Solution to Homework 5

Problem 1.a

If \hat{O} is a Hermitian Operator, it should satisfy the condition $\langle f|\hat{O}g\rangle=\langle \hat{O}f|g\rangle$ for all f(x) and all g(x) in Hilbert space. Let's check this for momentum operator $\hat{p}=-i\hbar\frac{d}{dx}$,

$$\langle f|\hat{p}g\rangle = \int_{-\infty}^{+\infty} f^*\left(-i\hbar\right) \frac{dg}{dx} dx = \left(-i\hbar\right) f^*g|_{-\infty}^{+\infty} + \int_{-\infty}^{+\infty} \left(-i\hbar\frac{df}{dx}\right)^* g dx = \langle \hat{p}f|g\rangle$$

where I have used integration by parts and ignored the boundary terms. Hence \hat{p} is a Hermitian operator.

Problem 1.b

The Hamiltonian $\hat{H}=\frac{\hat{p}^{2}}{2m}+V\left(\hat{x}\right)=-\frac{\hbar^{2}}{2m}\frac{d^{2}}{dx^{2}}+V\left(x\right),$ then

$$\left\langle f|\hat{H}g\right\rangle = \int_{-\infty}^{+\infty} f^*\left(-\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + V\right)gdx = -\frac{\hbar^2}{2m}\int_{-\infty}^{+\infty} f^*\frac{d^2g}{dx^2}dx + \int_{-\infty}^{+\infty} f^*Vgdx$$

Integration by parts twice for the first term and ignore the boundary terms, we have

$$\left\langle f|\hat{H}g\right\rangle = -\frac{\hbar^2}{2m}\int_{-\infty}^{+\infty}\frac{d^2f^*}{dx^2}gdx + \int_{-\infty}^{+\infty}f^*Vgdx = \int_{-\infty}^{+\infty}\left(-\frac{\hbar^2}{2m}\frac{d^2f}{dx^2} + Vf\right)^*gdx = \left\langle \hat{H}f|g\right\rangle$$

Hence \hat{H} is a Hermitian Operator.

Problem 1.c

Suppose f(x) is an eigenfunction of a Hermitian operator \hat{A} with eigenvalue a, namely $\hat{A}f = af$, and $\left\langle f|\hat{A}f\right\rangle = \left\langle \hat{A}f|f\right\rangle$. Then

$$a\langle f|f\rangle = a^*\langle f|f\rangle$$

 $\langle f|f\rangle$ is nonzero, otherwise $f(x)\equiv 0$, so $a=a^*$, the eigenvalue a must be real.

Problem 2.a

The coordinate space wavefunction $\Psi_0(x,t) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} e^{-\frac{m\omega}{2\hbar}x^2} e^{-iE_0t/\hbar} = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} e^{-\frac{m\omega}{2\hbar}x^2} e^{-i\omega t/2}$, Fourier transform to momentum space,

$$\Phi_{0}\left(p,t\right) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} e^{-ipx/\hbar} \Psi_{0}\left(x,t\right) dx \tag{1}$$

$$= \frac{1}{\sqrt{2\pi\hbar}} \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} e^{-i\omega t/2} \int_{-\infty}^{\infty} e^{-ipx/\hbar} e^{-\frac{m\omega}{2\hbar}x^2} dx \tag{2}$$

The integral in (2) has the form $\int_{-\infty}^{\infty} e^{-ax^2+bx} dx$ (a is real and a > 0), and can be evaluated as follows:

$$\int_{-\infty}^{\infty} e^{-ax^2 + bx} dx = e^{b^2/4a} \int_{-\infty}^{\infty} e^{-a(x - b/2a)^2 dx}$$
$$= e^{b^2/4a} \int_{-\infty}^{\infty} e^{-ay^2 dy}$$
$$= \sqrt{\frac{\pi}{a}} e^{b^2/4a}$$

where I have changed the variable y = x - b/2a. Thus,

$$\Phi_{0}\left(p,t\right)=\frac{1}{\sqrt{2\pi\hbar}}{\left(\frac{m\omega}{\pi\hbar}\right)^{1/4}}e^{-i\omega t/2}\sqrt{\frac{2\pi\hbar}{m\omega}}e^{-p^{2}/2m\omega\hbar}=\frac{1}{(\pi m\omega\hbar)^{1/4}}e^{-p^{2}/2m\omega\hbar}e^{-i\omega t/2}$$

Problem 2.b

Express the creation operator in momentum space with the substitution $x = i\hbar \frac{d}{dx}$,

$$a^{\dagger} = \frac{1}{\sqrt{2m\omega\hbar}} \left(-ip + m\omega x \right)$$
$$= \frac{1}{\sqrt{2m\omega\hbar}} \left(-ip + im\omega\hbar \frac{d}{dp} \right)$$

Then we can generate the first excited state by acting the creation operator on ground state,

$$\begin{split} \Phi_{1}\left(p\right) &= a^{\dagger}\Phi_{0}\left(p\right) \\ &= \frac{1}{\sqrt{2m\omega\hbar}} \frac{1}{\left(\pi m\omega\hbar\right)^{1/4}} \left(-ip + im\omega\hbar \frac{d}{dp}\right) e^{-p^{2}/2m\omega\hbar} \\ &= -i\left(\frac{4}{\pi m^{3}\omega^{3}\hbar^{3}}\right)^{1/4} p e^{-p^{2}/2m\omega\hbar} \end{split}$$

Its time dependence is $e^{-iE_1t/\hbar} = e^{-i3\omega t/2}$, hence

$$\Phi_{1}\left(p,t\right)=-i\bigg(\frac{4}{\pi m^{3}\omega^{3}\hbar^{3}}\bigg)^{1/4}pe^{-p^{2}/2m\omega\hbar}e^{-i3\omega t/2}$$

Problem 3.a

$$LHS = ABC - CAB$$

$$RHS = A(BC - CB) + (AC - CA)B$$

$$= ABC - ACB + ACB - CAB$$

$$= ABC - CAB$$

Therefore, [AB, C] = A[B, C] + [A, C]B.

Problem 3.b

$$\begin{split} [p^n,x] &= p[p^{n-1},x] + [p,x]p^{n-1} \\ &= pp[p^{n-2},x] + p[p,x]p^{n-2} + (-i\hbar)p^{n-1} \\ &= p^2[p^{n-2},x] + 2(-i\hbar)p^{n-1} \\ &= \cdots \\ &= p^{n-1}[p,x] + (n-1)(-i\hbar)p^{n-1} \\ &= -i\hbar np^{n-1} \end{split}$$

Where I have used the fundamental commutator $[p,x]=-i\hbar$. In general, commutator $[f\left(p\right),x]=-i\hbar\frac{df\left(p\right)}{dp}$ for any function $f\left(p\right)$

Problem 4.a

$$\begin{split} \frac{d}{dt} \left\langle x \right\rangle &= \frac{i}{\hbar} \left\langle [H, x] \right\rangle + \left\langle \frac{\partial x}{\partial t} \right\rangle \\ &= \frac{i}{\hbar} \left\langle [H, x] \right\rangle \end{split}$$

For x does not explicitly depend on time. The commutator [H, x] is,

$$[H, x] = \left[\frac{p^2}{2m} + V(x), x\right]$$
$$= \frac{1}{2m} [p^2, x]$$
$$= \frac{1}{2m} (-i\hbar) \frac{dp^2}{dp}$$
$$= (-i\hbar) \frac{p}{m}$$

Thus, $\frac{d}{dt}\langle x\rangle = \frac{i}{\hbar}\left\langle (-i\hbar)\frac{p}{m}\right\rangle = \frac{\langle p\rangle}{m}$, consistent with the Erenfest's theorem.

Problem 4.b

$$\begin{split} \frac{d}{dt} \left\langle p \right\rangle &= \frac{i}{\hbar} \left\langle [H, p] \right\rangle + \left\langle \frac{\partial p}{\partial t} \right\rangle \\ &= \frac{i}{\hbar} \left\langle [H, p] \right\rangle \end{split}$$

For p does not explicitly depend on time. The commutator [H, p] is,

$$[H, p] = \left[\frac{p^2}{2m} + V(x), p\right]$$
$$= \left[V(x), p\right]$$
$$= i\hbar \frac{dV}{dx}$$

where we have used the fact that for any function $f\left(x\right)$, the commutator $\left[f\left(x\right),p\right]=i\hbar\frac{df\left(x\right)}{dx}$. Thus, $\frac{d}{dt}\left\langle p\right\rangle =\frac{i}{\hbar}\left\langle i\hbar\frac{\partial V}{\partial x}\right\rangle =-\left\langle \frac{\partial V}{\partial x}\right\rangle$, consistent with Erenfest's theorem.