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Abstract

A commonality among oceanic life cycles is a process known as settlement, where dispersing

propagules transition to the sea 8oor. For many marine invertebrates, this transition is irreversible,

and therefore involves a crucial decision-making process through which larvae evaluate their

juvenile habitat-to-be. In this chapter, we consider aspects of the external environment that could

in8uence successful settlement. Speci<cally, we discuss water 8ow across scales, and how larvae can

engage behaviors to in8uence where ocean currents take them, and enhance the likelihood of their

being carried towards suitable settlement locations. Next, we consider what senses larvae utilize to

evaluate their external environment and properly time such behavioral modi<cations, and

settlement generally. We hypothesize that larvae integrate these various external cues in a

hierarchical fashion, with di>ering arrangements being employed across ontogeny and among

species. We conclude with a brief discussion of the future promises of larval biology, ecology and

evolution.

=====

NOTE: This is a pre-print of a chapter that has now been published (2018) by Oxford University Press.  

Here is the full citation

Hodin J., M.C. Ferner, A. Heyland and B. Gaylord (2018) I feel that! Fluid dynamics and sensory 

aspects of larval settlement across scales. In: Evolutionary Ecology of Marine Invertebrate Larvae (TJ 

Carrier, AM Reitzel, A Heyland, eds). Oxford University Press: New York. Chapter 13. Pages 190-207. 

DOI: 10.1093/oso/9780198786962.003.0013

2



Introduction

Standing on a wave swept shore, it's tempting to imagine that the myriad microscopic larvae

beneath the surface are simply at the mercy of oceanic forces, so-called 'passive particles' being

hurled to and fro by the tremendous energy of tides, waves and currents. In this conception, a larva

that eventually would settle in the nearshore has three key tasks:

1)to survive long enough and be lucky enough to be passively carried to a suitable adult

habitat;

2)to recognize such a habitat when it arrives there; and

3)to attach or burrow into that habitat so as not to be swept away by impinging 8ows.

In this sense, even a larva that might appear 'passive' with respect to typical 8ow regimes could be

in some ways master of its own fate. For example, engaging larval defenses could increase its odds

of survival in the presence of predators, adjusting its feeding mechanisms could allow it to grow

faster and more eBciently, detecting conspeci<cs or a favored adult food source could increase its

likelihood of settling in an appropriate location, and quickly deploying well-developed adhesive

structures could allow it to withstand agents of dislodgment when it arrives there. Furthermore, our

larva's mother (and in some cases its father) could have stacked the deck in its favor. For example,

she might have protected the embryo and larva for a time, endowed it with extra energy in the form
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of yolk, or provided it with chemical defenses to deter planktonic predators. She may also have

released her o>spring during a speci<c season, lunar phase or time of day that could o>er it the

maximum available planktonic food, fewest potential predators, and most favorable oceanic 8ow

conditions to retain it near to shore.*

But a growing body of evidence indicates that larvae are best considered as other than passive

particles (see Morgan 2014). Although the maximum swimming speed of the larvae of most

invertebrates (<1cm • sec-1 or far less; Chia et al. 1984, Fuchs & Gerbi 2016) are too slow to make

headway in strong oceanic currents (10s of cm • sec-1) or within wave-driven 8ows (meters • sec-1),

these larvae nevertheless have a behavioral repertoire that they can exploit to increase their odds of

<nding food, avoiding predators, and being carried back to shore when they are ready to settle into

benthic habitat. Stronger swimming larvae of crustaceans and <sh can swim against and at least

partially resist such currents, and are thus even less passive.

Based on the notion that larvae of benthic species have an underappreciated capacity to in8uence

their locations in space and thus their arrival into speci<c habitats, in this chapter we will draw upon

examples from disparate marine invertebrates to describe:

• the 8uid environment that larvae experience in the pelagic and benthic realms;

• what larvae can sense in their 8uid environment and how they do so; and

• what cues larvae utilize, and how their responses to such cues vary depending on the scale

relative to suitable settlement locations. 

*References related to these topics as well as numerous auxiliary references throughout can be found in the 
Supplementary Material associated with this chapter. It is appended here after the primary reference list (i.e., following 
page 43).
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The main focus in this chapter is to review these topics from the perspective of larvae maximizing

their chances of surviving to settle at an appropriate time and place. While addressing these issues,

we will often connect to subjects of other chapters in this volume, which we will cross-reference for

their more extensive consideration of such material. We also will highlight the tremendous progress

made in larval ecology in the last 50 years, and in particular in the two decades since the publication

ofEcology of Marine Invertebrate Larvae(1995, L.R. McEdward, ed.),the multi-authored work that

inspired the current edited volume. And, <nally, we will look to the future of the <eld, where new

techniques and interdisciplinary integration o>er the promise of deeper understanding of the

surprisingly common yet remarkably diverse complex life cycles of marine organisms.

What does it feel like to be a larva?

Although we do not know the complete answer to this question, 8uid dynamics o>ers some clues. A

bottlenose dolphin swimming through the water experiences its 8uid environment much

di>erently than does a coral planula larva. At the scale of the dolphin, inertial forces predominate

(think of a boat continuing to glide long after the engine is cut); at the scale of the planula, the

dominant forces are viscous (akin to a human swimming in a vat of honey). The relative importance

of inertial and viscous forces can be described in terms of a parameter called theReynolds number

(Re):       

Re =

5

( ρU l)
μ



The factors in the numerator contribute to larger inertial forces (J – the density of the 8uid; U – the

8uid velocity; and l – a characteristic length of the organism in 8ow), whereas the surrounding

8uid’s dynamic viscosity M is in the denominator. The units cancel one another out, so the Reynolds

number is a dimensionless metric, useful across scales from planktonic (mm's or less) to oceanic

(1000s of km's), whereby two organisms with the same Re can be thought of as experiencing a

similar 8uid dynamic environment. 

Because Reynolds number depends on a length scale, two organisms that di>er vastly in size but

occupy the same habitat (like a bottlenose dolphin and a coral planula in a tropical lagoon) will

experience quite distinct 8uid dynamic environments: while the density and viscosity of the

ambient seawater are more or less the same for the two organisms, the length of the dolphin (~3 m)

is four orders of magnitude greater than the length of the planula (~0.3 mm), and the swimming

speeds of these two animals also di>er by about three orders of magnitude (~3 m • sec-1 versus ~3

mm • sec-1, respectively). At the scale of the dolphin, the value in the numerator of the Re equation is

thus very large, and the inertial forces override the viscous ones. At the scale of the larva the

opposite is true (see Vogel 1994; and for a recent review, Weissburg et al. 2014).

In terms of the relative 8ow experienced by each of these animals, this di>erence could not be more

profound. Flow at the scale of a dolphin (Re~ 106) is chaotically turbulent: as it swims through the

water the dolphin leaves a wake with swirling eddies behind it (Vogel 1994). In fact, the streamlined

body of the dolphin is well adapted to limit the size of the eddy-<lled wake since it increases drag,

and thus impedes forward progress. By contrast, the planula (Re~ 1 or less), due to its small size,
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does not create a turbulent wake as it moves through the lagoon by ciliary propulsion. Instead, the

larva’s movement induces strong local gradients in velocity that are characterized by adjacent

layers of 8uid slipping smoothly past one another, with little mixing-type motions (Fig. 1). Less well

studied are 8ow <elds surrounding organisms operating at intermediate Reynolds numbers (Re in

the 1-100 range), which is relevant for many larger larvae (such as in <sh, ascidians, and some

crustaceans; McHenry et al. 2003) as well as during certain burst swimming modes in smaller larvae,

such as in diving bivalves (e.g., Fuchs et al. 2015). At such intermediate Re values, the 8ow

characteristics transition from viscous-dominated to a domain where inertial forces are more

prominent, and the particular shapes of the larvae can have an increasing e>ect on the 8ow

characteristics compared to what is seen in lower Re conditions (see, e.g., Koehl 1995, McHenry et al.

2003).

Figure 1.Turbulent and laminar

8ow at di>erent Reynolds numbers

(Re). As discussed in the text, a

bottlenose dolphin (A) and a coral

planula larva (B) in the same

habitat experience very di>erent

8ow regimes, due to their vastly

di>erent sizes and corresponding

Re. (A) At high Re, 8ow (dashed

black lines) even around a

streamlined organism like a

dolphin is broken up by turbulent

eddies (dashed red lines) in its

wake, which impedes forward

progress. (B) At low Re, by contrast, typical 8ow around the larva is smooth with no turbulent eddies. As such, any

turbulent intrusion (e.g., due to wave action) into the larval 8ow <eld would stand out against the background 8ow

regime. Figure modeled after Weissburg et al. 2014. Pocillopora damicornis planula photo by Bob Richmond.
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The former example of eddies produced by 8ow around larger and faster moving objects is

representative ofturbulent "ow: parcels of water moving in random directions on average relative

to that of the mean 8ow. The smooth 8ow around smaller objects is an example oflaminar "ow. Or

put another way: at larger organism sizes and higher Re (as in dolphins) 8ows are typically

turbulent, whereas at smaller organism sizes and smaller Re (as in planulae) 8ows tend to be more

laminar.Characterization of laminar versus turbulent 8ow regimes (and the transitions between

them) based solely on Re should be undertaken cautiously, as local geometries and boundary

conditions modulate such regime shifts (see, Denny 1988, Vogel 1994). In general, however,8ows at

Re >105 tend to be turbulent, while 8ows at Re < 10 tend to be laminar.

For the purposes of this chapter, the characteristics of the 8ow regime at the larval scale have

several implications. But to appreciate these implications, we <rst need to consider one more

concept: that of the boundary layer (reviewed in Nowell & Jumars 1984, Butman 1987). Flow over

smooth surfaces creates a boundary e>ect, where 8ow speed decreases on average the nearer that

8ow is to the surface. This principle holds across scales: it is why taller wind turbines are more

eBcient (wind speed is slower near the ground), and it is why so many benthic <lter feeders –from

tube worms to barnacles to brittle stars– extend their feeding appendages above the substrate into

the 8ow to increase the rate of encounter with particles. Fast 8ow, especially over rough surfaces,

creates turbulent vortices that enhance transport of materials across the boundary layer, and can

expose organisms within the boundary layer to instantaneous bursts in velocity (Nowell & Jumars

1984).
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Given the above trends, a problem would emerge for a larval-sized organism that relies on material

exchange from the surrounding 8uid, that operates at low Re, and where surrounding 8ow is slow

and turbulent mixing is absent: such an organism itself has a boundary layer. This boundary layer

would tend to interfere with its ability to interact with more distant portions of its surrounding 8uid

environment. For our larva, then, such limitations could cause signi<cant challenges: the unicellular

algae that our larva needs to eat, the oxygen that it needs to absorb and the cue molecules that it

would use to locate a suitable settlement location can be rapidly depleted adjacent to its body, and

could take considerable time to replenish via di>usion alone.  However, larvae have evolved

mechanisms to counter such limitations, in particular behaviors to ensure mixing across their

boundary layers (see Strathmann 1995, Karp-Boss et al. 1996). In many feeding larvae (see, Pernet

this volume) –such as in echinoderms, mollusks and annelids– ciliary action creates currents and

locomotory movements that replenish the water alongside the larval body in a manner much more

eBcient than di>usion alone (Gilpin et al. 2016). Likewise, larvae with movable appendages –such

as in arthropods, ascidian tadpoles and possibly brachiolaria-stage sea stars(Bashevkin et al. 2016)–

can also break up the boundary layers around their bodies, aiding in 8uid and material exchange.

A second implication of larval-scale 8ow, this one more bene<cial for our larva, relates to its entry

into thebenthic boundary layer that forms over the sea8oor. This boundary layer becomes

relevant when our larva attempts to settle at the end of its pelagic life. In this context, solid surfaces

within the boundary layer – near which average 8ow speeds are slower and (in the case of turbulent

benthic boundary layers) lulls in velocity occur with more regularity– could a>ord precious refuge

to our larva so that it can attach strongly and reduce its chances of being dislodged (e.g., Mullineaux

& Butman 1991, Crimaldi et al. 2002). 
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A third implication for our larva of the predominantly laminar 8ow that moves past its body (Fig. 1)

is that any turbulent eddies that impinge upon it, could, in a sense, “stand out” above the typical

smooth background 8ow regime. Such turbulence could come from 8ow across rough substrates,

as mentioned above, from wind-generated white-capping at the ocean surface, from the water

movement created by potential predators, and could also come from crashing waves in the surf

zone. The chaotic water movement produced from each of these processes is translated down

through ever smaller eddies to the smallest scales of 8uid motion where that turbulent energy is

“dissipated” (i.e., converted into heat) due to viscosity: more intense turbulent 8ows result in higher

levels of energy dissipation and a broader energy cascade that sustains eddies of tinier size. Under

the exceptionally intense turbulence of the surf zones of rocky shores (Gaylord et al. 2013), and to a

somewhat lesser extent in the other turbulence-generating contexts mentioned above, the smallest

turbulent eddies operate at scales that are smaller than that of a typical larva. As a consequence,

such 8ow structures could conceivably be sensed by larvae as gradients in velocity across the

dimensions of their bodies (Jumars et al. 2009, Fuchs & Gerbi 2016). Furthermore, because

turbulence is so strong in shoreline areas where waves break, the local level of turbulence could be

potentially utilized by larvae as a reasonable –though not entirely diagnostic– proxy for their

approach to benthic habitat (Gaylord et al. 2013, Fuchs & Gerbi 2016). This ability would have

profound implications for larvae settling into nearshore locations, and we will return to this point in

some detail below.

A fourth implication of 8ow for our larva also relates to boundary layers, but at much broader scales.

Unlike our previous examples of 8ow around individual larvae, we here scale up to consider 8ow
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that can a>ect the transport of entire cohorts of larvae, thus possibly impacting connectivity among

populations. Adjacent to coastlines, there is an area of slower alongshore 8ow known as thecoastal

boundary layer (CBL). Several kilometers o>shore, depending on the bathymetry, the along-shore

(“free-stream”) 8ow is the fastest; nearer to the coastline, the prevailing alongshore 8ows decrease

markedly due to the CBL. Larvae released on the shoreline can also be retained near to shore by

reduced cross-shore mixing within the CBL (Nickols et al. 2013), representing one possible

mechanism of the 'larval retention' that data from recent years (e.g., Morgan et al. 2009) has

suggested is much more common than previously thought.

In sum, understanding what it feels like to be a larva involves understanding 8uid dynamics at

multiple scales. As we will see, larvae are not always purely at the mercy of these 8ows. In some

situations they can manipulate the local 8ow regime to their advantage, and in others they can

utilize speci<c behaviors which increase the likelihood that prevailing 8ows will carry them to

suitable settlement habitat: a critical need for every larva with a benthic adult.

What can a larva sense in its "uid environment and how does it do so?

The ocean is a rich sensory environment for the organisms within. Sound, gravity, pressure, organic

and inorganic chemicals, 8ow, light, salinity, pH and temperature are sensed by marine organisms

(Dusenbery 1992,Young, 1995). In many cases, evidence for the sensory response of marine

organisms to these cues, and the cellular mechanisms by which they do so, come from studies on

adults (and in some cases their terrestrial relatives, such as insects and nematodes). But whether
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larval forms in animals predated the origin of their corresponding adult body plans or the reverse

(Strathmann 1985), adults and their larvae share the same genomes. As such, it seems reasonable to

hypothesize that selection could eBciently lead to the acquisition of sensory modalities in larvae

that are known to occur in adults.

A full exploration of the sensory capabilities and 8uid dynamics of marine larvae –much less so their

adults– is beyond the scope of the current review (see, Crisp 1974, Young 1995, Yen 2000, Kingsford

et al. 2002, Epifanio & Cohen 2016, Fuchs & Gerbi 2016). Instead, we will focus on well-studied

examples where larvae utilize characteristic features of the 8uid environment to either identify

potential settlement locations, or determine their location relative to 8ow features that might

preferentially carry them to such settlement locations. While doing so, we will brie8y describe some

of the cellular mechanisms that larvae use or might use to monitor their external environment. We

will conclude this section by speculating how these cellular mechanisms might be integrated

hierarchically not only to maximize the probability of successful settlement, but indeed to prevent

the kinds of errors that would often be fatal for larvae making what is usually their irreversible

decision to leave the plankton (see Table 1 for de<nitions of terms).

Table 1. Metamorphosis, attachment, settlement, recruitment and “continuous settlement”. 

TERM DEFINITION

Metamorphosis is a more or less drastic morphological change between two multicellular phases (e.g.,

larva and juvenile), often involving major changes in physiology and feeding. As such,

the process can take from days to weeks to complete, and can begin while the larva is

still swimming (Chia 1978).

Settlement is the point at which the dispersive larval period ends in those marine organisms that

undergo a shift between the plankton and the benthos. As such, settlement is rapid
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(minutes to hours) and generally irreversible (though there are a few exceptions to this;

e.g., Richmond 1985). The notion that metamorphosis is distinct from settlement is

exempli<ed by crabs, whose metamorphosis occurs between the zooeal and megalopal

stages, before settlement occurs.

Attachment is typically the <rst step in the settlement process (though infaunal juveniles may

burrow at settlement, not attach). Care should be taken in using attachment as a proxy

for settlement, since unlike settlement, attachment can be and often is reversible. Larvae

sampling the substrate might attach and release repeatedly before <nally settling.

Recruitment is an ecological term describing the successful entry of a settled juvenile into a

population of conspeci<cs. The distinction between settlement and recruitment can be

exempli<ed as follows: a larva that either settles in a totally inappropriate location, far

away from any conspeci<c adults –or a newly settled larvae that is immediately eaten–

will never successfully recruit. A complication with the use of this term in the literature is

that recruitment is de<ned relative to a particular census time following settlement,

which varies among studies.

Continuous

settlement-

relocation

is a term proposed by Navarrete and colleagues (2015) to describe their observation of

mussel “postlarvae” settling in one location and then tumbling along the substrate until

they encounter their de<nitive adult (i.e., potential recruitment) location.

Note: We here provide de�nitions of key terms involving the planktonic-benthic transition in marine

invertebrates. We are compelled to do so due to the widely varied (and often contradictory) de�nitions of

these terms that have characterized the literature for over a hundred years right up to the present day.

Planktonic animals in general –and larvae speci<cally– have been shown to have the ability to

detect a wide range of environmental stimuli (Fig. 2). The majority of this evidence comes from

crustaceans (reviewed by Yen 2000, Epifanio & Cohen 2016); however, several other phyla have

been studied as well (reviewed by Young 1995, Kingsford et al. 2002). In many cases, these cues

have been hypothesized or demonstrated to be employed by larvae to assist them in locating

settlement locations, and these are the ones we will brie8y describe here. 
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Figure 2. Graphical model of multi-sensory inputs and behavioral outputs as they relate to settlement.Here we

consider only those sensory modalities and larval behaviors that have direct relevance to settlement itself, or that

increase the likelihood that larvae get retained near or carried to suitable settlement locales. (A) In the basic model, a

generic larva (here atrochophore) can detect a wide range of sensory inputs – the combination of those inputs can be

thought of as a representation of the habitat that the larva is in. The physiological and developmental state of the larva

can be thought of as alens (pictured in the center) through which the larva interprets these inputs. Thelarval nervous

system (pictured at right) then integrates those sensory inputs to elicit speci<c behavioral outputs. (B) An example of   
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As mentioned earlier, most larvae swim too slowly to be able to control their horizontal position

directly: their main strategy is to enter and exit horizontal 8ows by adjusting their vertical position.

Larvae can detect their depth by sensing pressure (Young 1995), and can potentially tell if they are

sinking, stable or rising by monitoring light intensity, pressure, and their acceleration relative to

gravity vectors over time (Fig 2). Although there is widespread behavioral evidence for these

sensory capabilities across phyla, direct physiological / morphological evidence is more limited

(Kingsford et al. 2002, Epifanio & Cohen 2016). To adjust their vertical position in response to these

cues, larvae can either swim upward or downward, sink passively if they are negatively buoyant,

adjust their buoyancy, or deploy or retract devices –like threads or mucus– or appendages to either

increase or decrease resistance to sinking. 

Using one or a combination of these mechanisms, many larvae undergo daily migrations (so-called

diel vertical migrations; DVM)from depths up into surface waters at night, at a time when visual

predators are less of a problem, and prevailing winds tend to blow towards the shore, and hence

potentially carry larvae there (reviewed in Queiroga & Blanton 2005). Other larvae undergoreverse

DVM into surface waters during the day, which would tend to o>er higher levels of their

phytoplanktonic food and a potential refuge from non- visual invertebrate predators undergoing

=====
(Fig. 2 legend continued)     an immature larva (here, asea star bipinnaria) detecting a series of sensory cues that inform

upon its depth, 8ow regime, and position relative to fronts and clines. Integration of those cues can provoke speci<c

swimming behaviors that could increase its likelihood of arriving at suitable settlement locations later in ontogeny. (C)

An example of a mature, competent larva (here asea star brachiolaria, with a very well developed juvenile rudiment)

ready to settle in a favorable locale. Now, additional cues can aid the larva in making the <nal phase of its journey to

settlement on the sea 8oor, via speci<c behaviors such as sinking and attaching in 8ow. (D) Pictorial key to thesensory

icons shown in the left half of panels A-C. 
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DVM, but could simultaneously expose larvae to visual predators and potentially wind-driven

o>shore 8ows (e.g., Ohman et al. 1983, Pennington & Emlet 1996). It may be that larvae undergoing

reverse DVM are well defended against visual predators, though we are aware of no compelling

evidence that tests this idea in a comparative context. Larvae in estuaries are known to undergo

tidal migrations, which is best studied in various crabs (reviewed in Queiroga & Blanton 2005).

Depending on the species and developmental stage, these migrations can either retain or 8ush

larvae from estuaries on ebb tides, and carry them up-estuary on 8ood tides. Finally, many larvae

undergo so-calledontogenetic migrations, in which earlier stages behave di>erently than later

ones (Queiroga & Blanton 2005). Such ontogenetic shifts may manifest as distinct tidal or DVM/

reverse-DVM behaviors, or the ontogenetic patterns might be consistent at a given stage through-

out the day or tidal cycle. The classic ontogenetic migration is to sink at late stages, which is

considered an adaptation for approaching potential settlement habitat (e.g., McCarthy et al. 2002).

It should be noted that late stage larvae of many taxa (e.g., echinoderms, gastropods, cladocerans,

brachiopods, bryozoans, crustaceans) acquire shells or skeletal structures that are retained as these

organisms enter the benthic juvenile stage. At some point, such structures are likely (and in a few

cases have been shown) to make these larvae negatively buoyant (Chia et al. 1984; but see

Pennington & Emlet 1986). If so, we would argue that this is likely an example of an exaptation

(sensu Gould & Vrba 1982; often, but less precisely called “cooption”): the likely selective advantage

of pre-settlement skeletal development is protection from predators, either in the benthos (e.g.,

newly-settled echinoderms) or in both the plankton and benthos (e.g., gastropod larvae and

corresponding juveniles). The usefulness of such shells in helping larvae sink would, in this

conception, be a bene<cial side e>ect. 
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After depth regulation, the next best studied behavioral capacity of larvae isolfaction(Fig 2).

Detecting and responding to dissolved chemicals could be useful to some larvae in feeding and

avoiding toxicants (seeCorsi and Marques-Santos, this volume; Yen 2000, Zimmer & Butman 2000),

but the most intensively researched olfactory behavior of larvae is surely in identifying potential

settlement cues and deterrents (reviewed in Pawlik 1992, Young 1995). In the cases where the

existence and activity of such dissolved cues have been demonstrated, larval behavior in response

to such cues can be quite complex. For example, in the coral-grazing sea slugPhestilla sibogae,

entering and exiting plumes of the dissolved coral-derived cue causes larvae to sink and resume

swimming respectively (Koehl et al. 2007). Interestingly, larval responses to settlement-inducing

olfactory cues are modulated during ontogeny: they manifest more or less suddenly when a larva

becomes “competent” to settle. Indeed, response to settlement cues is the way competence has

been traditionally de<ned (see Table 1, Hodin et al. 2015). 

The cellular and molecular mechanisms of olfaction are very well studied in <sh and terrestrial

organisms, including 8ies, roundworms and mammals. The similarities in olfactory mechanisms

among these taxa (e.g., the involvement of G-protein coupled receptors; Kaupp 2010) make it

plausible that similar mechanisms are used by aquatic organisms in general, and diverse larvae at

settlement in particular (Baxter and Morse 1992, Amador Cano et al. 2006). 

Whatever are the cellular mechanisms, the aforementioned observation –across marine phyla– of

the sudden acquisition of competence and hence responsiveness to olfactory settlement cues is

most consistent with the following scenario: olfactory responsiveness is actively repressed in
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immature and pre-competent larvae. This is sensible, given that de-repressing (or “unmasking”

sensu Chia 1978) an intact olfactory signaling system is more eBcient than assembling the

transcripts and proteins involvedde novo. Indeed, one potential global regulator of settlement is

nitric oxide/cyclic guanosine monophosphate (NO/cGMP) signaling, which is an active repressor of

settlement in multiple phyla (reviewed in Bishop & Biggers 2014). Inhibition of NO/cGMP signaling

then represses the repressor, thus uncovering the capacity of a larva to settle, possibly in part via

unmasking an already intact olfactory response. In sea urchins, histamine has been identi<ed as

another such regulator of settlement (Swanson 2007, Sutherby et al. 2012) and, in the context of

fertilization, has been shown to activate NO signaling (Leguia & Wessel 2006).

A few notes of caution about larval olfaction are warranted. First, the majority of studies of larval

responses to settlement inducers are undertaken in dishes in the laboratory in still water. This is a

highly arti<cial situation (see, e.g., Metaxas 2013), and there is evidence that the olfactory system

integrates with the larval response to water motion in natural settings (Woodson et al. 2007,

Zimmer & Butman 2000). As such, more studies examining olfactory and other settlement responses

under realistic 8ow conditions would surely be welcome. Second, the levels of inducer that are

needed to stimulate settlement are often orders of magnitude higher than concentrations

measured in the <eld (but, e.g., see Swanson et al. 2007). In such cases, we should be circumspect in

ascribing ecological relevance to those cues and/or the mechanisms by which larvae respond to

them. And third, it has been argued by several authors that dissolved chemical cues are unlikely to

be e>ective in most natural settings (and especially in high 8ow environments) beyond a few

centimeters from the source of the cue (e.g., Denny & Shibata 1989, Koehl et al. 2007). Therefore, if

larvae are responding to dissolved cues, this is typically only going to be e>ective once they have
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already managed to arrive extremely close to potential settlement habitat. This is one of the reasons

that we maintain thea prioriexpectation that larvae also respond to other (non-olfactory) types of

cues that would be e>ective at scales from cm's to km's.

A third class of sensory modalities that larvae could use to aid in their successful settlement –and

one that could potentially act at much broader scales than dissolved chemical cues– relates to

water movement. Larvae being carried in horizontal 8ows of a given velocity would generally have

no frame of reference to detect that 8ow. By contrast, attached larvae on the benthos are in some

cases known to react to di>erent rates of 8ow going past them, and this can in8uence their decision

to either settle permanently in that location or to continue their search (see Table 1; Fig. 2). In

addition, some larvae are known to respond toturbulence, and because turbulence and wave

motions are often stronger in shoreline regions they could be useful indicators to larvae attempting

to return to nearshore settlement habitats, as we discuss in more detail below. The mechanisms by

which larvae detect turbulence and wave motions are unknown, and furthermore, there are several

aspects of water motion to which larvae could be responding (e.g., Fuchs et al. 2015), including

translational acceleration, 8uid rotation (via statocysts), various gradients in velocity (via

deformation of cilia or activation of stretch receptors) or some combination (Fuchs & Gerbi 2016).

Additional sensory capabilities of larvae that could aid their progression towards settlement are the

abilities to detect and monitorsound,touch,temperature andsalinity (Fig. 2). Response to

temperature (e.g., via transient receptor potential [TRP] channels) and salinity (via sodium and

potassium channels) are widespread and likely generic features of marine larvae. Behaviorally,

responding to temperature and salinity can be adaptive for larvae entering or avoiding estuaries, or
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for entraining into or exiting upwelling (colder, higher salinity) versus downwelling (warmer, lower

salinity) 8ows, as we will discuss brie8y below. Mechanosensation is also likely generic, even if it has

not been widely studied. Examples include some fouling organisms like colonial ascidian larvae, as

well as some non-animal propagules (e.g., kelp spores), which will seemingly settle when contacting

virtually any solid surface (Grosberg 1981, Gaylord et al. 2006). Sound has only recently been

appreciated as an important cue that larvae can use to recognize the overall features of their adult

habitat. In the last few years, compelling evidence has been presented that some larval reef <sh and

invertebrate larvae respond positively to sound recordings of waves impacting coral reefs, and late

stage oyster larvae likewise respond speci<cally to recordings made over an intact oyster habitat,

but not to control recordings from other nearby locations (see, Lillis et al. 2013). 

We expect that larvae deciding where to irreversibly settle would draw on a rich and diverse array of

sensory information that could provide details about the suitability of its potential adult habitat. In

this sense, our larva might be expected to use a process akin to an Analytic Hierarchy Process (sensu

Saaty 2008), in which larval experience could modulate the relative importance and strength of

certain cues. For example, the presence of planktonic predators might lower a larva's threshold

sensitivity to a dissolved chemical inducer. More to the point, we might expect di>erent taxa in

di>erent types of habitats to prioritize certain cues over others. For example, larvae settling in high

energy habitats might prioritize turbulence cues over chemical cues, those settling in mangrove

estuaries might prioritize salinity and temperature cues over turbulence cues, and those settling on

a speci<c species of coral might prioritize a speci<c dissolved chemical cue even in the temporary

absence of characteristic reef sounds. In particular, the hypothesized hierarchically-arranged

signaling pathways might be more or less organized in a fashion parallel to the scale over which the
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cue acts (Fig. 3). For example, turbulence, sound, and salinity cues could operate at a broader

“habitat” scale of meters to kilometers, dissolved chemical cues and turbulent 8ows over rough

surfaces at millimeters to centimeters, and mechanosensory cues like surface topography on sub-

millimeter scales (e.g., Whalan et al. 2015). Presently, the evidence for such hierarchical cue

strategies for settlement is limited (Kingsford et al. 2002), and their arrangement by scale is pure

speculation. Still, it seems a fruitful area for future comparative investigations.

Figure 3. Relevant scales of

sensory input for settlement.As

in Fig. 2, we here speci<cally focus

on those sensory modalities that

larvae might use to identify

suitable settlement locations or

that might trigger behaviors that

would increase the likelihood that

they are retained near or carried

to such sites. For example, we do

not here consider the many

sensory inputs that larvae use (or

likely use) for feeding. Note the

logarithmic distance scale on the

x-axis, denoting the larva's

distance from a suitable settle-

ment site. The four scale bins

shown below the x-axis (macro,

meso,local andlarval) mirror our

treatment of these scales in the

text.Grey scale gradients indicate

our approximation of the relative

importance of a given sensory

modality at a range of scales;dashed regions indicate probable gaps in our knowledge of the importance of speci<c

sensory inputs for settlement at those scales.
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In more general terms, the behavioral integration of multiple sensory modalities (multisensory

integration) is a concept that has received much attention in vertebrates and insects in recent years.

It is, in brief, the interaction or synergy among the di>erent senses and the compilation of their

information content (Stein et al. 2014). In mammals, such integration can typically be coordinated at

multiple levels of the nervous system (Stein et al. 2014). In 8ies, the integration between olfactory,

visual and mechanosensory input guides 8ight in three dimensions (Duistermars et al. 2009), but

the underlying mechanisms of this integration remain to be explored. Similarly, planktonic

organisms maneuver in a three-dimensional environment rich with sensory cues, such as those

outlined above (e.g.,Woodson et al. 2007). Although larval nervous systems are generally less

centralized (and certainly less well studied) than those of vertebrates and insects, larvae from

disparate phyla have concentrated neuronal structures which in some cases are thought to function

in sensory integration during settlement via the action of familiar neurotransmitters, which act on

single target cells, and neuromodulators, which can have multiple targets (e.g., Had<eld 2011,

Bishop & Biggers 2014, Sutherby et al. 2012). 

The small size of marine larvae makes functional neurophysiological studies challenging.

Nevertheless, modern methods examining the full complement of proteins and metabolic pro<les

(proteomics and metabolomics, respectively) that are expressed over time and under di>erent

conditions can and are being employed in studies of larvae and their metamorphoses (e.g., Song et

al. 2016; Williams & Carrier, this volume). Furthermore, targeted gene manipulation methods have

begun to be applied to metamorphic stages of marine larvae as well (e.g., Heyland et al. 2014). As

such, the coming years o>er great promise for further elucidating the detailed mechanisms of

sensory perception in larvae, and how –on a mechanistic level– settlement decisions are made.
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How larvae 4nd their way home: scales of "ow and larval behavior

We have considered the 8ow regimes that larvae experience as well as the sensory capacities that

larvae use to detect cues in their environment. Now we move back out to larger scales to try to

address the following question: where do larvae go, and how do they <nd their way back?

In recent decades, our understanding of where larvae go and how they <nd their way back to shore

has grown enormously, with literally hundreds of papers each year published on various aspects of

this topic. Nevertheless, there remain surprisingly fundamental disagreements in the <eld about the

predominant oceanographic mechanisms that deliver larvae to coastal habitats (reviewed in Pineda

et al. 2010). Are the numbers of larvae in the plankton (the so-calledlarval supply) a good predictor

of the number of eventual settlers or not? Do larvae by and large get advected far o> shore by

large-scale coastal processes likeupwelling, only to be returned to shore on the occasional reversal

events? Or are most larvae actually retained very close to shore throughout their entire larval life

(Morgan et al. 2009)? If so, is this pattern ofnearshore retention due to active larval behaviors or

passive responses to oceanographic forces beyond their control? Do larvae concentrate in clinal

fronts, oceanographic eddies or even 8otsam as a possible means of remaining close and/or

transporting to shore? Do larvae easily transit through the surf zone? Or do they remain in the

waters just seaward of the surf –like a sailing ship becalmed within sight of port– with the surf zone

as a semi-permeable barrier (sensu Rilov et al. 2008) to onshore delivery? 
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We will not attempt to o>er de<nitive answers to any of these questions, we instead defer to Pineda

and Reyns (this volume), who treat these questions in much greater detail. For our purposes, we will

brie8y describe some of these oceanographic mechanisms of transport as they relate to the

likelihood of larvae returning successfully to settlement locales, and we will provide some of the

evidence for and against them from speci<c case studies. Finally, we will indicate where we think

there are gaps in the literature that could enrich our understanding of how disparate larvae in

discrete geographic or oceanographic situations might enhance the probability of surviving to

settle in the right place and time. In so doing, we will follow our larva across multiple scales from

o>shore waters back to the nearshore, stressing the behavioral adjustments that larvae could make

to maximize the likelihood of successful settlement in suitable habitats.

1.The macro scale: ~1-100 kilometers

Much e>ort in recent decades has been directed at developing increasingly realistic oceanographic

circulation models, and using them to predict the dispersal patterns of larvae, other propagules and

the plankton in general. With respect to settlement and the delivery of larvae to the shoreline, many

of these aforementioned models have made the optimistic assumption that sampling of larvae at

various distances from the shoreline will give direct insight into their settlement on the shore. Or to

put it another way: larval supply is the main driver dictating settlement and ultimately recruitment.

This view is not without support (see, Pineda et al. 2010; Pineda & Reyns, this volume), but many

additional studies have shown that the patterns are not quite so simple, revealing situation speci<c
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disconnects between larval supply and recruitment. For example, pre-settlement processes like

density dependence of settlement itself and the association between tidal height and settlement

timing can profoundly impact recruitment success and location (e.g., Grosberg 1981, 1982). Post

settlement processes such as secondary movement of settled larvae and heavy predation or

environmental stress on settlers can also break the simple connection between larval supply and

recruitment (reviewed in Pineda et al. 2010). 

With respect to larval transport, the following question seems deceptively simple, but is fraught

with complexity and controversy: where do larvae go? One attractive scenario in upwelling

dominated regions such as the Eastern Paci<c and West coast of South Africa is that predictable

wind-driven currents cause large scale, coordinated movements of larvae on a seasonal time scale.

For example, along the California coast the prevailing California Current 8ows from the North in the

Spring. Coriolis forces(drivingEkman transport) de8ect the prevailing currents o>shore, with

these displaced waters being subsequently replaced through upwelling of deep, nutrient rich

waters up onto the continental shelf. These upwelled nutrients drive famous seasonal plankton

blooms, and Ekman transport is predicted to send these plankton –and the larvae therein– o>shore.

Occasional relaxations in the prevailing winds cause temporary reversals in the direction of the

cross-shore currents, transporting larvae shoreward. 

Many observations have substantiated the predictions of thisupwelling-relaxation hypothesis

(Roughgarden et al. 1991), <nding enhanced settlement and/or recruitment (see Table 1 for the

distinction) associated with relaxation conditions and lower settlement/recruitment with upwelling

events. Nevertheless, there have also been numerous studies in recent decades <nding just the
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opposite: no association between upwelling-relaxation events and onshore recruitment (see,

Pineda et al. 2010; Pineda & Reyns, this volume). Instead, these and other studies have identi<ed or

proposed additional oceanographic mechanisms for onshore transport, including internal tides,

fronts, wave-driven 8ows, and even suspended materials like 8ocs, 8otsam, and surface slicks.

In some cases, the seemingly contradictory results outlined above could simply be due to di>ering

sampling methodologies and intervals (Pineda et al. 2010; Pineda & Reyns, this volume).

Nevertheless, there are a growing number of studies in which the same species at di>erent times or

locations, or, more commonly, di>erent species sampled in the same location and time period yield

con8icting support for relaxation-associated settlement, even within the same publication. In one

recent example from an upwelling region of Brazil, Mazzuco et al. (2015) found contrasting results

for mussel and barnacle settlement: barnacles settled in association with times of predicted

relaxation events, whereas mussel settlement patterns showed no such relationship.

One particular set of observations that runs counter to a central prediction of the upwelling-

relaxation hypothesis is the surprising <nding that many larvae are not advected far o>shore at all.

Instead, through various oceanographic and behavioral mechanisms (such as the coastal boundary

layer and vertical migration patterns, respectively, as discussed above), larvae in multiple locations

and contexts appear to complete all or most of their planktonic period very close to the shore at

which they were released. Thus a new paradigm has emerged regarding so-calledlarval retention,

which would of course seem to make it far more likely that larvae could make their way back to

appropriate settlement locations (presumably using the onshore transport mechanisms referenced

above; see, Pineda et al. 2010; Pineda & Reyns, this volume). 
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One caveat with the majority of studies that have addressed these issues to date is that they have

generally taken a rather limited taxonomic focus, with barnacles and other crustaceans, mussels,

and <shes as the subject of nearly all of this published work. In certain respects, this focus is

understandable. First, most heavily studied taxa either have associated <sheries (crustaceans,

mussels, <shes) or are dominant in fouling communities (barnacles) as adults. Second, studying

larvae in the plankton can be painstaking work, as larvae of many taxa appear highly episodically in

the plankton and in recruitment events. By contrast, mussels, crabs, and barnacles, in particular, are

dominant shoreline and estuarine invertebrates in many locales, and likewise dominate larval

zooplankton assemblages in corresponding o>shore regions. Nevertheless, an expanded taxonomic

focus seems necessary to give a more complete picture of where larvae go and when. 

But research focused even within the well-studied taxonomic groups has yielded contradictory

<ndings, as mentioned above. It may be that the taxonomically, spatially and temporally diverse

responses of larvae to a given set of oceanographic conditions is consistent with the Sweepstakes

Reproductive Success (SRS) hypothesis (see, Hedgecock and Pudovkin 2011). The SRS hypothesis

posits that larvae within populations demonstrate physiological and behavioral diversity with

respect to their context-dependent growth and survival in the plankton, and that successful

recruitment can be seen as a process akin to winning a sweepstakes, where all of the right

circumstances come together for that improbable win. In a variable environment, no one “strategy”

would be consistently favored, thus maintaining diversity in the way larvae respond to

oceanographic conditions. Such diversity might be predicted to manifest in inconsistent

geographic and temporal patterns of larval dispersal mechanisms both among and within species.
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Whether or not the SRS hypothesis is supported, we conclude that biological and physical factors

that vary geographically, seasonally, tidally, daily and taxonomically can and do impact the

relationship between supply and recruitment, and therefore we are still seeking a holistic

understanding of these processes that might o>er predictive power. For example, we await a

comprehensive meta-analysis of the myriad published studies on larval supply and recruitment to

help illuminate the path forward for the <eld.

2.The meso scale: < 0.1 – 1 kilometers

At this point, by whatever mechanism has brought or retained our larva in the coastal zone, the

diBculties are far from over. A larva seeking shoreline habitat still needs to traverse the surf zone to

arrive on shore, and once it does so, to recognize that it has indeed arrived there. Is it possible that

the surf zone itself can provide such cues to larvae?

Recent and growing evidence suggests that the answer is 'yes' (Fig. 3). First, larvae of multiple taxa

have recently been shown to respond to recordings of habitat sounds by increasing their likelihood

to settle (see Lillis et al. 2013). Likewise, there may be chemical cues in some speci<c situations that

are enhanced in broader scale habitats, like breakdown products of kelp in the nearshore, and

mangrove-derived chemicals in tropical estuaries. Finally, the surf itself may be a cue. Studies by

Gaylord et al. (2013) and Hodin et al. (2015) show that sea urchin and sand dollar larvae with

nearshore adults exhibit enhanced settlement in response to high levels of turbulence: speci<cally,

levels indicative of those seen under crashing waves. Interestingly, turbulence is not a settlement
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“cue” per se, since it does not directly induce larvae to settle. Instead, exposure to turbulence primes

these larvae to settle: a greater proportion of turbulence exposed larvae will settle when

subsequently provided with a strong localized (i.e., chemical) settlement inducer. Because such

settlement inducers are how competence is traditionally de<ned, these results lead to the intriguing

conclusion that turbulence exposure actually causes larvae to become competent to settle. Other

studies demonstrate that exposure to turbulence and waves can have another seemingly

advantageous impact on late stage larvae in some taxa: it causes them to either actively or passively

sink (see, e.g., Fuchs et al. 2015; but see Wheeler et al. 2013). This behavior could provide a selective

advantage for nearshore-destined larvae in the water column by increasing their chances of

contacting the sea8oor (Denny & Shibata 1989), or at least of arriving nearby. 

3.The local scale: 10s of centimeters – 10s of meters

Our larva has now –through what was likely a combination of luck and directed behaviors (such as

sinking in turbulence or association with surface slicks)– arrived tantalizingly close to potential

settlement sites. What larval behaviors in association with the properties of the 8uid environment at

these local scales might make the di>erence between reaching such benthic sites or being

advected away?

Here our larva is approaching the benthos, and much research e>ort has been directed at how 8ow

over complex substrates can impact the likelihood of larvae –and non-animal propagules such as

seaweed spores– entering the benthic boundary layer and contacting the substrate. In one classic

modeling study, Denny and Shibata (1989) showed that on wave swept shores, turbulence alone (in
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the absence of directed larval behaviors) can carry larvae eBciently and quickly to the substrate,

and that rapid (>1 mm • sec-1) sinking or downward swimming of larvae can enhance this e>ect (Fig.

3). Likewise, multiple studies have shown that realistic 8ow over complex surfaces (including

conspeci<c adults) can increase the likelihood of larvae contacting the substrate, though in very

high 8ows, larvae may not be able to e>ectively attach (Crimaldi et al. 2002). Manipulation of 8ow

dynamics in <eld settings show that increasing 8ow over settlement plates can increase recruitment

rates (Palardy & Whitman 2011), but it is unclear if this result is due to settlement or post-settlement

processes.

In estuaries, salinity and temperature can vary on the local scale, and competent larvae are known

to adjust their swimming behavior in response, for example, to drops in salinity (Epifanio & Cohen

2016; Fig. 3). Also, characteristic habitat sounds (such as urchins scraping the substrate; Radford et

al. 2010) may indicate to larvae that they have arrived close to preferred habitat. Although most

studies on larval sound perception and settlement responses to date have considered the meso

scale to be the e>ective scale, studies contrasting more localized sound cues seem warranted.

With respect to olfaction, as at the meso scale, there are certain 8ow regimes in which one could

imagine larvae detecting and responding to local-scale chemical signatures associated with speci<c

settlement sites, but de<nitive evidence is scant. In some reef <sh, larvae are known to settle in

response to the smell of conspeci<c adults, and in one case (the Humbug damsel<sh,Dascyllus

aruanus) previous eye contact of the adults with the juveniles changes the nature of the adult odor

to make it more inductive to larvae: these adults thus actively recruit conspeci<c larvae (Roux et al.

2015). 
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There are other classes of potential local cues that remain unexplored or largely so. For example,

tide pools are known to undergo dramatic diurnal 8uctuations in pH (Daniel & Boyden 1975; Jellison

et al. 2016). The possibility that larvae settling in the intertidal zone might respond positively to

such pH shifts has not to our knowledge been directly addressed experimentally. Likewise, although

temperature can also 8uctuate dramatically in intertidal habitats, only a few studies have examined

the potential modulatory e>ect of temperature on other classes of settlement cue (Pechenik 1984).

 

4.The larval scale: < 1 milimeter – a few centimeters

This is the spatial scale over which a larva experiences its environment on short time scales (seconds

to minutes). At this point, our larva has successfully been carried to benthic habitat that –based on

cues already received at broader scales– seems like a potentially bene<cial place to settle. But the

<nal decision about whether or not to irreversibly commit to this settlement location could still be

modulated by the environment on very <ne, even microscopic scales (Fig. 3). 

Based on modeling of odor dispersion, this is the scale at which dissolved chemical cues would

likely exist at suBcient concentrations to be detected above background by –and thus elicit a

behavioral response in– larvae (Koehl et al. 2007). Furthermore, many chemical inducers of

settlement have been shown to be substrate bound, including what is perhaps the most generic

chemical cue used by disparate marine larvae: chemicals associated with surface bio<lms (reviewed

in Had<eld 2011); it is therefore only at the scale of the larva that such cues are available to them.

On the other hand, chemical deterrents of settlement (such as toxic compounds or the smell of a
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predator) could also be detected at the larval scale, and may e>ectively inhibit the settlement

process before it is too late (Woodin 1991). 

There are also several other classes of cues that could inform our larva at the larval scale, including

light, 8uid shear, and microtopography (Crisp 1974). For example, certain coral and sponge larvae

preferentially settle on settlement tiles that have holes drilled in them: tiles with 0.4 mm holes

(approximately the width of the larvae) show enhanced settlement relative to 8at plates or those

with 0.7-1.0 mm holes (Whalan et al. 2015). Other corals settle on the undersides of experimental

settlement surfaces, and clever manipulative experiments demonstrated that this was due to

speci<cally to the inhibitory nature of red (but not blue/green) spectrum wavelengths striking the

upper surfaces (Strader et al. 2015). Finally, decisions on the larval scale could be important for our

larva to avoid being carried away by currents and strong, turbulent 8ows during the initial stages of

making its attachment permanent (e.g., Reidenbach et al. 2009)

In sum, by the time our larva reaches the larval scale in a potential settlement location, it likely has

already received broader scale indicators of suitable habitat. Depending on the resulting juvenile's

ability to move post-settlement –as well as its vulnerability to predation, grazing or fouling soon

after settlement– cues at the larval scale might not only provide valuable information to enhance

growth and survival (see Pechenik, this volume), but may indeed be the last chance that our larva

has to abort the settlement process and seek purchase elsewhere.
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Conclusion

These are exciting times for larval ecology and evolution. Oceanographic models and survey

methods are greatly improving our ability to determine where larvae go and how they return to

coastal regions (see Pineda & Reyns, this volume). Barcoding methods will soon make it possible to

obtain rapid information on plankton assemblages that previously required painstaking manual

sorting (see Marko & Hart, this volume). Laboratory methods can challenge larvae with increasingly

realistic 8ow conditions and sensory experiences, coupled with imaging techniques to visualize

resulting behaviors. And molecular methods are making it possible, in almost any taxa, to

interrogate and manipulate the detailed cellular and neurophysiological mechanisms underlying

complex behaviors like larval settlement (see Williams & Carrier, this volume). 

Thus there is great promise for addressing issues in larval ecology that have puzzled and inspired

researchers for many decades. For example, examining the sensory context of settlement behaviors

in realistic environmental conditions would give important insight into the evolution of contrasting

settlement strategies, how disparate larvae prioritize diverse sensory inputs, and what this

prioritization means neurophysiologically. Elucidating the predominant migration pathways that

larvae undertake may inform on a second generation of marine protected area design, one that

more deliberately couples critical nearshore locales to their o>shore “nursery” grounds (see,

Weissburg et al. 2014). More generally, as we hope to have demonstrated, settlement in marine

invertebrates is an ideal subject for integrative biology: combining oceanography, 8uid dynamics,

sensory ecology, animal behavior, developmental, cellular and molecular biology. Furthermore, the
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likely independent origins of larvae in diverse phyla, as well as the sometimes extreme contrasts in

settlement locales even among closely related species, o>er abundant comparative material for

detailed evolutionary studies into this key life stage transition for animals and non-animals alike.

Summary

1.Flow at the larval scale is fundamentally di>erent than 8ow at the scale of larger organisms

(such as ourselves): the former is dominated by viscous forces, the latter is dominated by

inertial forces.

2.Larvae are not merely 'passive particles': although many larvae cannot make headway

against strong oceanic currents, they can adjust their vertical position in the water column,

and this can have profound in8uences on where larvae go and how they can <nd their way

back towards suitable settlement locations.

3.Larvae engage a wide range of sensory modalities in order to ascertain and advantageously

adjust their vertical position in the water column, as well as their proximity to potential

settlement locations; an overlapping but unique set of sensory inputs characterizes their

habitat at di>erent scales.

4.We hypothesize that larvae integrate these various cues in a hierarchical fashion, and

disparate taxa in di>erent contexts will demonstrate alternative arrangements and strengths

of the cues that they use to locate settlement sites.

5.Modern techniques o>er the promise of answering several long-standing, vexing questions

in larval ecology that bear on topics as wide ranging as mechanisms of metamorphosis, life

history evolution, conservation biology and the origins (and losses) of larvae.
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Larval retention
Almany et al. 2007, Becker et al. 2007, Brown et al. 2016, Cowen et al. 2006, Drake et al. 2013, 
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Andrews 1988, Sponagule et al. 2002 (review), Swearer et al. 2002 (review), Teodosio & Garel 
2015, Trindade et al. 2016

PAGE 12

“...e;cient acquisition of sensory modalities in larvae that are known to occur in adults.”
The idea here is that if an adult has the cellular and neurophysiological capacity to respond 
to a given stimulus, then this capacity already resides in the genome. Therefore, in this case, 
the evolutionary origin of such a capacity in their larvae would simply be a matter of 
activating that capacity early in ontogeny. This is thus evolutionarily much more eCcient 
than evolving the genomic capacity de novo. See also Marshall & Morgan 2011.
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Figure 2: Sensory systems as >lters
Reviews:  Warrant 2016, Zimmer & Butman 2000
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Depth sensing in larvae and other plankton
Digby 1977, Forward & Wellins 1989, Knight-Jones & Morgan 1966, Naylor 2006 (review), 
Sulkin 1984, Young & Chia 1987

Plankton abilities to sense light intensity and gravity
Forward 2009, Miller & HadDeld 1986, Naylor 2006, Queiroga & Blanton 2005, Tankersley et 
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Buoyancy adjustments in larvae and other plankton
Alexander 1990, Bidigare & Biggs 1980, Kahn & Swift 1978, Molloy & Cowling 1999, Power 
1989, Sanders & Childress 1988
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Transport: Bonicelli et al. 2016, Christy & Morgan 1998, Cohen et al. 2014, Emlet 1986, 
Forward 2009, Garland et al. 2002, HoImann et al. 2012, Koehl et al. 1997 (review), Lloyd et 
al. 2012, Mariani et al. 2006, Naylor 2006 (review), Sulkin et al. 1980, Trindade et al. 2016
Predator avoidance: Christy & Morgan 1998, Cohen et al. 2014, Forward 2009, Garland et al. 
2002, Levinton 2013, Lloyd et al. 2012, Morgan 1990, Ohman 1990
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Tidal migrations
Christy & Morgan 1998, Naylor 2006 (review), Tankersley et al. 2002

Ontogenetic migrations
Carriker 1951, Gallager et al. 1996, Morgan et al. 2009, Naylor 2006 (review), Paris et al. 2007, 
Pennington & Emlet 1986, Romero et al. 2012, Tankersley et al. 2002
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Heuschele & Selander 2014, Kaupp 2010, Kiørboe 2011, Yen 2000
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Reviews: Crisp 1974, HadDeld & Paul 2001, Zimmer & Butman 2000

Molecular mechanisms of olfaction in invertebrates
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Biggers et al. 2012, Bishop & Brandhorst 2001, Bishop et al. 2001, Bishop et al. 2006b, Bishop 
et al. 2008, Hens et al. 2006, Romero et al. 2013, Wang et al. 2016, Zhang et al. 2012; but see 
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Hoekstra et al. 2012, Jin et al. 2014a, Jin et al. 2014b, Swanson et al. 2012

Olfaction integration with hydrodynamics
Ellrich & Scrosati 2016, Franco et al. 2016, Kiørboe 2011 (review), Koehl & Strickler 1981, 
Koehl & Cooper 2015, Pawlik & Butman 1993, Tamburri et al. 1996, Yen 2000 (review)



Dissolved cues yes
Browne & Zimmer 2001, Elbourne & Clare 2010, Ellrich & Scrosati 2016, Ferrier et al. 2016, 
HadDeld & Koehl 2004, Krug & Manzi 1999, Morello & Yund 2016, Tamburri et al. 1996, 
Wheeler 2016, Zimmer et al. 2016, Zimmer-Faust & Tamburri 1994; c.f. Webster & Cardé 2016

Dissolved cues no
Crimaldi & KoseI 2001, Toth et al. 2015
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Turbulence detection by plankton
Fuchs et al. 2015a, Fuchs et al. 2015b, Kiørboe 2011 (review), Koehl & Strickler 1981, Yen 2000
(review)

Turbulence and settlement
Carrillo 2015, Crimaldi et al. 2002, Grassle et al. 1992, Denny & Shibata 1989, Fuchs et al. 2010,
Fuchs & DiBacco 2011, Fuchs et al. 2013, Fuchs et al. 2015a, Fuchs et al. 2015b, Gaylord et al. 
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(review), Mullineaux & Butman 1990, Mullineaux & Butman 1991, Wheeler et al. 2015, Pawlik 
et al. 1991, Pawlik & Butman 1993, Koehl 2007; but see Naegel et al. 2003

Temperature
Forward 2009, Kingsford et al. 2002, Young 1995

Salinity
Forward 2009, Hughes 1969, Kingsford et al. 2002, Mann et al. 1991, Tankersley et al. 1995, 
Young 1995

Touch
Schmidt & Ache 1996 (mechanism in spiny lobster adults)

Sound
Butler 2016, Eggleston et al. 2016, Hinojosa et al. 2016, Jolivet et al. 2016, Kaplan & Mooney 
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Hierarchical arrangement of cues
Franco et al. 2016, Fuchs et al. 2010, Von der Meden et al. 2015, Morgan & Christy 1994, 
Welch & Forward 2001, Woodson et al. 2007, Zimmer et al. 2009; c.f. Webster & Cardé 2016; 
but see Morello & Yund 2016
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Figure 3: Cross-scale perspective on plankton, sensory systems and settlement
Kingsford et al. 2002, Prairie et al. 2012, Zimmer & Butman 2000
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Apical organs and neuronal concentrations in larvae
Byrne et al. 2007, Marlow et al. 2014, Voronezhskaya et al. 2004

Neurophysiology on larvae
Barlow 1990, Braubach et al. 2006, Burke 1983, Satterlie and Cameron 1985
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Larval supply
Barbosa et al. 2016, HoImann et al. 2012, Hurlbut 1992, Keough 1989, Mandal et al. 2010, 
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Upwelling-Relaxation Hypothesis
Connolly & Roughgarden 1999, Connolly et al. 2001, Dudas et al. 2009, Epifanio & Garvine 
2001, Garland et al. 2002, Mazzuco et al. 2015, Menge et al. 2004, Menge et al. 2015, Miller & 
Emlet 1997, Roughgarden et al. 1988, Roughgarden et al. 1991, PfaI et al. 2015, Shanks et al. 
2014, Wing et al. 1995, Wing et al. 2003, Witman et al. 2010
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Almany et al. 2007, Becker et al. 2007, Brown et al. 2016, Cowen et al. 2006, Drake et al. 2013, 
López-Duarte & Tankersley 2007, Montoya-Maya et al. 2016, Morgan et al. 2009, Nickols et al. 
2013, Paris & Cowen 2004, Poulin et al. 2002, Sammarco & Andrews 1988, Sponagule et al. 
2002, Teodosio & Garel 2015, Trindade et al. 2016
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Epifanio & Garvine 2001, Hill et al. 1996, Queiroga & Blanton 2005, Shulzitski et al. 2016, 
Trindade et al. 2016, Teske et al. 2016
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Becker et al. 2007, Doherty 1983, HadDeld & Koehl 2004, Jackson & Strathmann 1981, 
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2016, Young et al. 2012
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Jarvis 2014, Manriquez & Castilla 2011, Shanks 1983, Zimmer et al. 2012

Surf zone as semi-permeable barrier 
Morgan et al. 2016, Nickols et al. 2013, PfaI et al. 2015, Shanks et al. 2010, 2016
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Oceanographic circulation models
e.g.: Mitarai et al. 2009, Sundelof & Jonsson 2012
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Barbosa et al. 2016, HoImann et al. 2012, Hurlbut 1992, Keough 1989, Mandal et al. 2010, 
Ross 2001, Hughes et al. 2000, Witman et al. 2010
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Bierne et al. 2003, Gorospe & Karl 2015, Hunt & Scheibling 1996, Jenkins 2005, Pineda et al. 
2010 (review)
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2013, Palma et al. 2006, Shanks 2009, Tomanek & Somero 2000
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Note, we are here including several papers that do not directly address the SRS hypothesis, but 
that provide evidence for multiple mechanisms of onshore transport, which would seem 
consistent with the scenario envisioned in the SRS hypothesis, as argued in the text.
Dayton et al. 2016, Hedgecock 1994, Knights et al. 2012, Lloyd et al. 2012, Menge et al. 2015, 
Moberg & Burton 2000, PfaI et al. 2015, Pineda et al. 2010, Sammarco 1991, van Montfrans et
al. 1990, Wing et al. 2003, Watts et al. 1990
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Sounds and settlement
Butler 2016, Eggleston et al. 2016, Hinojosa et al. 2016, Jolivet et al. 2016, Kaplan & Mooney 
2016, Lillis et al. 2016, Pine et al. 2012, Rossi et al. 2015, Rossi et al. 2016

“Meso scale” olfactory cues
Note that the scale of these cues has not been explicitly studied in most of these cases.
Gerlach et al. 2007, Dixson et al. 2008, Dixson et al. 2011, Trapido-Rosenthal & Morse 1985

Turbulence and settlement
Carrillo 2015, Crimaldi et al. 2002, Grassle et al. 1992, Denny & Shibata 1989, Fuchs et al. 2010,
Fuchs & DiBacco 2011, Fuchs et al. 2013, Fuchs et al. 2015a, Fuchs et al. 2015b, Hubbard & 
Reidenbach 2015, Koehl et al. 2013, Koehl & Cooper 2015, Manriquez & Castilla 2011, 
Navarrete et al. 2015, Pernet et al. 2003, Pineda et al. 2010 (review), Mullineaux & Butman 
1990, Mullineaux & Butman 1991, Wheeler et al. 2015, Pawlik et al. 1991, Pawlik & Butman 
1993, Koehl 2007; but see Naegel et al. 2003
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Turbulence and larval behaviors that may enhance settlement prospects
Fuchs et al. 2010, Fuchs & DiBacco 2011, Fuchs et al. 2013, Fuchs et al. 2015a, Fuchs et al. 
2015b, Kiørboe 2011 (review), Koehl & Strickler 1981, Pawlik 1992, Yen 2000 (review); but see 
Welch et al. 1999, Wheeler et al. 2013
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Flow in benthic boundary layer, and settlement of larvae
Crisp 1955, Eckman 1990, Eckman 1996, Franco et al. 2016, Gambi et al. 1990, Gaylord et al. 
2002, Harlin & Lindbergh 1977, Jonsson 2005, Koehl 2007, Koehl & Cooper 2015, Larsson et 
al. 2016, Leonard et al. 1998, Mullineaux & Butman 1990, çlafsson et al. 1994, Quinn & 
Ackermann 2014, Reidenbach et al. 2009, Walters et al. 1997, Zimmer & Butman 2000

Temperature as local cue
Forward 2009, Kingsford et al. 2002, Young 1995



Salinity as local cue
Forward 2009, Hughes 1969, Kingsford et al. 2002, Mann et al. 1991, Tankersley et al. 1995, 
Young 1995

Local scale olfactory cue evidence
e.g.: Browne & Zimmer 2001, Dixson et al. 2008, Dixson et al. 2011, Knight-Jones 1953, 
Toonen 2005, Toonen & Pawlik 1994, Toonen & Pawlik 2001, Trapido-Rosenthal & Morse 
1985
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Settlement impacts of acidi>cation
The speci"c hypothesis mentioned in this section (that larvae might use diurnal shifts in pH as a 
proxy for the nearshore environment, and thus such treatments might increase settlement rates 
in nearshore taxa) has not to our knowledge been addressed. However, there have been several 
studies that have examined the settlement of larvae under various ocean acidi"cation scenarios. 
For example:
Crim et al. 2011, Doropolous et al. 2012, Uthicke et al. 2013

Temperature 4uctuations and settlement 
Saunders & Metaxas 2007, Vargas et al. 2004

Odor dispersion and plumes
Ellrich & Scrosati 2016, Franco et al. 2016, Koehl & Cooper 2015, Pawlik & Butman 1993, 
Zimmer & Butman 2000

Bio>lms
HadDeld et al. 2014, Shikuma et al. 2014, Whalan & Webster 2014

PAGE 32

Settlement deterrants
Abelson & Denny 1997, Abelson et al. 1994, Butman & Grassle 1992, Jonsson et al. 2004, Krug 
2006, Larsson & Jonsson 2006, Morello & Yund 2016, Mullineaux & Butman 1991, Pawlik 
1992, Turner et al. 1994, Young 1995

Microtopography
Crisp & Barnes 1954, Crisp & Ryland 1960, Koehl 2007, Le Tourneux & Bourget 1988

Light as local cue/deterrant
Baird et al. 2003, Queiroga & Blanton 2005, Webster et al. 2015

Fluid shear as local cue/deterrant
Crimaldi et al. 2002, Crisp 1955, Eckman 1990, Eckman 1996, Franco et al. 2016, Gambi et al. 
1990, Gaylord et al. 2002, Harlin & Lindbergh 1977, Jonsson 2005, Koehl 2007, Koehl & 
Cooper 2015, Larsson et al. 2016, Leonard et al. 1998, Mullineaux & Butman 1990, çlafsson et
al. 1994, Palardy and Witman 2011, Quinn & Ackermann 2014, Walters et al. 1997, Zimmer & 
Butman 2000



Settlement cues as indicators of suitable adult habitat
Perhaps "rst proposed explicitly by Crisp 1974.
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Recreating oceanic 4ow conditions in laboratory
Review: Zimmer & Butman 2000

Imaging techniques for organisms in 4ow
Fuchs et al. 2015a, Fuchs et al. 2015b, Neu & Genin 2014, Wheeler et al. 2016

Marine protected area design and larvae
Brown et al. 2016, Shulzitski et al. 2016
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