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Abstract

This report presents a formal specification in the Z notation for a safety-
critical control system. It describes a particular medical device but is quite
generic and should be widely applicable. The specification emphasizes safety
interlocking and other discontinous features that are not considered in classi-
cal control theory. A method for calculating interlock conditions for particular
operations from system safety assertions is proposed; it is similar to ordinary
Z precondition calculation, but usually results in stronger preconditions. The
specification is presented as a partially complete framework that can be edited
and filled in with the specific features of a particular control system. Our system
is large but the specification is concise. It is built up from components, subsys-
tems, conditions and modes that are developed separately, but also accounts
for behaviors that emerge at the system level. The specification illustrates sev-
eral useful idioms of the Z notation, and demonstrates that an object-oriented
specification style can be expressed in ordinary Z.
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1 Introduction

Safety-critical control systems are often advocated as ideal applications for formal
software development methods [1]. However, there are very few published examples
of formal specifications for real safety-critical systems that have been built and used.
Those few are expressed in notations that are not in wide use (for example, [5]).

The complexity of a real control system confronts the specification writer with prob-
lems of style and organization whose solutions are not apparent from most small case
studies found in the literature. Examples of formal specifications for realistic control
systems might serve as models, or reusable frameworks [3], that could be adapted to
other projects.

The large literature on control theory (for example, [2]) emphasizes continuous, closed-
loop controls. It provides little guidance regarding discontinuous, essentially “open-
loop” operations such as turning subsystems on and off, and safety interlocking. Such
features dominate the requirements for many safety-critical systems, including our
own.

Researchers concerned with safety issues have proposed abstract formal models of
process control systems that provide criteria for evaluating specifications for desirable
properties such as completeness and safety [10, 13]. This work challenges builders of
real systems to provide specifications that are sufficiently formal to support such
evaluation.

This report describes a framework for formal specifications of safety-critical control
systems, and demonstrates its application to a real medical device. Some of our
preliminary work was reported in [6].

2 A case study

The Clinical Neutron Therapy System at the University of Washington is a cyclotron
and treatment facility that provides particle beams for cancer treatments with fast
neutrons, production of medical isotopes, and physics experiments. The facility was
installed in 1984, and includes a computer control system provided by the cyclotron
vendor [15]. Devices under computer control include a 900 amp electromagnet and



a 30 ton rotating gantry, as well as four terminals at three operator consoles. The
control system handles over one thousand input and output signals, and includes six
programmable processors as well as some nonprogrammable (hard-wired) controls.

The University is now developing a new, successor control system. This development
project is motivated by requirements to make the system easier and quicker to use,
easier to maintain, and able to accomodate future hardware and software modifica-
tions.

We have mostly completed an informal specification, which is being produced with
the participation of the therapists, physicists and engineers who use and maintain the
facility. It will comprise about 500 pages of prose and diagrams [8, 9], and documents
the requirements expressed in the formal specification. We hope that the formal
specification will be much shorter and will serve as the primary guidance for software
development.

3 A framework for safety-critical systems

A framework is formal model that abstracts the central features of a family of appli-
cations, which can be adapted or extended to fit the needs of particular projects [3].
Our specification is presented here as a partially complete framework that can be
edited and filled in with the specific features of different control systems.

3.1 State variables, control laws and safety assertions

Reviewing our prose specifications [8, 9], we find that most of our requirements can
be expressed by a quite simple framework: a system is a collection of state variables
that must obey certain control laws and safety assertions. This can be modeled by a
Z state schema.

The state variables are named in the schema declaration and can be discrete in-
dicators or numeric quantities. The control laws and safety assertions are system
invariants which appear as schema predicates. Control laws are formulae that relate
state variables in a way that produces the intended system behaviors. In classical con-
trol theory [2], control laws are usually differential equations that relate continuous



variables, but our control laws also include discrete variables and logical connectives.
Safety assertions are formulae that place additional constraints on the state variables,
as required by considerations of human safety and equipment protection.

As an example of this framework, here are some definitions and a (much simplified)
state schema for our cyclotron. The schema shows a few of the state variables and
laws concerned with the radio-frequency (RF) amplifiers that accelerate the particles,
the magnet that confines them, and the shielding door that protects staff and visitors
from scattered radiation.

STATUS ::= disabled | off | on | error
CURRENT == —100.00..900.00

Many more definitions ...

__ Clyclotron

mainfld : STATUS

mainfld_setpoint, mainfld_preset, mainfld_current : CURRENT
rf : STATUS

door : DOOR

Many other state variables . ..

mainfld € {disabled, off } = mainfld_setpoint = 0.00
mainfld € {on, error} = mainfld_setpoint = mainfld_preset
mainfld = on = | mainfld_setpoint — mainfld_current | < e

Many other control laws ...

rf = on = door = closed
rf = on = mainfld = on

Many other safety assertions ...

The particle beam is considered to be on whenever the RF drive amplifiers are on.
When the main magnet field is off, its current is zero; when it is on, its current is held
at a nominal preset value (this magnet also has a disabled state from which it cannot
be turned on, and an error state where it has been turned on but is not running



correctly). The safety assertions say that the beam can only be on when the vault
door is closed and the main field is running within its nominal range.

This report does not describe how the state variables are input, output, or transformed
between their values in meaningful engineering units and their low-level representation
as bit patterns in device registers. Those vital activities are the subject of another
report [7].

3.2 Operations

The control system provides a repertoire of operations that can change the values of
some state variables. These are modeled by Z operation schemas.

For example, this operation turns on the main field power supply, unless it has been
disabled.

_ TurnOnMainfld
A Cyclotron

mainfld # disabled

mainfld_setpoint’ = mainfld_preset

Changing mainfld_setpoint usually causes mainfid_current to follow (the control law
for this is rather complicated and is not shown). The control laws require that
mainfld must change as well; it either becomes on or error, depending on whether
mainfld_current approaches mainfld_setpoint.

This illustrates a common technique for writing concise operation definitions: the
variables explicitly changed in the operation schema drive other variables, as dictated
by the control laws. Therefore, operation definitions usually do not include predicates
that fix the values of variables that are not explicitly changed.

3.3 Interlocks

A distinguishing feature of safety-critical control systems is that many operations are
interlocked; they are not allowed to proceed if certain potentially hazardous conditions



exist. In our framework, interlocks are preconditions for operation schemas. If a
precondition is not satisfied, the interlock is set or active, and the operation must not
proceed; otherwise the interlock is clear.

Consider the operation invoked by pressing the BEAM ON button. Here is a naive
specification.

_ TurnOnBeam
A Cyclotron

rf # disabled

rf" € {on, error}

This schema says that pressing the BEAM ON button when the RF system has not
been disabled will attempt turn on the RF drive amplifiers (it cannot be guaranteed
that they will turn on; they may indicate an error).

This definition is not consistent with the intent of the system safety assertions. Ad-
ditional interlocks should prevent the beam from turning on if the vault door is not
closed, or the main field current is outside its nominal range.

It seems that it should be possible to calculate the interlock conditions from the
system safety assertions. However, the ordinary Z precondition [16, 14] is too weak;
for example, it does not include door = closed. We cannot calculate any ordinary Z
precondition involving door because we cannot require that the value of door remain
the same in the “before” and “after” states; door is an input sensor whose value may
change at any time.

To achieve the intended effect, the interlock predicates should be chosen to ensure
that the “after” state of the operation schema (the state formed by the primed schema
variables) will be sure to satisfy the system state invariant even when the values of
all the sensor variables remain the same in the “before” and “after” states.

We can state this formally, by making a stronger version of the usual Z precondition
expression: from the state schema S, extract the schema Sensor that consists only of
the declarations of the state variables that represent sensors whose values cannot be
directly controlled. This is necessary because safety assertions typically involve these
sensors. Then the interlock precondition for operation Op is given by the schema
expression PreSafeOp = 35" e Op A ZSensors. In our example,



CyclotronSensors

|7 mainfld_current : CURRENT

door : DOOR

PreSafeTurnOnBeam = 3 Cyclotron’ e TurnOnBeam N ZCyclotronSensors

We obtain

__ PreSafeTurnOnBeam
Cyclotron

rf # disabled
door = closed
mainfld = on

These preconditions can be conjoined with the naive operation definition to obtain
the intended definition: SafeTurnOnBeam = TurnOnBeam A PreSafe TurnOnBeam

It is useful to compare the interlock conditions computed from the state schema by this
method to the interlocks recommended by the designers, based on their understanding
of the system. Disagreement may indicate that the system safety assertions are not
complete (or are too restrictive), or the operation is not fully described.

There are legitimate reasons why the computed interlock conditions might not agree
with designers’ recommendations. It is sometimes necessary to add interlocks beyond
those entailed by the system safety assertions, in order to prevent certain transitions
between states, even though the states themselves are sometimes permitted.

4 Limitations of the basic framework

The basic framework presented in section 3 can describe most of our requirements,
but it is not very useful as a practical specification style. Its disadvantages arise
because all the system state variables appear in a single state schema. Real process
control systems have hundreds or thousands of state variables. Moreover, the number
of operations and the specification for each would have to be very large because there
are so many variables and conditions to consider.
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5 A framework based on components

Most of our system’s size derives from repetition of similar components. We can make
our specification much shorter and easier to grasp by identifying the components,
describing them separately, and then combining them. Each kind of component
is specified using the basic framework presented in section 3, with its own state,
operations, and interlocks.

Each kind of component can be considered an abstract data type or, to use the ter-
minology of the popular object-oriented programming movement, a class. Several
notations based on Z add constructs intended to support object-oriented program-
ming [17]. We find that ordinary Z [16] serves well as a notation for specifying
object-oriented programs.

The following sections describe some components we have found useful for our ap-
plication. Subsequent sections show how the component specifications are combined
into a system specification.

5.1 Analog control parameters

The three state variables mainfld_setpoint, mainfld_preset, mainfld_current that ap-
peared in the Cyclotron schema in section 3 reveal a pattern that appears in many
other contexts. We define a schema for this recurring pattern, which we call a control
parameter or simply a parameter (in this report we use the word “parameter” in this
sense, not the programming languages sense).

Param
lipreset, setpoint, value : SIGNAL

It is useful to define a schema for the situation where the parameter’s value is nearly
equal to the setpoint.

_ ParamValid
Param

| setpoint — value | < e




5.2 Power supplies and servomotors

Many of the state variables in our system are devoted to about forty power supplies
that provide current to the magnets that confine, focus and steer the beam. The main
field supply discussed in section 3 is just one of these. Here is a slightly more realistic
generalization; this model also includes the contactor that connects the supply to its
power source, and represents the various faults that induce the disabled and error
states. The control law says that current cannot flow when the contactor is open.
The safety assertions say that we must not try to drive current when faults exist or

the contactor is open.

SWITCH ::= open | closed
FAULT ::= overload | line_voltage | overtemp | ground_short

__PS
Param
contactor : SWITCH

faults : P FAULT

contactor = open = value < €

faults #= setpoint =0
contactor = open = setpoint = 0

Explicitly modelling the contactor and faults reveals that the status values of section 3
(disabled, off etc.) actually indicate different power supply states, so we no longer
need an explicit status variable. The supply is Off when the contactor is open and
there are no faults:

_Off
PS

contactor = open
faults =

The supply is On when the contactor is closed, there are no faults, and setpoint
and value (nearly) equal preset. Note that power supplies can use (“inherit”) any
properties defined for parameters, such as Param Valid.



_ On
PS

ParamValid
contactor = closed
setpoint = preset
faults =

It is easy to define operations in terms of these states.

_ TurnOn
APS

OPS € Off
OPS" € On U Error

Several other kinds of components besides power supplies include control parameters.
For example, in servomotors the signals represent position, not current.

Servo
Param

enable : MODE

Other state variables specific to servomotors ...

5.3 Discrete indicators

It is convenient if every state variable in the system is handled in a uniform way,
as part of an instance of some class of components. Those few system-level state
variables that don’t belong to any obvious component can be handled by defining
simple “components” with only one state variable.

Indicator

Tstatus : INDICATOR
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5.4 Combining the components

With several kinds components now in hand, we return to the system level. Every
component has a name. FEach class of components in the system is modelled as a
function from names to instances of the state schema for that class. This example
shows only three kinds of components; the real system has many more.

[NAME]

| ps,s,i:PNAME

__ Clyclotron
supply : NAME —+ PS
servo : NAME —+ Servo
indicator : NAME — Indicator

dom supply = ps
dom servo = s
dom indicator = ¢

supply rf € On = (indicator door).status = closed
supply rf € On = supply mainfld € On

Other system level laws ...

For each class of component, there is a set that names all the components of that
class. The first group of predicates says that the roster of components in the system
is fixed. Therefore, each maplet of the form name — 6Component can be regarded
as a persistent object. This is a central idea in our object-oriented specification style
for Z.

All of the state variables and most of the predicates from the basic framework are
now inside the various components, so the system state schema can be much smaller.
However, laws that relate state variables in different components can only be expressed
at the system level. These include the two safety assertions discussed in section 3.
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6 Some useful idioms

Specifying the operations of a system described this way requires several constructions
in the Z notation that are not obvious. We call them idioms. These idioms are not
described in the reference manual [16] nor taught in textbooks [14]; they must be
gleaned from case studies [12] or technical reports [11]. Here are two useful ones.

6.1 Promotion

Much useful behavior can be modeled at the component level. However, methods
defined at the component level are not, by themselves, meaningful at the system
level. For example, at the system level it makes no sense to merely turn on a power
supply; it is necessary to say which supply. Component-level operations that must
be made available at the system level can be adapted by applying a Z idiom called
promotion [12, 11].

First, for each type of component we have to define a framing schema, where the
identifier of the component of interest is an input parameter. For power supplies, the
framing schema is Cyclo®PS.

— Cyclo®PS
A Cyclotron
APS
ps?: NAME

ps? € ps
OPS = supply ps? N OPS" = supply’ ps?

Then the operation to turn on the main field magnet is:

— TurnOnMainfid
Cyclo® PS
TurnOn

ps? = mainfid

Other power supply operations can be promoted in the same way.
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Sometimes, additional predicates must be added to promoted operations to account
for requirements that emerge at the system level.

_ TurnOnBeam
Cyclo® PS
TurnOn

ps? =rf
(indicator door).status = closed
supply mainfld € On

The additional interlock preconditions here could have been calculated from the sys-
tem safety assertions by the method described in section 3.3.

6.2 Operations on multiple components

Other system level operations are obtained by performing the same method on multi-
ple components. For example, a common operation is turn on all the power supplies
in some subsystem, say Beam Line A. This is provided at a single button, to save the
operator the trouble of switching each supply on individually. It can be expressed by
another Z idiom:

_ TurnOnBLA
A Cyclotron

V ps : blaps @ A TurnOn e O PS = supply ps A OPS’ = supply’ ps

7 Subsystems, conditions, and modes

In addition to components, we use a few other ideas to organize the specification.
Other authors have noted the usefulness of conditions and modes [5]. Subsystems are
also helpful.
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7.1 Subsystems

The various subsystems include the RF system, the cyclotron proper, the three beam-
lines, the two treatment rooms, etc. Each is simply a collection of components, iden-
tified by their names.

‘ rfsys, cyclo, bla, blb, blc, iso, fir : P NAME

7.2 Conditions

It is useful to define schemas to abbreviate conditions that appear frequently in the
specification. Some conditions are quite simple.

_ BeamOn
Cyclotron

supply rf € On

Others are more complex; subsystems often appear in these definitions. For example,
the cyclotron is ready when the vault door is closed, all of its power supplies have
been switched on and are free of faults, and all their currents are near their setpoints.

_ CycloReady
Cyclotron

(indicator door).status = closed
supply(cyclo N ps) C On

This is a precondition for many operations. Here is a more realistic specification for
turning on the beam.

_ TurnOnBeam
Cyclo®PS
TurnOn

ps?t=rf
CycloReady
BeamOn'
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As this example shows, redundant conditions can be included to help make the in-
tended effect clear to the reader.

7.3 Modes

Our cyclotron can be operated in different modes. Each mode is characterized by the
destination and purpose of the beam. The beam can be delivered to two treatment
rooms or an isotope production station. It can be used to treat patients, or for
experiments and testing.

Modes are a kind of condition, for example:

__IsoTest
Cyclotron

Isocentric room, test mode ...

Modes are important because the control laws and safety assertions depend on which
mode is selected. In order to turn on the beam in a room, the beam line to that room
must be ready, and different safety interlocks must be cleared to treat a patient than
to run an experiment with no people in the room. This is expressed by using modes
and other conditions to write the control laws and safety assertions.

— SafeCyclotron
Cyclotron

IsoTest A BeamOn = CycloReady N BLAReady N IsoReady
IsoTreat N BeamOn = CycloReady N BLAReady N IsoSafe

Laws for other modes ...

These predicates concisely express many important properties. For example, if any
of the conditions included in IsoSafe becomes false while the beam is on in IsoTreat
mode, the beam must turn off.

Modes and conditions also appear in the operation schemas:
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_ SafeTurnOnBeam
TurnOnBeam

IsoTest = CycloReady N BLAReady N\ IsoReady
IsoTreat = CycloReady N BLAReady N IsoSafe

Preconditions for other modes ...

8 User interface

Our complete specification will include a schema for every operation that users can
invoke which might change the values of any state variables. Therefore, we must write
a schema for every control panel button and every on-screen menu selection.

Our complete specification will also include some schemas for operations that occur
spontaneously when the values of certain sensor variables change. Turning off the
beam at the end of a treatment, when integrating sensors indicate that the prescribed
dose has been delivered, is one example.

When users attempt operations that are interlocked, the system state does not change.
Pressing the BEAM ON button turns on the RF drive if all the interlocks relevant
to the selected mode are clear; otherwise, nothing happens. Therefore, the full spec-
ification for this and every other operation must be total; they must cover both
possibilities. This is expressed:

T_TurnOnBeam = Safe TurnOnBeam V =Cyclotron

The active interlocks, conditions and modes are displayed at the control console so
operators can see which operations are enabled.

Our specification implicitly determines that some sequences of operations are permit-
ted and others are not possible, because in most states some variables act as interlocks
to inhibit certain operations. Users may select operations in any sequence they wish,
subject only to the sequencing constraints imposed by the preconditions. There is no
other “flow of control.”

Graphic notations such as state transition diagrams can help make sequencing con-
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straints clear, and might be a useful complement to the Z texts.

The translations between internal state variable values and their representations in
user interface devices such as analog meters or workstation displays are among the
input/output operations that we have formally specified in another report [7]. Other
details — whether a particular operation is invoked by pressing a button on a control
panel, or selecting a menu option at a workstation — are described in prose and
diagrams [9]. We do not believe it would be useful to formally specify the “look and
feel” aspects of the user interface.

9 Progress report and preliminary evaluation

At this writing (September 1992) our formal specification is not complete, but we are
confident that all functional requirements documented in the informal specification |8,
9] can be formalized using techniques described in this report (and a few more that
we have omitted for brevity). All that remains is to finish filling in the framework.

We have only attempted to formalize the functional aspects of our system. The Z
notation does not provide built-in facilities for representing time or concurrency. If
we decide to formalize these features we will select a notation suited for them.

Much of the effort in developing large applications like ours is devoted to enumerat-
ing the system state variables and describing the operations that must be provided,
taking care that nothing is omitted and no inconsistencies are introduced. The Z
notation provides a discipline for organizing this work that is supported by a de-facto
standard [16], several good textbooks, and robust tools for document preparation,
syntax and type checking.

Z is particularly effective for systems whose size derives from repetition of compo-
nents which are not identical but share many features in common. The Z schema
calculus permits recurring features to be described with texts that apply to all, sup-
plemented with brief texts that address the differences. As a result, definitions such
as SafeTurnOnBeam in section 7.3 can be quite compact even though they actually
describe hundreds of state variables.

We have already found the formal texts to be useful as descriptive documentation.
We hope their brevity will help us build an economical implementation. The pos-
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sibility that they might also support safety analyses and formal development of the
implementation is an additional bonus.
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