
Specifying a Safety-Critical Control Systemin ZJonathan Jacky�Department of Radiation Oncology RC-08University of Washington,Seattle WA 98195, USAPrepared for submission to:FME '93 Symposium: Industrial Strength Formal MethodsOdense, Denmark, 19 to 23 April, 1993
AbstractThis report presents a formal speci�cation in the Z notation for a safety-critical control system. It describes a particular medical device but is quitegeneric and should be widely applicable. The speci�cation emphasizes safetyinterlocking and other discontinous features that are not considered in classi-cal control theory. A method for calculating interlock conditions for particularoperations from system safety assertions is proposed; it is similar to ordinaryZ precondition calculation, but usually results in stronger preconditions. Thespeci�cation is presented as a partially complete framework that can be editedand �lled in with the speci�c features of a particular control system. Our systemis large but the speci�cation is concise. It is built up from components, subsys-tems, conditions and modes that are developed separately, but also accountsfor behaviors that emerge at the system level. The speci�cation illustrates sev-eral useful idioms of the Z notation, and demonstrates that an object-orientedspeci�cation style can be expressed in ordinary Z.�email jon@radonc.washington.edu, telephone 206.548.4117

1 IntroductionSafety-critical control systems are often advocated as ideal applications for formalsoftware development methods [1]. However, there are very few published examplesof formal speci�cations for real safety-critical systems that have been built and used.Those few are expressed in notations that are not in wide use (for example, [5]).The complexity of a real control system confronts the speci�cation writer with prob-lems of style and organization whose solutions are not apparent from most small casestudies found in the literature. Examples of formal speci�cations for realistic controlsystems might serve as models, or reusable frameworks [3], that could be adapted toother projects.The large literature on control theory (for example, [2]) emphasizes continuous, closed-loop controls. It provides little guidance regarding discontinuous, essentially \open-loop" operations such as turning subsystems on and o�, and safety interlocking. Suchfeatures dominate the requirements for many safety-critical systems, including ourown.Researchers concerned with safety issues have proposed abstract formal models ofprocess control systems that provide criteria for evaluating speci�cations for desirableproperties such as completeness and safety [10, 13]. This work challenges builders ofreal systems to provide speci�cations that are su�ciently formal to support suchevaluation.This report describes a framework for formal speci�cations of safety-critical controlsystems, and demonstrates its application to a real medical device. Some of ourpreliminary work was reported in [6].2 A case studyThe Clinical Neutron Therapy System at the University of Washington is a cyclotronand treatment facility that provides particle beams for cancer treatments with fastneutrons, production of medical isotopes, and physics experiments. The facility wasinstalled in 1984, and includes a computer control system provided by the cyclotronvendor [15]. Devices under computer control include a 900 amp electromagnet and2

a 30 ton rotating gantry, as well as four terminals at three operator consoles. Thecontrol system handles over one thousand input and output signals, and includes sixprogrammable processors as well as some nonprogrammable (hard-wired) controls.The University is now developing a new, successor control system. This developmentproject is motivated by requirements to make the system easier and quicker to use,easier to maintain, and able to accomodate future hardware and software modi�ca-tions.We have mostly completed an informal speci�cation, which is being produced withthe participation of the therapists, physicists and engineers who use and maintain thefacility. It will comprise about 500 pages of prose and diagrams [8, 9], and documentsthe requirements expressed in the formal speci�cation. We hope that the formalspeci�cation will be much shorter and will serve as the primary guidance for softwaredevelopment.3 A framework for safety-critical systemsA framework is formal model that abstracts the central features of a family of appli-cations, which can be adapted or extended to �t the needs of particular projects [3].Our speci�cation is presented here as a partially complete framework that can beedited and �lled in with the speci�c features of di�erent control systems.3.1 State variables, control laws and safety assertionsReviewing our prose speci�cations [8, 9], we �nd that most of our requirements canbe expressed by a quite simple framework: a system is a collection of state variablesthat must obey certain control laws and safety assertions. This can be modeled by aZ state schema.The state variables are named in the schema declaration and can be discrete in-dicators or numeric quantities. The control laws and safety assertions are systeminvariants which appear as schema predicates. Control laws are formulae that relatestate variables in a way that produces the intended system behaviors. In classical con-trol theory [2], control laws are usually di�erential equations that relate continuous3

variables, but our control laws also include discrete variables and logical connectives.Safety assertions are formulae that place additional constraints on the state variables,as required by considerations of human safety and equipment protection.As an example of this framework, here are some de�nitions and a (much simpli�ed)state schema for our cyclotron. The schema shows a few of the state variables andlaws concerned with the radio-frequency (RF) ampli�ers that accelerate the particles,the magnet that con�nes them, and the shielding door that protects sta� and visitorsfrom scattered radiation.STATUS ::= disabled j o� j on j errorCURRENT == �100:00 : : 900:00Many more de�nitions : : :Cyclotronmaind : STATUSmaind setpoint ;maind preset ;maind current : CURRENTrf : STATUSdoor : DOORMany other state variables : : :maind 2 fdisabled ; o� g) maind setpoint = 0:00maind 2 fon; errorg) maind setpoint = maind presetmaind = on)j maind setpoint �maind current j � �Many other control laws : : :rf = on) door = closedrf = on) maind = onMany other safety assertions : : :The particle beam is considered to be on whenever the RF drive ampli�ers are on.When the main magnet �eld is o�, its current is zero; when it is on, its current is heldat a nominal preset value (this magnet also has a disabled state from which it cannotbe turned on, and an error state where it has been turned on but is not running4

correctly). The safety assertions say that the beam can only be on when the vaultdoor is closed and the main �eld is running within its nominal range.This report does not describe how the state variables are input, output, or transformedbetween their values in meaningful engineering units and their low-level representationas bit patterns in device registers. Those vital activities are the subject of anotherreport [7].3.2 OperationsThe control system provides a repertoire of operations that can change the values ofsome state variables. These are modeled by Z operation schemas.For example, this operation turns on the main �eld power supply, unless it has beendisabled.TurnOnMaind�Cyclotronmaind 6= disabledmaind setpoint 0 = maind presetChanging maind setpoint usually causes maind current to follow (the control lawfor this is rather complicated and is not shown). The control laws require thatmaind must change as well; it either becomes on or error , depending on whethermaind current approaches maind setpoint .This illustrates a common technique for writing concise operation de�nitions: thevariables explicitly changed in the operation schema drive other variables, as dictatedby the control laws. Therefore, operation de�nitions usually do not include predicatesthat �x the values of variables that are not explicitly changed.3.3 InterlocksA distinguishing feature of safety-critical control systems is that many operations areinterlocked; they are not allowed to proceed if certain potentially hazardous conditions5

exist. In our framework, interlocks are preconditions for operation schemas. If aprecondition is not satis�ed, the interlock is set or active, and the operation must notproceed; otherwise the interlock is clear.Consider the operation invoked by pressing the BEAM ON button. Here is a naivespeci�cation.TurnOnBeam�Cyclotronrf 6= disabledrf 0 2 fon; errorgThis schema says that pressing the BEAM ON button when the RF system has notbeen disabled will attempt turn on the RF drive ampli�ers (it cannot be guaranteedthat they will turn on; they may indicate an error).This de�nition is not consistent with the intent of the system safety assertions. Ad-ditional interlocks should prevent the beam from turning on if the vault door is notclosed, or the main �eld current is outside its nominal range.It seems that it should be possible to calculate the interlock conditions from thesystem safety assertions. However, the ordinary Z precondition [16, 14] is too weak;for example, it does not include door = closed . We cannot calculate any ordinary Zprecondition involving door because we cannot require that the value of door remainthe same in the \before" and \after" states; door is an input sensor whose value maychange at any time.To achieve the intended e�ect, the interlock predicates should be chosen to ensurethat the \after" state of the operation schema (the state formed by the primed schemavariables) will be sure to satisfy the system state invariant even when the values ofall the sensor variables remain the same in the \before" and \after" states.We can state this formally, by making a stronger version of the usual Z preconditionexpression: from the state schema S , extract the schema Sensor that consists only ofthe declarations of the state variables that represent sensors whose values cannot bedirectly controlled. This is necessary because safety assertions typically involve thesesensors. Then the interlock precondition for operation Op is given by the schemaexpression PreSafeOp b= 9 S 0 � Op ^ �Sensors. In our example,6

CyclotronSensorsmaind current : CURRENTdoor : DOORPreSafeTurnOnBeam b= 9Cyclotron 0 � TurnOnBeam ^ �CyclotronSensorsWe obtainPreSafeTurnOnBeamCyclotronrf 6= disableddoor = closedmaind = onThese preconditions can be conjoined with the naive operation de�nition to obtainthe intended de�nition: SafeTurnOnBeam b= TurnOnBeam ^ PreSafeTurnOnBeamIt is useful to compare the interlock conditions computed from the state schema by thismethod to the interlocks recommended by the designers, based on their understandingof the system. Disagreement may indicate that the system safety assertions are notcomplete (or are too restrictive), or the operation is not fully described.There are legitimate reasons why the computed interlock conditions might not agreewith designers' recommendations. It is sometimes necessary to add interlocks beyondthose entailed by the system safety assertions, in order to prevent certain transitionsbetween states, even though the states themselves are sometimes permitted.4 Limitations of the basic frameworkThe basic framework presented in section 3 can describe most of our requirements,but it is not very useful as a practical speci�cation style. Its disadvantages arisebecause all the system state variables appear in a single state schema. Real processcontrol systems have hundreds or thousands of state variables. Moreover, the numberof operations and the speci�cation for each would have to be very large because thereare so many variables and conditions to consider.7

5 A framework based on componentsMost of our system's size derives from repetition of similar components. We can makeour speci�cation much shorter and easier to grasp by identifying the components,describing them separately, and then combining them. Each kind of componentis speci�ed using the basic framework presented in section 3, with its own state,operations, and interlocks.Each kind of component can be considered an abstract data type or, to use the ter-minology of the popular object-oriented programming movement, a class. Severalnotations based on Z add constructs intended to support object-oriented program-ming [17]. We �nd that ordinary Z [16] serves well as a notation for specifyingobject-oriented programs.The following sections describe some components we have found useful for our ap-plication. Subsequent sections show how the component speci�cations are combinedinto a system speci�cation.5.1 Analog control parametersThe three state variables maind setpoint ;maind preset ;maind current that ap-peared in the Cyclotron schema in section 3 reveal a pattern that appears in manyother contexts. We de�ne a schema for this recurring pattern, which we call a controlparameter or simply a parameter (in this report we use the word \parameter" in thissense, not the programming languages sense).Parampreset ; setpoint ; value : SIGNALIt is useful to de�ne a schema for the situation where the parameter's value is nearlyequal to the setpoint.ParamValidParamj setpoint � value j � � 8

5.2 Power supplies and servomotorsMany of the state variables in our system are devoted to about forty power suppliesthat provide current to the magnets that con�ne, focus and steer the beam. The main�eld supply discussed in section 3 is just one of these. Here is a slightly more realisticgeneralization; this model also includes the contactor that connects the supply to itspower source, and represents the various faults that induce the disabled and errorstates. The control law says that current cannot ow when the contactor is open.The safety assertions say that we must not try to drive current when faults exist orthe contactor is open.SWITCH ::= open j closedFAULT ::= overload j line voltage j overtemp j ground shortPSParamcontactor : SWITCHfaults : �FAULTcontactor = open) value � �faults 6=) setpoint = 0contactor = open) setpoint = 0Explicitly modelling the contactor and faults reveals that the status values of section 3(disabled , o� etc.) actually indicate di�erent power supply states, so we no longerneed an explicit status variable. The supply is O� when the contactor is open andthere are no faults:O�PScontactor = openfaults =The supply is On when the contactor is closed, there are no faults, and setpointand value (nearly) equal preset . Note that power supplies can use (\inherit") anyproperties de�ned for parameters, such as ParamValid .9

OnPSParamValidcontactor = closedsetpoint = presetfaults =It is easy to de�ne operations in terms of these states.TurnOn�PS�PS 2 O��PS 0 2 On [ErrorSeveral other kinds of components besides power supplies include control parameters.For example, in servomotors the signals represent position, not current.ServoParamenable : MODEOther state variables speci�c to servomotors : : :
5.3 Discrete indicatorsIt is convenient if every state variable in the system is handled in a uniform way,as part of an instance of some class of components. Those few system-level statevariables that don't belong to any obvious component can be handled by de�ningsimple \components" with only one state variable.Indicatorstatus : INDICATOR

10

5.4 Combining the componentsWith several kinds components now in hand, we return to the system level. Everycomponent has a name. Each class of components in the system is modelled as afunction from names to instances of the state schema for that class. This exampleshows only three kinds of components; the real system has many more.[NAME]ps; s; i : �NAMECyclotronsupply : NAME � PSservo : NAME � Servoindicator : NAME � Indicatordom supply = psdom servo = sdom indicator = isupply rf 2 On) (indicator door):status = closedsupply rf 2 On) supply maind 2 OnOther system level laws : : :For each class of component, there is a set that names all the components of thatclass. The �rst group of predicates says that the roster of components in the systemis �xed. Therefore, each maplet of the form name 7! �Component can be regardedas a persistent object. This is a central idea in our object-oriented speci�cation stylefor Z.All of the state variables and most of the predicates from the basic framework arenow inside the various components, so the system state schema can be much smaller.However, laws that relate state variables in di�erent components can only be expressedat the system level. These include the two safety assertions discussed in section 3.
11

6 Some useful idiomsSpecifying the operations of a system described this way requires several constructionsin the Z notation that are not obvious. We call them idioms. These idioms are notdescribed in the reference manual [16] nor taught in textbooks [14]; they must begleaned from case studies [12] or technical reports [11]. Here are two useful ones.6.1 PromotionMuch useful behavior can be modeled at the component level. However, methodsde�ned at the component level are not, by themselves, meaningful at the systemlevel. For example, at the system level it makes no sense to merely turn on a powersupply; it is necessary to say which supply. Component-level operations that mustbe made available at the system level can be adapted by applying a Z idiom calledpromotion [12, 11].First, for each type of component we have to de�ne a framing schema, where theidenti�er of the component of interest is an input parameter. For power supplies, theframing schema is Cyclo�PS .Cyclo�PS�Cyclotron�PSps? : NAMEps? 2 ps�PS = supply ps? ^ �PS 0 = supply 0 ps?Then the operation to turn on the main �eld magnet is:TurnOnMaindCyclo�PSTurnOnps? = maindOther power supply operations can be promoted in the same way.12

Sometimes, additional predicates must be added to promoted operations to accountfor requirements that emerge at the system level.TurnOnBeamCyclo�PSTurnOnps? = rf(indicator door):status = closedsupply maind 2 OnThe additional interlock preconditions here could have been calculated from the sys-tem safety assertions by the method described in section 3.3.6.2 Operations on multiple componentsOther system level operations are obtained by performing the same method on multi-ple components. For example, a common operation is turn on all the power suppliesin some subsystem, say Beam Line A. This is provided at a single button, to save theoperator the trouble of switching each supply on individually. It can be expressed byanother Z idiom:TurnOnBLA�Cyclotron8 ps : blaps � 9TurnOn � �PS = supply ps ^ �PS 0 = supply 0 ps
7 Subsystems, conditions, and modesIn addition to components, we use a few other ideas to organize the speci�cation.Other authors have noted the usefulness of conditions and modes [5]. Subsystems arealso helpful.

13

7.1 SubsystemsThe various subsystems include the RF system, the cyclotron proper, the three beam-lines, the two treatment rooms, etc. Each is simply a collection of components, iden-ti�ed by their names.rfsys; cyclo; bla; blb; blc; iso; �x : �NAME7.2 ConditionsIt is useful to de�ne schemas to abbreviate conditions that appear frequently in thespeci�cation. Some conditions are quite simple.BeamOnCyclotronsupply rf 2 OnOthers are more complex; subsystems often appear in these de�nitions. For example,the cyclotron is ready when the vault door is closed, all of its power supplies havebeen switched on and are free of faults, and all their currents are near their setpoints.CycloReadyCyclotron(indicator door):status = closedsupply�cyclo \ ps� � OnThis is a precondition for many operations. Here is a more realistic speci�cation forturning on the beam.TurnOnBeamCyclo�PSTurnOnps? = rfCycloReadyBeamOn 0 14

As this example shows, redundant conditions can be included to help make the in-tended e�ect clear to the reader.7.3 ModesOur cyclotron can be operated in di�erent modes. Each mode is characterized by thedestination and purpose of the beam. The beam can be delivered to two treatmentrooms or an isotope production station. It can be used to treat patients, or forexperiments and testing.Modes are a kind of condition, for example:IsoTestCyclotronIsocentric room, test mode : : :Modes are important because the control laws and safety assertions depend on whichmode is selected. In order to turn on the beam in a room, the beam line to that roommust be ready, and di�erent safety interlocks must be cleared to treat a patient thanto run an experiment with no people in the room. This is expressed by using modesand other conditions to write the control laws and safety assertions.SafeCyclotronCyclotronIsoTest ^ BeamOn) CycloReady ^ BLAReady ^ IsoReadyIsoTreat ^ BeamOn) CycloReady ^ BLAReady ^ IsoSafeLaws for other modes : : :These predicates concisely express many important properties. For example, if anyof the conditions included in IsoSafe becomes false while the beam is on in IsoTreatmode, the beam must turn o�.Modes and conditions also appear in the operation schemas:15

SafeTurnOnBeamTurnOnBeamIsoTest) CycloReady ^ BLAReady ^ IsoReadyIsoTreat) CycloReady ^ BLAReady ^ IsoSafePreconditions for other modes : : :
8 User interfaceOur complete speci�cation will include a schema for every operation that users caninvoke which might change the values of any state variables. Therefore, we must writea schema for every control panel button and every on-screen menu selection.Our complete speci�cation will also include some schemas for operations that occurspontaneously when the values of certain sensor variables change. Turning o� thebeam at the end of a treatment, when integrating sensors indicate that the prescribeddose has been delivered, is one example.When users attempt operations that are interlocked, the system state does not change.Pressing the BEAM ON button turns on the RF drive if all the interlocks relevantto the selected mode are clear; otherwise, nothing happens. Therefore, the full spec-i�cation for this and every other operation must be total; they must cover bothpossibilities. This is expressed:T TurnOnBeam b= SafeTurnOnBeam _ �CyclotronThe active interlocks, conditions and modes are displayed at the control console sooperators can see which operations are enabled.Our speci�cation implicitly determines that some sequences of operations are permit-ted and others are not possible, because in most states some variables act as interlocksto inhibit certain operations. Users may select operations in any sequence they wish,subject only to the sequencing constraints imposed by the preconditions. There is noother \ow of control."Graphic notations such as state transition diagrams can help make sequencing con-16

straints clear, and might be a useful complement to the Z texts.The translations between internal state variable values and their representations inuser interface devices such as analog meters or workstation displays are among theinput/output operations that we have formally speci�ed in another report [7]. Otherdetails | whether a particular operation is invoked by pressing a button on a controlpanel, or selecting a menu option at a workstation | are described in prose anddiagrams [9]. We do not believe it would be useful to formally specify the \look andfeel" aspects of the user interface.9 Progress report and preliminary evaluationAt this writing (September 1992) our formal speci�cation is not complete, but we arecon�dent that all functional requirements documented in the informal speci�cation [8,9] can be formalized using techniques described in this report (and a few more thatwe have omitted for brevity). All that remains is to �nish �lling in the framework.We have only attempted to formalize the functional aspects of our system. The Znotation does not provide built-in facilities for representing time or concurrency. Ifwe decide to formalize these features we will select a notation suited for them.Much of the e�ort in developing large applications like ours is devoted to enumerat-ing the system state variables and describing the operations that must be provided,taking care that nothing is omitted and no inconsistencies are introduced. The Znotation provides a discipline for organizing this work that is supported by a de-factostandard [16], several good textbooks, and robust tools for document preparation,syntax and type checking.Z is particularly e�ective for systems whose size derives from repetition of compo-nents which are not identical but share many features in common. The Z schemacalculus permits recurring features to be described with texts that apply to all, sup-plemented with brief texts that address the di�erences. As a result, de�nitions suchas SafeTurnOnBeam in section 7.3 can be quite compact even though they actuallydescribe hundreds of state variables.We have already found the formal texts to be useful as descriptive documentation.We hope their brevity will help us build an economical implementation. The pos-17

sibility that they might also support safety analyses and formal development of theimplementation is an additional bonus.10 AcknowledgementsThe author thanks Norman Delisle, David Garlan and Mike Spivey for explainingsome Z idioms and commenting on earlier versions of this work.References[1] Dan Craigen. FM89: Assessment of formal methods for trustworthy computersystems. In 12th International Conference on Software Engineering Proceedings,pages 233{235. IEEE Computer Society, 1990.[2] Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini. Feedback Controlof Dynamic Systems. Addison-Wesley, second edition, 1991.[3] David Garlan and Norman Delisle. Formal speci�cations as reusable frameworks.In D. Bjorner, C. A. R. Hoare, and H. Langmaack, editors, VDM '90: VDM andZ | Formal Methods in Software Development, pages 150{163, Kiel, FRG, April1990. Third International Symposium of VDM Europe, Springer-Verlag. LectureNotes in Computer Science number 428.[4] Ian Hayes, editor. Speci�cation Case Studies. Prentice Hall International, En-glewood Ci�s, NJ, 1987.[5] K.L. Heninger. Specifying software requirements for complex systems: new tech-niques and their application. IEEE Transactions on Software Engineering, SE-6(1):2{13, 1980.[6] Jonathan Jacky. Formal speci�cations for a clinical cyclotron control system. InMark Moriconi, editor, Proceedings of the ACM SIGSOFT International Work-shop on Formal Methods in Software Development, pages 45{54, Napa, Califor-nia, USA, May 9{11 1990. (Also in ACM Software Engineering Notes, 15(4),Sept. 1990).
18

[7] Jonathan Jacky. Formal speci�cation and development of control system in-put/output. Technical Report 92-05-02, Radiation Oncology Department, Uni-versity of Washington, Seattle, WA, May 1992.[8] Jonathan Jacky, Ruedi Risler, Ira Kalet, and Peter Wootton. Clinical neutrontherapy system, control system speci�cation, Part I: System overview and hard-ware organization. Technical Report 90-12-01, Radiation Oncology Department,University of Washington, Seattle, WA, December 1990.[9] Jonathan Jacky, Ruedi Risler, Ira Kalet, Peter Wootton, and Stan Brossard.Clinical neutron therapy system, control system speci�cation, Part II: User op-erations. Technical Report 92-05-01, Radiation Oncology Department, Universityof Washington, Seattle, WA, May 1992.[10] Matthew S. Ja�e, Nancy G. Leveson, Mats P. E. Heimdahl, and Bonnie E.Melhart. Software requirements analysis for real-time process control systems.IEEE Transactions on Software Engineering, 17(3):241{258, March 1991.[11] Ruaridh Macdonald. Z usage and abusage. Technical Report 91003, Royal Signalsand Radar Establishment, St. Andrews Road, Malvern, Worcestershire, WR143PS, February 1991.[12] Carroll Morgan and Bernard Sufrin. Speci�cation of the UNIX �le system. IEEETransactions on Software Engineering, SE-10(2):128{142, March 1984. (Alsoappears in [4]).[13] David Lorge Parnas and Jan Madey. Functional documentation for computersystems engineering (version 2). Technical report, Telecommunications ResearchInstitute of Ontario (TRIO), McMaster University, Hamilton, Ontario, L8S 4K1,September 1991. CRL Report No. 237.[14] Ben Potter, Jane Sinclair, and David Till. An Introduction to Formal Speci�ca-tion and Z. Prentice Hall International (UK) Ltd, Hemel Hempstead, Hertford-shire, 1991.[15] Ruedi Risler, J�uri Eenmaa, Jonathan P. Jacky, Ira J. Kalet, Peter Wootton, andS. Lindbaeck. Installation of the cyclotron based clinical neutron therapy systemin Seattle. In Proceedings of the Tenth International Conference on Cyclotronsand their Applications, pages 428{430, East Lansing, Michigan, May 1984. IEEE.[16] J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, New York,1989. 19

[17] Susan Stepney, Rosalind Barden, and David Cooper. A survey of object orien-tation in Z. Software Engineering Journal, 7(2):150{160, March 1992.

20

