Solution to Homework 5

Problem 1.a

If O is a Hermitian Operator, it should satisfy the condition <f|©g> = <Of|g> for all f(z) and all g(z) in

Hilbert space. Let’s check this for momentum operator p = —ih%7
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where I have used integration by parts and ignored the boundary terms. Hence p is a Hermitian operator.
Problem 1.b

The Hamiltonian H = % +V(z)= By (z), then
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Integration by parts twice for the first term and ignore the boundary terms, we have
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Hence H is a Hermitian Operator.

Problem 1.c

Suppose f(x) is an eigenfunction of a Hermitian operator A with eigenvalue a, namely Af = af, and

<f|/1f> - <Af|f>. Then
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(f|f) is nonzero, otherwise f (x) =0, so a = a*, the eigenvalue a must be real.

Problem 2.a
The coordinate space wavefunction ¥q (x,t) = (%)1/46_%‘”26_@0”& = (%)1/46_%7;26_iwt/2, Fourier transform
to momentum space,
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The integral in (2) has the form [~ e—aw’ by (a is real and a > 0), and can be evaluated as follows:
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where I have changed the variable y =  — b/2a. Thus,

1 mw\1/4 _. 2rh 2 1 2 .
[0 1) = (7> e—“’-’t/Q P /2mwh _ e /Qmwhe—zwt/Q
o(p:1) Vorh \ Th mw (meh)l/‘l

Problem 2.b

a

Express the creation operator in momentum space with the substitution x = ih 5

al = (—ip + mwzx)
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Then we can generate the first excited state by acting the creation operator on ground state,

1 (p) = a'®g (p)
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Its time dependence is e , hence
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Problem 3.a

LHS = ABC — CAB

RHS = A(BC — CB) + (AC — CA)B
— ABC — ACB + ACB — CAB
— ABC — CAB

Therefore, [AB,C] = A[B,C| + [A, C]|B.

Problem 3.b

[p",z] = p[p" ', 2] + [p, z]p" "
= pp[p" %, 2] + plp, 2]p" " + (—ih)p" "
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Where I have used the fundamental commutator [p, z] = —ih.

In general, commutator [f (p),x] = fihﬁd—(pp) for any function f (p)
Problem 4.a
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For x does not explicitly depend on time.
The commutator [H, z] is,
p
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Thus, 4 (z) = £ ((—ih) 2) = %, consistent with the Erenfest’s theorem.

Problem 4.b

For p does not explicitly depend on time.
The commutator [H, p] is,
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where we have used the fact that for any function f (), the commutator [f (x),p] = ihd’;(j).
Thus, & (p) = £ (ih9Y) = — (9Y), consistent with Erenfest’s theorem.



