetyThe program is safety-critical because it could contribute to delivering a treatment thatdi�ers from the prescribed one, irradiating the wrong volume within the patient or deliver-ing the wrong dose. We rely on nonprogrammable mechanisms (physical machine design,hardware interlocks, etc.) to establish generic safety conditions that are the same for everytreatment and do not depend on the prescription. Moreover, therapists can visually checkmost settings before they turn on the therapy beam. However, we have to place some re-liance on our program to establish and check some safety conditions that are di�erent foreach prescription, including �eld shape and dose.In our machine the physical design (not the control program) limits the radiation doseto medically reasonable values. In this respect our machine di�ers from the radiationtherapy machines that delivered severe overdoses in several computer-related accidents [16].However we do rely on the control program to set and monitor the positions of several �eldshaping �lters in the treatment head which are practically invisible to the therapists andare downstream from the machine's internal dose monitors. Errors in these functions couldcontribute to delivering doses up to three times larger or smaller than prescribed, whichcould result in treatment failure or serious complications.2.2 ConcurrencyThe program must cope with concurrency because it handles multiple devices: several low-level controllers and the therapist's console terminal. The program may have to wait forinput from one or more of these devices at the same time that it must be proceeding withother activities. Moreover, some devices (including the console) can signal unsolicited eventsthat demand a prompt response.2.3 Real timeThe system is designed so the most stringent timing requirements are met by hardwareor by embedded computers which are only indirectly controlled from the therapy console.2

The therapy control program itself has no hard real-time requirements, although it shouldrespond to most events (by updating the display or sending commands to controllers) rea-sonably promptly (within a few tenths of a second). There are also some timeouts andexpirations with deadlines ranging from tenths of seconds to hours.2.4 PlatformThe therapy console program runs on a commercially available microcomputer and was cre-ated using an embedded software development product [2]. There is no separate operatingsystem nor any other software on the therapy console microcomputer other than the controlprogram. The programming language is a proprietary Pascal dialect that provides supportfor multiprocessing and device control [3].The user interface (display and keyboard) is handled by the X window system [20], pro-grammed using Xlib [18] only. The therapy console terminal is an X terminal that is notrunning a window manager nor any other applications.2.5 Clinical environmentThe program we developed is a replacement for an older therapy console program that wasdeveloped by the therapy machine manufacturer and has been in use since the machinewas installed in 1984 [19]. The therapy machine is not a conventional linear acceleratorthat provides electron and X-ray beams; it uses a cyclotron to produce a neutron beam.It has an excellent record of safety and reliability [15] and produces better clinical resultsthan conventional machines for some cancers. The computer controls are an essential partof the system and have had dramatic clinical impact because complex shaped �elds arenecessary to avoid unacceptable complications in neutron therapy [1]. This unique machineis maintained and upgraded by our department, not the manufacturer.Although our program replaces an earlier program that had to meet similar requirements,it is entirely new. It presents a di�erent user interface to the therapist, and some of theequipment that it controls has also been changed (the hardware changes were made whilethe software development project was underway). The new program runs on a di�erentcomputer and uses a di�erent programming language and system software. There is noreuse of code, design or speci�cations from the earlier program. In fact we have no detailedspeci�cation or design for that program; we believe that reconstructing them would haverequired almost as much work as designing the new program.The original program has worked well, but when it was �rst delivered the manufacturer had3

to make many revisions at our site to correct errors and improve usability before it couldbe used clinically. It took several months. This time we will not have the opportunity toremove the machine from clinical service for an extended debugging period.3 Method3.1 Personnel and project managementThe project was performed by the authors, who are full-time technical sta� members inthe Radiation Oncology department, a clinical department at the University of WashingtonMedical Center. All have advanced degrees and had years of experience with radiationtherapy, accelerator engineering or software development before joining the project. Nonehad experience with formal methods before this project.Risler is chief engineer of the facility and and is responsible for the overall system. Thesoftware was developed by a team of two people (Jacky throughout, working with Unger,then Patrick). We have full technical responsibility for the project; there is no separatequality assurance group or certifying body.3.2 Programming methodologyThe formal methods we used in this project are not a new or radical approach for us.They are an incremental improvement that �ts well into a method of working that we haveused for many years on other projects (we prefer to call it a \method of working" because\development method" or \methodology" often connotes the use of a particular notationand design technique; we choose notations and techniques according to the needs of eachproject).Our method is to consider carefully what the program's capabilities should be and how itshould work, record our decisions in documents, and then write the program itself fromthe contents of the documents. The primary quality assurance method is to review thedocuments, and review the code against the documents. An essential feature of the methodis our willingness to rewrite or discard documents and code that seem unclear or overlycomplicated, whether or not we discover any errors [14]. We also test thoroughly from awritten test plan [13], but testing is not our primary quality assurance technique; we havefound that it is a waste of time to test code that has not passed review.4

Formal notations (mathematical and logical formulas) are not an essential element of ourmethod. Our choice of notation is pragmatic: we use whatever mix of prose, formulas,tables and diagrams best support review and code development. The therapy console is the�rst project where we have used a formal notation that can be checked by machine (otherthan the code itself).The particular set of documents we produce is usually di�erent for each project. Documentsare usually not written and completed in sequence; most documents are begun early in theproject and are revised at frequent intervals as the project proceeds.Besides documents, we also create prototype programs to demonstrate to the users and tobecome familiar with the platform and programming environment. Prototypes may not bedocumented or reviewed and are eventually discarded.The following subsections describe the products (documents and code) we produced for thisproject.3.2.1 Informal speci�cationThe informal speci�cation [9, 10, 7] describes the system in prose, diagrams, tables anda few formulas. It is explicit and very detailed. The authors and reviewers of these doc-uments include the physicist who de�ned the physical and clinical requirements for theoriginal machine, engineers who installed and maintain the machine, and clinical users ofthe machine. These documents are the only products of the development that were written(in part) and reviewed by users who are not software developers. They comprise the realspeci�cation in this project because they record what the machine's users require from thesoftware developers.3.2.2 Formal descriptionWe created a formal description [8] in Z notation [22]. The Z texts express a detailed design.We used Z to discover the design, not just to document an already existing design. Thereare few descriptions of other therapy control systems (see [16, 23]) and these do not provideenough detail to serve as examples. We had to create our own. We used no other designnotation (except prose).It is a bit misleading to call the Z texts a speci�cation; the prose documents are that. Theformal texts are actually a model (a simpli�ed, abstracted representation) of portions of thecontrol program itself. Z variables correspond to program variables and data structures,5

Z operation schemas correspond to procedures, etc. The model is very detailed: eachX window system event (including every keystroke) and transmission or receipt of everymessage to or from a controller is modelled by a Z operation schema. Some samples fromthe Z texts appear in section 4.5 below.The informal speci�cations are su�ciently explicit and detailed to determine the requiredbehaviors, but they are intended to support comprehension and review by the users, notto guide programming. Therefore, we (software developers) created the formal descriptionexclusively for our own use, to guide coding and review. We use it as a kind of documenta-tion; we were attracted by the conciseness and expressivity of the formal notations; we didnot anticipate doing proofs or formally deriving code.The formal description was written to facilitate review. In our report [8] each Z paragraph isaccompanied by prose commentary that includes cross references to pertinent section, pagenumbers (and often paragraph and line numbers) in the informal speci�cation (chapter 8in [10]). The report also contains a glossary that identi�es Z variables with items describedin the informal speci�cation.We examined our Z texts with a type checker [21]. We also tried a well-formednesschecker [17] (which checks for unde�ned expressions).Jacky made the decision to produce a formal description when the informal speci�cationwas already partly written. He learned Z for this purpose and wrote most of the formaldescription. Unger and Patrick joined the project later; both learned Z on the job and alsocontributed to the formal description.3.2.3 Implementation guideWe wrote a document that describes how we implemented the program [12]; it contains ad-ditional information that is needed to review the code. It explains our use of the platform'ssystem software, nonstandard extensions in the programming language, the X window sys-tem, and describes some of our programming techniques. It names and describes eachprogram source �le and explains the dependencies between �les.3.2.4 CodeAll software developers wrote code from Z speci�cations. We derived most of the codedirectly from the Z texts by intuition and veri�ed it by inspection, without any intermediateformal re�nement steps. Z variables were implemented by program variables and data6

structures, Z operation schemas were implemented by procedures, etc. The Z texts werewritten to make these translations obvious. We wrote down post hoc correctness argumentsin a few cases where the intuitive derivation was not obvious to all.In one instance we did a formal derivation of about one page of code from the speci�cation(see [11], also section 4.1.3 below).3.2.5 TestsWe perform tests by following instructions in written test plans called scripts that describeexactly to how the execute the program and what the results should be (example scriptsfrom another project appear in [13]). We script three kinds of tests: Functional testsattempt to cover the speci�cation in some systematic way. Stress tests check the program'sresponse to erroneous or unusual conditions involving hardware and �les. Acceptance testsare simulated treatment sessions (with no patient) that rehearse both typical and unusualclinical situations.Before the program was complete, each of us compiled and executed code, discovered errors,and made corrections ad lib. This activity was not scripted or recorded.4 Results4.1 ProductsWe wrote about 250 pages of pertinent informal speci�cation and design description, about1200 lines of Z and about 6000 lines of code1. Table 1 reports the exact sizes of theproducts (documents and code) described in subsections 3.2.1 through 3.2.5. The followingsubsections describe each product.4.1.1 Informal speci�cationThe informal speci�cation comprises three separate documents. Part I [9] is an overviewand summary, Part II [10] speci�es the user interface, and Part III [7] describes hardwareinterfaces and external �le formats. They are 106, 235 and 131 pages long, respectively (111Our estimates for the completed project. Table 1 reports the sizes at this writing.7

PRODUCT SIZEInformal speci�cation: overview, entire facility [9] 106 pagesInformal speci�cation: user interface, entire facility [10] 235 pagesInformal speci�cation: user interface, therapy only (in [10]) 45 pagesInformal speci�cation: hardware and �les, therapy only [7] 131 pagesFormal description (Z texts) [8] 77 pages (1137 lines)Implementation Guide [12] 42 pagesProgram code 4786 lines (41 �les)Test scripts 35 pagesTable 1: Development products (documents and code)point type, single spaced). Parts I and II describe the entire system including the cyclotron;the therapy console user interface is described in a single 45-page chapter in Part II (thiscan also serve as the users' reference manual). All of Part III is devoted to the therapyconsole.4.1.2 Formal descriptionThe formal description [8] expresses the therapy console behaviors described in the informalspeci�cation [10, 7]. Some samples from the Z texts appear in section 4.5 below.There are 176 pages of relevant informal description, but most of the formal description fo-cusses on only 45 pages (chapter 8 only in [10]). The formal description comprises 1137 linesof Z (207 paragraphs, including 131 schema de�nitions), presented in a 77 page report [8](most of this report is prose)2.The formal texts were validated by inspection: declarative sentences in the informal spec-i�cation correspond to predicates (mostly about set membership and values of functionapplications) which should be (mostly obvious) consequences of predicates in the formalspeci�cation. In a handful of cases we wrote down a few derivation steps.All software developers participated in the reviews and all discovered and corrected errorswhere the Z formulas did not express the intended behaviors. Some errors in the Z werenot discovered until the coding stage; writing code necessarily involves intensive review.2The line count is the number of nonblank lines output by running the Fuzz tool -v option [21] on thereport. This output is similar to the LaTEX source for the Z formulas.8

CATEGORY Z PROOF CODEProcess and event handling 40 40 433Pervasive constants and types 73 | 200File handling and persistent data 52 | 672Operations and volatile data 764 20 747Graphics utilities | | 589Graphics displays | | 1233Low-level device control 208 | 912Total 1137 60 4786Table 2: Lines of formal description, proof, and codeThe formal description was rewritten several times, partly to correct errors in content butmostly to improve its organization and make it easier to validate and use as a guide forcoding. We believe this indicates the di�culty inherent in creating a good design, ratherthan di�culties with formal methods or the Z notation.The type checker [21] detected many trivial errors; we corrected them. The well-formednesschecker [17] found a few unde�ned expressions (function applications) which were deliberateelisions, not oversights. We did not do any machine-checked proofs to con�rm that theformal texts express the intended behaviors.4.1.3 CodeThe code can be classi�ed into categories de�ned in the implementation guide [12]. Table 2shows the lines of Z description, code3, and any derivation or proof in each category. Thetable reveals that we modelled di�erent parts of the program at very di�erent levels ofdetail, according to our judgment about the novelty and di�culty of each portion. Someportions of the program have no formal description at all, while the formal description ofsome portions is as large as the code itself.We didn't anticipate doing any formal derivation or veri�cation, but we did a little anyway.As is customary in most Z literature, we did not (at �rst) write a formal speci�cation forthe main program that invokes the various operation schemas, but of course we had to im-plement one. This code is invoked each time an X window event (such as a keypress) occurs.We saw opportunities to achieve e�ciencies in testing preconditions, but implementing ourideas turned out to be more di�cult than we expected. When our intuitively written code3Noncomment, nonblank lines of code 9

grew complicated and we could not convince ourselves that it was correct, we decided notto resort to testing and debugging but to attempt a formal derivation (in axiomatic style)instead. This quickly exposed an outright error in our intuitively written code and alsorevealed that it was needlessly complicated, so we abandoned it. We are using the formallydeveloped code (it is about a page long). This development is reported in [11].An early version of the program was based on the formal description and implemented mostof the required behaviors. It was not intended to be a prototype and worked reasonablywell, but we found it di�cult to review and saw many opportunities for improvement, sowe discarded it.4.1.4 Test scriptsWe scripted some functional tests from the Z descriptions. The behavior of the program isdescribed by a collection of Z operation schemas. These can be shown in a kind of statetransition table where each row in the table shows an operation, the �rst column showsthe part of the precondition involving only state variables, the second column shows theprecondition involving input variables, and the third column shows the operation itself,which determines the next state (see examples in [11] and [8]). When the third columnof one row implies the �rst column of another, the two operations can occur in sequence.This makes it possible to script sequences of operations and check that various coveragemeasures have been achieved (for example that each operation has been executed, or thatall possible pairs of consecutive operations have been executed).4.2 Development E�ortThe informal speci�cation [9, 10] was developed over about �ve years. This e�ort includedthe entire facility including the cyclotron, not just the therapy console. The therapy con-sole products, including the formal description [8], other documents [7, 12] and code wasdeveloped over about four years. In this latter e�ort, all products except the informal de-scription [7] was developed by a team of two people (Jacky throughout, working with Unger,then Patrick) who often had obligations on other projects as well. The products were notbegun and �nished in sequence; all products were revised throughout the entire four years.We (very roughly) estimate that we have devoted about six person-years of e�ort to develop-ing the therapy console program. This includes learning the platform and its programmingenvironment, learning Z, and producing prototypes, documents and code that we laterdiscarded. 10

4.3 Comparable projectsThe original control program that ours replaces comprises about 12,000 lines of code (FOR-TRAN).While they were working on the therapy console program, Jacky and Unger also participatedin another project that expended similar e�ort but produced a much larger program: inabout seven person-years it produced about 300 pages of documentation and 40,000 linesof code (Lisp) [14]. We feel the di�erence indicates the greater di�culty of producing asafety-critical embedded control system compared to a scienti�c application that runs onstandard workstations, rather than the di�culty of formal methods.Before beginning work on the therapy console description [8], Jacky wrote some smallerZ descriptions of portions of the cyclotron controls [4, 5, 6] (106, 166 and 178 lines of Z,respectively); these have not yet been implemented. The therapy console description wasmuch more di�cult and required far more e�ort than the increase in size might suggest.4.4 Experience testing and using the programThe main program code discussed in section 4.1.3 received the most intensive formal devel-opment [11]. When we began functional testing this code failed almost immediately. Theerror resulted from an omission in the formal speci�cation, which was based on a poorlychosen (overly restricted) example. The error did not arise in any formal development stepso it could not have been detected by checking these steps more intensively, but it mighthave been detected by more thorough validation of the speci�cation. It was easy to correctthe omission and repeat each step in the formal development. After this single correctionwe have not found any more errors in this code.A few errors in the Z texts (where they did not express the intended behaviors) were notdiscovered until ad-hoc testing.(At this writing (August 1996) we have not yet begun stress testing, acceptance testing orclinical use.)4.5 DesignWe used the Z notation to discover a design; this section discusses some features of thedesign we chose. 11

The central idea of the therapy control program is this safety requirement: the beam canonly turn on when the actual state or setup of the machine is physically safe, and matches aprescription that the operator has selected and approved. We must only deliver setups thatare physically consistent and reasonable or safe. The control program helps ensure that wecan only treat a patient when the measured machine setup matches a prescribed setup.[SETTING ;VALUE ;FIELD]SETUP == SETTING"VALUEsafe : �SETUPmatch : SETUP# SETUPprescription : FIELD� SETUPSafeTreatmentmeasured ; prescribed : SETUPsafe(measured)match(measured ; prescribed)prescribed 2 ran prescriptionThe whole design arises from elaborating this simple model. The entire purpose of thecontrol program is to establish and con�rm the SafeTreatment condition. The prescribedsetup must be selected; the measured setup must be achieved; the safe and match conditionsmust be tested.Although this model seems simple, the informal description of the actual machine is com-plicated. There are lots of operations and each one involves many di�erent subsystems.Without careful design, the implementation also threatens to be complicated, di�cult toreview, and error prone.We surmised that the apparent complexity of the informal speci�cation arises from theinteraction of several subsystems which, by themselves, are simpler. We eventually realizedthat the obvious partition into the subsystems that the users see is not the best one. Insteadof a \vertical" partition with subsystems for the leaf collimator, the dosimetry system etc.we chose a \horizontal" partition with with (for example) a subsystem for settings (includingthe settings for the leaf collimator, the dosimetry system and all the rest), another for allinterlocks etc. The vertical alternative requires proliferation of similar items and operationsin each subsystem, while the horizontal alternative turns out to be simpler and more uniformoverall.The Field schema includes the state variables that represent settings for the currentlyselected �eld . Sensors report measured setting values. Prescribed setting values are read12

from the prescription database. There are some additional details: for example, somesettings that do not match their prescribed values can be overridden by the operator. It isnecessary to store the value of each setting when it is overridden.Field�eld : FIELDmeasured ; prescribed : SETUPoverridden : SETTING�VALUE�eld 2 dom prescriptionprescribed = prescription �eldThe Intlk schema declares state variables that model interlocks and status ags. Thestatus function indicates the readiness of each setting. Interlocks prevent undesired orpotentially hazardous situations. The function intlk indicates the status of each interlock;operations are inhibited when interlocks are set and are enabled when interlocks are clear .The master therapy interlock therapy intlk (not included in intlk) is a special software-controlled interlock that must be clear to allow the beam to turn on. Clearing the mastertherapy interlock is the central safety-critical act of the program.[INTERLOCK]INTLK ::= clear j setREADY ::= ready j not ready j overrideIntlktherapy intlk : INTLKintlk : INTERLOCK" INTLKstatus : SETTING" READYThese schemas suggest an implementation where the Z given sets SETTING and INTERLOCKare implemented by enumerated types whose values are the actual setting and interlocknames, and the Z functions measured , prescribed , overridden, intlk and status are imple-mented by arrays indexed by these enumerations. Settings and interlocks that belong to thesame hardware subsystem are assigned to subranges (consecutive values) in their respectiveenumerations, so operations that apply to a single hardware subsystem are implemented byloops that iterate over these subranges.Having partitioned our system and described the parts separately, we must compose theparts together again. In our partitioned design themeasured and prescribed setups appear inthe Field subsystem, while the software-controlled interlocks appear in the Intlk subsystem.The SafeTreatment state schema sketched earlier includes both subsystems.13

SafeTreatmentFieldIntlk: : : predicate omitted : : :The program sets and clears the interlocks, including the master therapy interlock, byperiodically executing the ScanIntlk operation.ScanIntlk�Field�Intlktherapy intlk 0 = if SafeTreatment then clear else setHere the SafeTreatment state schema is implemented by a function that tests the schemapredicate. �Field expresses that the implementation of this operation only requires read-only access to variables in Field .5 Project status and further work(Authors' note to reviewers: At this writing (August 1996) the program is not yet completeand has not been placed in clinical use. However most of the user interface and some devicecontrol functions are working. Many operations can be performed and we believe the codenow in place will not require major revisions. We hope to have data from acceptance testingand clinical use in time for the �nal paper submission or the meeting itself.)We hope to reuse some products of this e�ort in future projects (the cyclotron operator'sconsole program, etc.).Our use of formal methods in this project was largely a paper-and-pencil e�ort emphasizingdescription rather than analysis. However our formal texts may be able to support moreintensive, machine-supported analyses. Can they detect signi�cant errors or suggest usefulimprovements that we have missed?6 ConclusionsWe found the formal notation useful for discovering a design, and then documenting thedetailed design such that it could be validated against the prose speci�cation, and could14

also serve as a guide for writing and inspecting the code. We can make some observationsbased on our experiences so far:� Formal methods can help create novel designs and develop original code. They arenot just for documenting existing designs and analyzing code that has already beenwritten.� It is very di�cult to produce a useful formal description that faithfully expresses theinformal requirements for a complex system and can also serve as a basis for developingcode. There are problems of scale and organization and not much guidance from thesmall examples in the literature.� A detailed and explicit informal speci�cation that has been reviewed by the systems'designers and users (not just software developers) is an indispensable prerequisite toany use of formal methods. Only this can serve as the standard for validation. It is amajor portion of the whole project e�ort, not just a preliminary.� A useful formal description is not just a paraphrase of the informal speci�cation intomathematical notation. Creating the formal description requires design judgment inaddition to understanding the requirements and the formal notation.� All documents and code require much revision for clarity and organization, not justcontent and correctness.� Software developers who have the education and experience needed to work on thiskind of project can learn to read, review, and implement Z and even write smallamounts of it fairly quickly. Writing a useful formal description of a complex systemis much more di�cult and requires much experience on progressively harder problems.� Simply having a good formal description does not guarantee that a good implemen-tation will come easily. Diligent ongoing review is required to ensure that the imple-mentation is simple and clear enough to review against the formal description. Thisis a prerequisite to checking that the implementation is correct.� Some errors will escape detection in reviews so testing is still an essential techniquefor discovering errors.AcknowledgmentsThe authors thank Mark Saaltink for running the well-formedness checks and thank IraKalet for assistance with the project. 15

References[1] Mary Austin-Seymour, Richard Caplan, Kenneth Russell, George Laramore, Jon Jacky,Peter Wootton, Sharon Hummel, Karen Lindsley, and Thomas Gri�n. Impact of amultileaf collimator on treatment morbidity in localized carcinoma of the prostate.International Journal of Radiation Oncology Biology Physics, 30(5):1065{1071, Dec1994.[2] Digital Equipment Corporation, Maynard, Massachusetts. Introduction to VAXELN,October 1991.[3] Digital Equipment Corporation, Maynard, Massachusetts. VAXELN: Pascal Program-ming Guide, December 1991.[4] Jonathan Jacky. Formal speci�cations for a clinical cyclotron control system. In MarkMoriconi, editor, Proceedings of the ACM SIGSOFT International Workshop on For-mal Methods in Software Development, pages 45{54, Napa, California, USA, May 9{111990. (Also in ACM Software Engineering Notes, 15(4), Sept. 1990).[5] Jonathan Jacky. Formal speci�cation and development of control system input/output.In J. P. Bowen and J. E. Nicholls, editors, Z User Workshop, London 1992, pages 95{108. Proceedings of the Seventh Annual Z User Meeting, Springer-Verlag, Workshopsin Computing Series, 1993.[6] Jonathan Jacky. Specifying a safety-critical control system in Z. IEEE Transactionson Software Engineering, 21(2):99{106, 1995.[7] Jonathan Jacky, Michael Patrick, and Ruedi Risler. Clinical neutron therapy system,control system speci�cation, Part III: Therapy console internals. Technical Report95-08-03, Radiation Oncology Department, University of Washington, Seattle, WA,August 1995.[8] Jonathan Jacky, Michael Patrick, and Jonathan Unger. Formal speci�cation of con-trol software for a radiation therapy machine. Technical Report 95-12-01, RadiationOncology Department, University of Washington, Seattle, WA, December 1995.[9] Jonathan Jacky, Ruedi Risler, Ira Kalet, and Peter Wootton. Clinical neutron therapysystem, control system speci�cation, Part I: System overview and hardware organi-zation. Technical Report 90-12-01, Radiation Oncology Department, University ofWashington, Seattle, WA, December 1990.[10] Jonathan Jacky, Ruedi Risler, Ira Kalet, Peter Wootton, and Stan Brossard. Clinicalneutron therapy system, control system speci�cation, Part II: User operations. Tech-nical Report 92-05-01, Radiation Oncology Department, University of Washington,Seattle, WA, May 1992. 16

[11] Jonathan Jacky and Jonathan Unger. From Z to code: A graphical user interface for aradiation therapy machine. In J. P. Bowen and M. G. Hinchey, editors, ZUM '95: TheZ Formal Speci�cation Notation, pages 315{333. Ninth International Conference of ZUsers, Springer-Verlag, 1995. Lecture Notes in Computer Science 967.[12] Jonathan Jacky, Jonathan Unger, and Michael Patrick. CNTS implementation. Tech-nical Report 96-04-01, Department of Radiation Oncology, University of Washington,Box 356043, Seattle, Washington 98195-6043, USA, April 1996.[13] Jonathan Jacky and Cheryl P. White. Testing a 3-D radiation therapy planning pro-gram. International Journal of Radiation Oncology, Biology and Physics, 18:253{261,January 1990.[14] Ira J. Kalet, Jonathan P. Jacky, Mary M. Austin-Seymour, Sharon M. Hummel,Kevin J. Sullivan, and Jonathan M. Unger. Prism: A new approach to radiotherapyplanning software. International Journal of Radiation Oncology, Biology and Physics,36(2):451{461, 1996.[15] Ira J. Kalet, Jonathan P. Jacky, Ruedi Risler, Solveig Rohlin, and Peter Wootton.Integration of radiotherapy planning systems and radiotherapy treatment equipment:11 years experience. International Journal of Radiation Oncology, Biology and Physics,38(1):213{221, 1997.[16] Nancy G. Leveson and Clark S. Turner. An investigation of the Therac-25 accidents.IEEE Computer, 26(7):18{41, July 1993.[17] Irwin Meisels and Mark Saaltink. The Z/EVES reference manual. Technical ReportTR-95-5493-03, ORA Canada, 267 Richmond Road, Suite 100, Ottawa, Ontario K1Z6X3 Canada, December 1995.[18] Adrian Nye. Xlib Programming Manual. O'Reilly and Associates, Inc., Sebastopol,CA, 1988.[19] Ruedi Risler, J�uri Eenmaa, Jonathan P. Jacky, Ira J. Kalet, Peter Wootton, andS. Lindbaeck. Installation of the cyclotron based clinical neutron therapy system inSeattle. In Proceedings of the Tenth International Conference on Cyclotrons and theirApplications, pages 428{430, East Lansing, Michigan, May 1984. IEEE.[20] R. W. Scheier and J. Gettys. The X window system. ACM Transactions on Graphics,5(2):79{109, 1986.[21] J. M. Spivey. The fuzz Manual. J. M. Spivey Computing Science Consultancy, Oxford,second edition, July 1992.[22] J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, New York, secondedition, 1992. 17

[23] Martin S. Weinhous, James A. Purdy, and Conrad O. Granda. Testing of a medicallinear accelerator's computer-control system. Medical Physics, 17(1):95{102, Jan/Feb1990.

18

