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Directional asymmetry (DA) in body form is a widespread
phenomenon in animals and plants alike, and a functional
understanding of such asymmetries can offer insights into
the ways in which ecology and development interface to
drive evolution. Echinoids (sea urchins, sand dollars and
their kin) with planktotrophic development have a bilaterally
symmetrical feeding pluteus larva that undergoes a dramatic
metamorphosis into a pentameral juvenile that enters the
benthos at settlement. The earliest stage of this transformation
involves a DA: a left-side invagination in mid-stage larvae
leads to the formation of the oral field of the juvenile via a
directionally asymmetric structure called the echinus rudiment.
Here, we show for the first time in two echinoid species
that there is a corresponding DA in the overall shape of
the larva: late-stage plutei have consistently shorter arms
specifically on the rudiment (left) side. We then demonstrate
a mechanistic connection between the rudiment and arm
length asymmetries by examining rare, anomalous purple
urchin larvae that have rudiments on both the left and the
right side. Our data suggest that this asymmetry is probably
a broadly shared feature characterizing ontogeny in the
class Echinoidea. We propose several functional hypotheses—
including developmental constraints and water column
stability—to account for this newly identified asymmetry.

1. Background
Many species of benthic invertebrates have a planktonic larval
phase, which may allow these taxa to exploit alternative
resources across life-history stages, increase their dispersal
ability and maintain connectivity among populations [1–3].
The echinoderms—including sea urchins, sea stars and sea
cucumbers—exhibit a wide variety of such planktonic larval
forms, both feeding and non-feeding [4–8]. These forms are
the result of evolutionary pressures that appear to shape
larval morphology within the confines of opposing functional

2016 The Authors. Published by the Royal Society under the terms of the Creative Commons
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constraints, in particular on feeding ability versus stability in the water column [9,10]. Specifically,
feeding structures generally require large surface area for particle capture, whereas stability, especially
in turbulent waters, relies upon minimal surface area [8].

Consistent with these proposed trade-offs are the derived, non-feeding larval forms that have evolved
independently and repeatedly across echinoderm taxa. Such larvae avoid the aforementioned functional
constraints on feeding versus stability, and thus tend to be relatively simple in overall structure, with
uniform ciliation or multiple ciliated bands circling their spheroid bodies to facilitate movement [11].
By contrast, feeding larvae exhibit more complex morphologies, and two classes of echinoderms—the
ophiuroids (brittle stars and basket stars) and the echinoids (sea urchins, sand dollars and kin)—have
independently evolved similar-looking pluteus larvae [12,13], with 2–8 or more larval arms supported
by internal skeletal rods. These arms are used for feeding and swimming, provide structural support and
might assist in passively orienting the larvae and offering protection from predation [14–17].

The diverse echinoderm larvae described above share one key developmental feature: at a certain
point in larval development, a directional asymmetry (DA) appears when juvenile structures begin
to form internally on the left side in the otherwise bilaterally symmetrical larva. In most echinoids
with feeding larvae, this asymmetry is first visible as an invagination of ectoderm on the left side
that contacts a coelomic pouch, and they jointly transform into the echinus rudiment (or ‘rudiment’ for
short), which ultimately forms the oral portion of the pentamerally symmetrical juvenile [18–22]. The
juvenile structures will continue to grow and differentiate within the larva until it reaches metamorphic
competence, at which point if it subsequently encounters suitable substrate, the larva will settle
irreversibly on the benthos. The relationship between the juvenile and the larva is in a sense parasitic
as the juvenile structures develop at the expense of larval growth (reviewed in [23]).

The directionally asymmetrical rudiment invagination is particularly well studied in the purple sea
urchin, Strongylocentrotus purpuratus. Aihara & Amemiya [21] provided strong experimental evidence
that the right side of the larva is largely responsible for differentiating the L–R axis: laterally bisected
larvae (before rudiment invagination) all regenerate and develop to competence, but the larvae
developing from the left halves rarely exhibited normal L–R patterning, whereas those from the right
side almost always developed normally. More targeted removals of portions of the right side also resulted
in larvae with abnormal L–R patterning.

Recent molecular evidence has further supported this scenario of right side control of the L–R
asymmetry. The identified genes that appear to regulate L–R asymmetry in urchins encode two secreted
growth factor-like proteins—Nodal and Lefty—and the Pitx2 paired-class homeodomain protein,
all three of which are expressed primarily on the right side of the larva; their proper expression
restricts rudiment formation to the left side [24]. Bone morphogenetic protein (BMP) signalling is
then asymmetrically activated and is required for the development of left-sided structures and marker
genes [25]. Additionally, an H,K-ATPase-like protein also appears to be important, most likely via either
H+ or K+ gradients that occur upstream of the asymmetric gene expression of nodal, lefty and pitx2 [26].

Here, we show that concomitant with this L–R asymmetry in rudiment formation is a consistent
asymmetry of the larval arms in advanced echinoid pluteus larvae, the extent of which has not previously
been described. We first document the asymmetry in two disparate echinoids—the sand dollar Dendraster
excentricus and the purple sea urchin Str. purpuratus—separated by 250 million years, suggesting that
this asymmetry may be a common feature among echinoids with feeding larvae. We further explore the
phenomenon in Str. purpuratus to evaluate the possible connection between the rudiment and larval arm
asymmetries, and by examining anomalous larvae with rudiments on both the left and right sides. We
discuss our results in the context of several hypotheses concerning the function of this newly identified
asymmetry in sea urchin plutei. In so doing, we highlight the ways in which directional asymmetries
offer a unique window into how ecology and development work together to drive organismal evolution.

2. Material and methods
2.1. Source populations, maintenance of adults and larval cultures
For the characterization of the arm-length asymmetries in D. excentricus (Eschscholtz) sand dollar larvae,
we used adults collected at low tide (−0.25 m) from a large, intertidal population in East Sound (Orcas
Island, WA, USA) on 17 July 2015. The adults were maintained at Friday Harbor Labs (FHL; Friday
Harbor, WA, USA) in flowing seawater in sand bins until spawning. On 26 August 2015, we spawned
several adults by intracoelomic injection with 0.5 M KCl. We set up crosses from two females: one by
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standard methods [27] using sperm collected dry that same day from a single spawning male, the
second by aspirating off the eggs from the aboral surface of a second female who began spawning
after we returned her to an aquarium. This second female’s eggs were already fertilized, therefore we
are unsure of the paternity in this second cross (several males were also spawning in the aquarium
at that time, including the male from the first cross). Thus, the two crosses were either half sibs from
different mothers, non-sibs, or a mixture, and we maintained them separately throughout to ensure that
any results we obtained could not be explained by the larvae having been derived from an aberrant
female. We conducted fertilizations and all subsequent rearing steps in 0.45 µm millipore-filtered natural
seawater (MFSW) at room temperature, which varied between 19 and 22°C.

Sand dollar embryos at this temperature hatch during the first day of development. Approximately
24 h after fertilization, we set up one jar from each cross at approximately 1 larva ml−1 of MFSW, and
fed them a combination of Rhodomonas spp. (2.5 cells µl−1) and Dunaliella tertiolecta (3 cells µl−1), and
kept them gently stirred using a gyratory shaker table. We changed their water every 2 days by reverse
filtration of more than 95% of the water volume and gave the larvae fresh MFSW and food. On day 3
(comparable to soft tissue stage iii from [22]), we reduced the larval density to 0.2 larvae ml−1 MFSW,
and maintained them at that density until day 9 (more or less equivalent to skeletogenic stage 10 from
[22]) when we conducted all larval arm measurements.

For the characterization of the corresponding arm-length asymmetries in purple urchins as well as
the ontogenetic characterizations and feeding trials, we used adult Str. purpuratus (Stimpson), collected
at Slip Point (Clallam Bay, WA, USA) and maintained in subtidal cages suspended off the floating docks
at FHL, fed throughout the year ad libitum with drift kelp (mainly blades of Nereocystis leutkeana). We
spawned two males and two females on 27 March 2015 at FHL, by intracoelomic injection with 0.5 M
KCl. We then set up the four pairwise fertilizations in MFSW using standard methods [27] at 11°C. We
transported embryos the next day to the University of Washington (Seattle, WA, USA) and continued
to maintain the cultures at 11°C. On day 5, when the embryos had reached the late prism/early 4-arm
larval stage, we set up a single gallon jar in MFSW at approximately 1 larva ml−1 from equal proportions
of the four fertilizations, fed them a combination of D. tertiolecta and Rhodomonas spp. as described above,
and over about an hour, warmed the culture to 15°C in a shaking water bath, where we maintained all
cultures for the remainder of the experiment. Every 2 days, we cleaned the cultures and fed them as
described above.

On day 15, most of the larvae had reached the rudiment invagination stage (soft tissue stage i from
[22]), at which point we reduced the larval density to approximately 0.75 larvae ml−1 MFSW, and then to
approximately 0.5 larvae ml−1 MFSW on day 17, with food at the same density as previously. On day 20
(approx. soft tissue stage iv from [22]), we individually selected 1000 of the optimally developing larvae,
only rejecting those (less than 20% of the larvae) that appeared significantly smaller than the average
larva. In so doing, we reduced the density to 0.17 larvae ml−1, and fed them as before. This stepwise
reduction in density was an attempt to limit bouts of larval cloning, which can be induced by sudden
shifts in density (unpublished data), and would be expected to increase variability in arm length within
cultures [28].

On day 25 (approx. skeletogenic stage 1 from [22]), we selected out 83 larvae into each of six jars
with 500 ml MFSW (so still at 1 larva 6 ml−1) and randomly assigned each jar to one of two treatments:
three replicate jars of high food (full ration of Dunaliella : Rhodomonas at 1 : 4 cells µl−1) and three replicate
jars of low food (25% ration at 0.25 : 1 cells µl−1) for the remainder of the experiment. Approximately
50% of the larvae in the high food treatment had reached metamorphic competence by day 42; the low
food larvae had not quite reached metamorphic competence by the time we concluded the experiment
on day 45.

For the ‘double-rudiment’ experiment, we used purple urchins originally obtained from The Cultured
Abalone Ltd. (Goleta, CA, USA) and that we have maintained at the Hagen Aqualab at the University
of Guelph (Guelph, Ontario) in an artificial seawater system on an 8 L : 16 D photoperiod at 12°C and 34
ppt salinity, fed ad libitum with rehydrated Kombu kelp (Laminaria spp.), repeatedly spawning the same
individuals as they become gravid again. Over the last several years (2011–2013), we repeatedly noted
an unusually high proportion (approx. 2–5%; data not shown) of offspring of particular urchins from
our Guelph colony that exhibited rudiments on both their right and the left sides—so-called ‘double
rudiments’—a seeming hypertrophy of the small right side invagination typical of development in at
least some echinoids (including the two species we examined here; see [29]). Note that, since the death
of the particular adults from which we obtained offspring with enhanced double-rudiment occurrence,
we have no longer observed this phenomenon in our Guelph colony, despite having made no notable
changes to our water or culturing system. Therefore, we conclude that the double-rudiment-enriched
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larval cohort that we examined here derived from a specific maternal, paternal or genetic effect, and that
we typically (and since 2014, exclusively) have seen the phenomenon only at the expected rate of fewer
than 1% of larvae in a colony ([30]; J.H., K.L. and A.H., unpublished data).

In September 2013, we obtained gametes from one male and one female adult Str. purpuratus by
intracoelomic injection following protocols described above, whose larvae later exhibited the enhanced
double-rudiment phenotype. After fertilization and hatching, we set up cultures at an approximate
density of 0.5 larvae ml−1 of 0.45 µm millipore-filtered artificial seawater (MFASW), agitated to prevent
the larvae from settling out of the water column. We transferred larvae three times per week to clean
beakers with new water and fed them with either D. tertiolecta or Rhodomonas spp. at 12 cells µl−1 or
6 cells µl−1, respectively. In the third week of development, we noticed that this larval cohort exhibited
the enhanced double-rudiment phenotype. At 21 days postfertilization (PF), we measured nine stage-
matched (see below) single- and double-rudiment sibling larvae, and assessed asymmetry as in the
previous experiment.

2.2. Staging and measurements
In FHL, we measured ten live 9-day-old sand dollar larvae from each of the two crosses, gently
immobilized on slides under raised cover glass, using an Olympus BH-2 microscope. In Seattle, we
staged and measured live purple urchin larvae, immobilized as above, using a Leitz Wetzlar Ortholux
microscope. For the purple urchins, we employed the staging scheme as outlined in [22]. Note that we
used stage bins (as defined in the legend to figure 3) for the analyses of the urchin data in an attempt
to equalize the numbers of individuals within each bin for this dataset. In both FHL and Seattle, we
measured skeletal rod lengths on haphazardly chosen larvae using a calibrated ocular micrometer, and
calculated the z-axis offset of each measured skeletal rod using the gradated focus knob, which we had
calibrated using a slide and cover glass of known thickness (measured with a micron caliper).

To account for possible measurement error and/or bias in our measurements, we used larvae
fertilized and reared in Guelph as described above, but from a 3 August 2015 fertilization. On day 21,
we packed and shipped approximately 200 of these live larvae to Seattle overnight, to conduct the error
measurements on the Leitz microscope set-up used for the majority of our data (see above). The larvae
arrived in good condition on day 22 at approximately 13°C, and we conducted the error measurements
on that day as follows. We haphazardly chose 20 larvae and placed them on individual microscope slides
with raised cover glass as described above, and then staged and measured each one as above. Then, a
colleague uninvolved in the study re-labelled all 20 slides and we re-measured each of the 20 larvae
a second time; thus, the second measurement on these same larvae was done ‘blind.’ We calculated
measurement error using the difference between each of the paired measurements, and used this error
calculation to ensure that any reported differences in L–R asymmetry fell outside of the experimentation
error range. We also used these data to assess fluctuating asymmetry (FA) as further explained below.

For the double-rudiment experiment, we staged larvae under a Nikon Eclipse Ti microscope,
according to our published staging scheme (see tables 1 and 2 in [22]), and we made three-dimensional
‘z-stacks’ (pictures taken at 10 µm steps through the larvae) with a Nikon Digital Sight DS-Fi1 camera.
We then conducted measurements on these z-stacks using a three-dimensional measurement macro
(calibrated to account for both the x–y and z–y plane distances covered) using the ImageJ software Fiji.
We measured left and right postoral (PO), posterodorsal (PD) and anterolateral (ALA) arm lengths for
each larva.

As indicated in figures 1b and 2e, the PO and PD rods are relatively straight, so our calculation of these
skeletal rod lengths was straightforward. By contrast, the preoral (PRO) and ALA rods are somewhat
curved in both species. Our reported PRO and ALA rod lengths represent the linear distance between
the landmarks indicated in figures 1b and 2e, and are thus are our best approximations of these rod
lengths using the methods we employed.

2.3. Statistical analysis
We conducted all statistical tests using SPSS v. 23. We analysed all morphological comparisons using
SPSS MANOVA, linear regression and one-sample t-test commands. We tested for DA using the index
of asymmetry [ln(R) − ln(L)], which is equal to ln(R/L), and mathematically equivalent to

{
(R − L)

[(R + L)/2]

}
, (2.1)
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Figure 1. Larvae of the sand dollarD. excentricus showdirectional asymmetry in postoral arms. (a) RepresentativeD. excentricus larva at 9
days postfertilization, with four pairs of larval arms. Note that the left side of the larva is the side of thewell-developed juvenile rudiment
(dark region labelled ‘Rud’ in this image); as this is a ventral view, the ‘left’ side of the larvae is seen here on the right side of the image,
and vice-versa; scale bar: 100 µm. (b) Schematic of a sand dollar pluteus larva with four pairs of larval arms, with the coloured lines
indicating the measurements taken for this study, oriented as in (a). (c) Mean larval arm length in µm for all four larval arms at day 9;
n= 20 larvae. Lighter bars: right arms; darker bars: left arms. (d) Mean index of asymmetry [ln(R/L)] for all arm pairs; positive values
indicate right-based asymmetry (i.e. longer arms on the right side); negative values indicate left-biased asymmetry. PO: postoral arms;
PD: posterodorsal arms; ALA: anterolateral arms; PRO: preoral arms. Asterisks in (d) indicate significant differences (p< 0.05) between
left and right side, and therefore directional asymmetry (DA). Error bars are one standard error of the mean.

where R and L are the lengths of the right and left arm, respectively [31]. For each of our structures
measured at each time point, we then calculated the mean [ln(R/L)] and used a two-tailed one-sample
t-test to determine if this value was significantly different from zero; a positive value indicates right-
biased DA, a negative value indicates left-biased DA. We used q–q and p–p plots to test for normality
throughout. We further tested for age and stage effects on asymmetry using linear regression analysis.
We tested for an effect of food on asymmetry with a MANOVA using food level as a factor. We tested for
FA using methods outlined by Palmer & Strobeck [31]. In all cases, we considered results ‘significant’ if
α was less than 0.05. We report all results as ±1 standard error of the mean (s.e.) unless stated otherwise.

3. Results
We tested whether echinopluteus larval arms were directionally asymmetrical during mid- to late-
larval development, and whether any detected asymmetry changed as a function of developmental age
and stage.

3.1. Larvae of the sand dollar D. excentricus showed directional asymmetry
in larval arm growth

We measured all eight larval arms of D. excentricus 9 days PF at approximately 20°C; we analysed
differences in arm lengths between the left and right side of the larva (figure 1) using the index of
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Figure 2. Directional asymmetry in purple urchin (Str. purpuratus) larvae as a function of age. We analysed left–right asymmetry in
larval arms as a function of age during late-larval development for the (a) postoral, (b) anterolateral, (c) posterodorsal and (d) preoral
arm pairs (on day 15, these larvae had only six arms; hence the absence of data for PRO arms on that day). Graphs in (a–d) have two
y-axes: the primary (left) axis shows larval arm length in micrometres for all four larval arms, as is seen in the data points connected by
dark solid (left arm) and dashed grey (right arm) lines. The secondary (right) axis shows themean index of asymmetry [ln(R/L)], as is seen
in the grey bars. (e) Schematic as infigure 1b repeated for convenience. The cross-polarized lightmicrograph in (f ’) shows a representative
early stage larva (day 15, stage bin A; see figure 3), and in (f ”), a representative late-stage larva (day 39, stage bin F; see figure 3). Note
the visible juvenile skeleton (on the left side; pictured in the right side of these ventral views) and clear L–R arm asymmetry in (f ”) but
not (f ’). Time is in days postfertilization (PF), Scale bars in (e,f ), 150 µm. Abbreviations, asterisks and error bars as in figure 1. See table 1
for statistics.

asymmetry [ln(R/L)]. We found that the PO and PD arms of D. excentricus larvae were significantly
shorter on the side of the juvenile rudiment (left side) compared with the right side (PO: t = 5.59,
p < 0.001; PD: t = 3.05, p < 0.01; n = 20). We did not find differences in arm length between the left and
right side of D. excentricus larvae for the other two pairs of arms (anterolateral (ALA: t = 0.86, p = 0.4,
n = 20); and PRO (PRO: t = −0.89, p = 0.4, n = 20)). We also examined the index of asymmetry [ln(R/L)]
for the sum of all four arm lengths (PO + PD + ALA + PRO) on each side as an indication of the overall
asymmetry of the larva, and found that these larvae were indeed significantly asymmetric overall, with
shorter total arm length on the left (rudiment) side [ln(R/L) = 0.04 ± 0.01 (s.e.), t = 5.40, p < 0.001, n = 20].

Note also that we set up fertilizations from two different females in this experiment, and reared their
offspring and analysed them separately, to ensure that our results were not an aberration associated
with a maternal effect or a given genotype. We did not find a significant interaction between cross
and the index of asymmetry for any arm pairs (PO: F1,19 = 0.71, p = 0.41; ALA: F1,19 = 0.08, p = 0.78; PD:
F1,19 = 1.90, p = 0.19; PRO: F1,19 = 0.14, p = 0.72), providing no evidence that the asymmetry patterns were
different between the two crosses.

3.2. Larvae of the purple sea urchin Str. purpuratus showed directional asymmetry in larval arm
growth that changes through ontogeny

To determine if the late-stage DAs we observed in sand dollar larvae are a more widespread feature
among echinoids, and to examine whether such an asymmetry progresses during ontogeny, we examined
DA in the purple sea urchin Str. purpuratus at four time points PF. We then analysed arm-length
morphometrics as a function of age and binned stage (see figure 3 legend for details).

Based upon the sand dollar data and our preliminary observations on Str. purpuratus larvae, we
expected DA to first become manifest in later development, after the juvenile rudiment begins to form.
Therefore, our earliest measurement date was on day 15, right around the time when we first observed
rudiment invagination (figure 2d). We made additional measurements during the growth of the juvenile
rudiment on days 25, 33 and finally on day 39 (figure 2e), at which point the larvae were at or near
competence to transform to the juvenile stage (not shown).
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Table 1. Directional asymmetry in purple urchin larvae by age. Statistics corresponding to the data shown in figures 2a–d and 4a. The
‘regressionanalysis’ columns showthe results of our test todetermine if DA changes as a functionof age (daysPF) usinga linear regression.
Italicized rows and asterisks in thep-value columns denote all caseswhereαwas less than 0.05. Abbreviations as infigures 1 and 2. On day
15, these larvae had only six arms; hence the ‘n.a.’ for the preoral (PRO) arms on that day. s.d.= one standard deviation.

one-sample t-test regression analysis
arms age (days PF) mean ln(R/L) s.d. n (larvae) t p-values R2 F p-values
PO 15 0.030 0.025 9 1.20 0.26 0.01 0.84 0.36

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25 0.050 0.021 10 2.45 0.037*
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

33 0.042 0.021 30 2.00 0.06
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

39 0.075 0.020 15 3.79 0.002*
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ALA 15 −0.012 0.026 9 −0.46 0.66 0.07 4.55 0.04*
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25 0.038 0.035 10 1.09 0.30
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

33 0.191 0.037 30 5.15 <0.001*
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

39 0.072 0.029 15 2.49 0.026*
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PD 15 −0.012 0.074 9 −0.16 0.88 0.09 5.77 0.02*
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25 −0.005 0.024 10 −0.22 0.83
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

33 0.052 0.022 30 2.32 0.028*
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

39 0.105 0.024 15 4.31 0.001*
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PRO 15 n.a. n.a. n.a. n.a. n.a. 0.00 0.24 0.62
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25 0.008 0.021 10 0.40 0.70
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

33 0.050 0.034 30 1.49 0.15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

39 −0.065 0.055 15 −1.19 0.26
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

total (sum of 15 0.005 0.028 9 0.20 0.85 0.07 4.76 0.033*
all arms)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25 0.025 0.017 10 1.42 0.19
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

33 0.077 0.016 30 4.73 <0.001*
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

39 0.056 0.014 15 3.99 0.001*
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DA as a function of age is shown in figure 2 and table 1. Overall, we detected DA starting on day 33
in ALA arms, and in three of the four arm pairs (PO, PD and ALA) on day 39; in each case, the arms
were significantly shorter on the left side. To see if DA in each of these arm pairs varied with age, we
examined linear regressions for the indices of asymmetry for each of the four sets of arms from day 15 to
39: both the ALA and PD arms showed increasing DA with age (table 1).

To more clearly examine if DA in purple urchin larvae is related to the growth of the rudiment, we
sorted all of the larvae (regardless of age) into one of six stage bins (A–F) defined by the growth of skeletal
structures in the rudiment (see the legend to figure 3, for details on how stage bins A–F correspond to the
rudiment staging scheme in [22]). As seen in figure 3 and table 2, we detected DA in ALA arms in stage
bins C, D and F, and in PO and PD arms only in stage bin F (the most advanced larvae in our dataset). As
with the age data, we examined linear regressions for the indices of asymmetry for each of the four sets
of arms to see if DA in each of these arms pairs varied with stage. In this case, only the PD arms showed
increasing DA with stage (table 2).

As different arms show different levels of DA (figures 2 and 3; tables 1 and 2), we analysed the index
of asymmetry for the sum of all four arms by both age (figure 4a, table 1) and stage (figure 4b, table 2).
With respect to age (figure 4a, table 1), we detected evidence for DA in total arm length on days 33 and 39.
A regression analysis showed a positive relationship between index of asymmetry for total arm length
and age (table 1).

With respect to stage (figure 4b table 2), we detected evidence for DA in total arm length in stage bins
C, D and F. But in this case a regression analysis showed no overall relationship between index of DA
for total arm length and stage (table 2). As can be seen in figure 4b, DA does not monotonically increase
with stage; instead the stage of peak DA for total arm length is stage bin C, which is the only stage at

 on September 3, 2016http://rsos.royalsocietypublishing.org/Downloaded from 

http://rsos.royalsocietypublishing.org/


8

rsos.royalsocietypublishing.org
R.Soc.opensci.3:160139

................................................

–0.10
–0.05
0
0.05
0.10
0.15
0.20
0.25
0.30

0

200

400

600

800

1000

0

200

400

600

800

1000

–0.10
–0.05
0
0.05
0.10
0.15
0.20
0.25
0.30

0

200

400

600

800

1000

0

200

400

600

800

1000

–0.10
–0.05
0
0.05
0.10
0.15
0.20
0.25
0.30

–0.10
–0.05
0
0.05
0.10
0.15
0.20
0.25
0.30

PO

ALA

PD

PRO

R
L

R
L

R
L

R
L

*
*

*

*

*

le
ng

th
 (m

m
)

le
ng

th
 (m

m
)

(a)

(b)

(c)

(d)

A B C D
stage bin

E F A B C D
stage bin

E F

A B C D E F A B C D E F

in
de

x 
of

 a
sy

m
m

et
ry

 [l
n(

R
/L

)]
in

de
x 

of
 a

sy
m

m
et

ry
 [l

n(
R

/L
)]

in
de

x 
of

 a
sy

m
m

et
ry

 [l
n(

R
/L

)]
in

de
x 

of
 a

sy
m

m
et

ry
 [l

n(
R

/L
)]

le
ng

th
 (m

m
)

le
ng

th
 (m

m
)

Figure 3. Directional asymmetry in purple urchin larvae as a function of juvenile rudiment stage. We analysed left–right asymmetry
in larval arms as a function of juvenile rudiment stage for the (a) postoral, (b) anterolateral, (c) posterodorsal and (d) preoral arm pairs.
We binned juvenile rudiment stages after [22] as follows: bin A, skeletogenic stage 0; bin B, skeletogenic stages 1–2; bin C, skeletogenic
stages 3–4; bin D, skeletogenic stages 5–6; bin E, skeletogenic stages 7–8; bin F, skeletogenic stages 9–10. Double axes and line colours
as in figure 2. Abbreviations, asterisks and error bars as in figure 1. See table 2 for statistics.

which our ANOVA, after Bonferroni correction, detected a significantly higher DA than in any other
stage (stage bin C versus stage bin A: p = 0.05).

Although it is not the focus of this study, we undertook an analysis of FA in comparison with
measurement error. We performed this analysis on a separate cohort of larvae 22 days after fertilization
(all of which were in stage bin A; see figure 3 legend). Using a mixed model ANOVA as described
by Palmer & Strobeck [31], we found no evidence for DA in PO, ALA or PD arm lengths (electronic
supplementary material, table S1; note that these larvae only had six arms at the stage that we examined
them, thus we do not have PRO data here). As these larvae were in stage bin A, we did not expect to
detect DA in these larvae (cf. figure 3 and table 2). Nevertheless, FA was significantly larger than the
measurement error for all arm lengths among these larvae (electronic supplementary material, table S1).
Although not entirely comparable, as these larvae were a separate cohort from the main experiment
outlined above, we note that the scope of our measurement errors for PO, ALA and PD were 4–5× lower
than the scope of L–R differences that are seen in figures 2 and 3.

In sum, we see clear evidence for DA in multiple arms through ontogeny, whether viewed by age
or stage. Arm length asymmetry in Str. purpuratus larvae increased with age and stage in ALA and
PD arms, and total arm asymmetry (i.e. asymmetry in the arms as a whole) also increased with age.
When analysed by stage, however, the pattern appears more complex: the greatest degree of total arm
asymmetry occurred in our stage bin C, which falls at about the midpoint of rudiment development
towards metamorphic competence.

3.3. Food did not affect larval arm asymmetry in Str. purpuratus
One hypothesis that could explain the previously noted directional asymmetries is that there is
competition for limited resources or materials between the rudiment and the nearby left arms. If so, we
might expect to observe a more dramatic asymmetry in larvae raised in food-limited conditions, where
such materials/resources would be in reduced supply.
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Table 2. Directional asymmetry in purple urchin larvae by stage. Statistics corresponding to the data shown in figures 3a–d and 4b. The
’regression analysis’ columns show the results of our test to determine if DA changes as a function of stage bin using a linear regression.
Italicized rows and asterisks in the p-value columns denote all cases whereα was less than 0.05. Abbreviations as in figure 1. Stage bins
as in figure 3.

one-sample t-test regression analysis
arms stage bin mean ln(R/L) s.d. n (larvae) t p-values R2 F p-values
PO A 0.031 0.019 14 1.62 0.13 0.00 0.29 0.59

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B 0.018 0.037 7 0.49 0.64
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C 0.119 0.056 7 2.15 0.075
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D 0.054 0.030 13 1.82 0.094
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

E 0.025 0.027 8 0.93 0.38
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F 0.057 0.020 15 2.88 0.012*
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ALA A 0.002 0.022 14 0.11 0.91 0.05 2.90 0.09
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B 0.042 0.078 7 0.54 0.61
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C 0.222 0.070 7 3.17 0.019*
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D 0.207 0.051 13 4.06 0.002*
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

E 0.151 0.081 8 1.87 0.104
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F 0.087 0.029 15 3.00 0.010*
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PD A −0.008 0.048 14 −0.17 0.87 0.09 5.91 0.02*
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B −0.006 0.053 7 −0.11 0.91
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C 0.052 0.033 7 1.56 0.17
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D 0.064 0.030 13 2.10 0.06
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

E 0.060 0.059 8 1.01 0.34
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F 0.097 0.019 15 5.00 <0.001*
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PRO A 0.013 0.008 14 1.69 0.12 0.04 2.70 0.11
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B 0.046 0.096 7 0.49 0.65
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C 0.096 0.066 7 1.44 0.20
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D 0.044 0.033 13 1.33 0.21
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

E 0.015 0.055 8 0.28 0.79
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F −0.085 0.056 15 −1.51 0.15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

total (sum of all arms) A 0.012 0.020 14 0.62 0.55 0.03 1.88 0.18
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B 0.021 0.020 7 1.03 0.35
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C 0.119 0.032 7 3.69 0.010*
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D 0.086 0.023 13 3.69 0.003*
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

E 0.058 0.034 8 1.70 0.13
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F 0.048 0.014 15 3.33 0.005
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To test this hypothesis, we reared larvae under a high food ration for 25 days, and then shifted a
subset of the larvae into a reduced food ration (25% of the high food ration) for the remainder of larval
development. We then analysed changes in arm length as a function of age and stage for the low food-
and high food-reared larvae.

Plasticity in larval arm growth overall as a function of food level has been well demonstrated in
Str. purpuratus and numerous other echinoids (reviewed in [23]): in general, larvae under low food
conditions have longer arms relative to growth of juvenile structures. We observed clear arm length
plasticity for all arm pairs as a function of binned stage (figure 5; PO: F1,89 = 21.19, p < 0.01; ALA:
F1,89 = 3.85, p = 0.05; PD: F1,89 = 11.97, p < 0.01; PRO: F1,89 = 5.62, p = 0.02) as expected.
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Figure4. Directional asymmetry in total arm lengthof purple urchin larvae as a functionof age and juvenile rudiment stage.We summed
the length of the four pairs of arms on the right and left sides, and compared them by age (a) and juvenile rudiment stage (b). Note
the lack of a monotonic increase in asymmetry as development proceeds, especially in (b). Double axes and line colours as in figure 2.
Abbreviations, asterisks and error bars as in figure 1. Stage bins as in figure 3. See tables 1 and 2 for statistics.

We then tested whether food environment would impact the extent of arm-length DA in Str.
purpuratus larvae (figure 5). Statistically, such a food effect on asymmetry would manifest as a significant
interaction between food treatment (high or low) and the index of DA [ln(R/L)]. Note that we only
analysed our data by stage, as low and high food larvae developed on quite different trajectories
towards metamorphic competence (see Material and methods, above), and it seemed most sensible to
normalize by juvenile rudiment stage. We did not find evidence for a statistically significant interaction
between food treatment and DA for any larval arms by stage (figure 5; PO: F1,119 = 0.58, p = 0.45; ALA:
F1,119 = 0.01, p = 0.98; PD: F1,119 = 1.44, p = 0.23; PRO: F1,119 = 3.32, p = 0.07). DA in the high and low
food-treated larvae for total arm length by stage can be found in the electronic supplementary material,
figure S1.

As a side note, we observed that arm lengths under high food conditions (figures 2–5) plateaued or in
some cases decreased slightly as ontogeny proceeded, whereas under low food conditions, arm lengths
continued to increase over the course of the experiment (figure 5). This difference was particularly clear
when examining the total (sum) of the lengths of all arms combined (electronic supplementary material,
figure S1). We interpret this apparent cessation of arm growth in the context of phenotypic plasticity to
differing food levels: under high food, larvae at late stages shifted their investment from arm growth to
rudiment growth, as has been seen repeatedly in a variety of echinoids (see e.g. [9,23]).

3.4. Strongylocentrotus purpuratus larvae with double rudiments do not exhibit right-biased
directional asymmetry

We analysed anomalous larvae with naturally occurring double rudiments (i.e. larvae with ‘twin’
juvenile rudiments developing simultaneously on the right and left sides; figure 6b) to test the hypothesis
that DA in larval arms is functionally linked to the formation of the juvenile rudiment (figures 3 and 4b).
As expected, our single rudiment larvae (figure 6c) showed right-biased DA in both PO and PD arms,
with shorter arms on the left side (figure 6a; PO: t = 2.68, p = 0.03; ALA: t = 1.90, p = 0.09; PD: t = 2.95,
p = 0.02; n = 8). By contrast, in our double-rudiment larvae (figure 6b), the ALA and PD arms did not
show any evidence of DA (figure 6a; ALA: t = 0.07, p = 0.95; PD: t = −1.08, p = 0.32; n = 9). In fact we
detected a significant DA in the opposite direction in the PO arms, which had slightly (approx. 4.3%)
longer arms on the left side (figure 6a; PO: t = −3.38, p = 0.01, n = 9).

4. Discussion
Metamorphosis in extant echinoderms involves a transformation from a bilateral larva to a pentameral
adult [32,33]. Because the common ancestor of echinoderms and other deuterostomes is hypothesized
to have had an adult with bilateral symmetry (reviewed in [34]), this bilateral-to-pentameral shift
during echinoderm ontogeny is considered key to understanding the evolution of this unique
group [35–37].

In all living echinoderms with indirect development (sensu McEdward & Janies [6]), the adult body
plan develops in a curious fashion with respect to that of the larva, via an internal DA: the juvenile forms
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Figure 5. Reduced larval food does not alter directional asymmetries in arm length across stages. (a–d) We detected asymmetry in arm
lengths with stage under both high food (HF; upper graphs in each panel) and low food (LF; lower graphs) conditions in purple urchins,
with no detectable differences in any arm pair between high and low food (see the text). Double axes and line colours as in figure 2.
Abbreviations, asterisks and error bars as in figure 1. Stage bins as in figure 3. Numbers of larvae at each stage are as follows. Stage bin A:
HF, n= 0; LF, n= 4. Stage bin B: HF, n= 3; LF, n= 18. Stage bin C: HF, n= 6; LF, n= 9. Stage bin D: HF, n= 13; LF, n= 17. Stage bin E:
HF, n= 8; LF, n= 18. Stage bin F: HF, n= 15; LF, n= 8. Note that there were no HF larvae in stage bin A, presumably due to their more
rapid development than in the corresponding low food larval cohort.

on the left side of the otherwise bilaterally symmetrical larva [18–22]. Here, we show for the first time that
in two disparate echinoids, a sea urchin and a sand dollar, a second DA is apparent during late-larval
development, when the overall shape of the larva changes from more or less bilaterally symmetric to
directionally asymmetric during later stages: the majority of the larval arms, which are supported by
calcium carbonate skeletal rods, are substantially shorter on the rudiment side of the larva (up to 25%
shorter; see figures 1 and 2).

Although asymmetries in larval arms have been noted previously during normal development
in echinoid larvae [38–40], ours is the first demonstration of such a unidirectional asymmetry in
multiple arms, resulting in a consistent yet previously undescribed shape change during late pluteus
development. As in one other reported case of a DA in advanced pluteus larval arms [39,40], we
show evidence here for a link between formation of the rudiment and the arm-length asymmetry,
with shorter larval arms specifically on the rudiment (left) side. Our demonstration of this asymmetry
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Figure 6. Larval arms of anomalous purple urchin larvae with double rudiments are more symmetrical. We analysed the index of arm-
length asymmetry (see figure 1 legend) in naturally occurring larvae with juvenile rudiments on both the left and right sides (double
rudiments; (b), as compared to their full siblings with single rudiments (c). Cartoons along bottom of figure indicate single and double
rudiments. (a) Whereas larvae with single rudiments (n= 9 larvae) in this experiment showed right-biased directional asymmetry
(positive values) in postoral (PO) and posterodorsal (PD) arms (asterisks in right half of (a)), stage-matched larvaewith double rudiments
(n= 8 larvae) did not show right-biased asymmetry in any of their arm pairs; in fact PO arms in double-rudiment larvae showed left-
biased asymmetry (negative values; asterisk in left half of (a)). Scale bars in (b,c): 150 µm. Abbreviations, asterisks, error bars and
orientation of larvae as in figure 1.

in both an irregular and a regular echinoid, as well as our casual observations of such asymmetries
in the larvae of several other echinoid taxa which we have reared from several geographically
disparate locations (data not shown), suggest to us that this DA in arm length is probably a
generic feature of late-stage, echinoid larval development, and as such, it calls out for a functional
explanation.

4.1. Possible developmental mechanisms underlying larval arm asymmetry
Based on previous studies, Nodal and BMP signalling are the primary factors responsible for the
development of the juvenile rudiment on the left side of the sea urchin larva, with Nodal expression
on the right inhibiting BMP signalling there, and thus directing BMP-activation of rudiment formation
to the left side [24,25,41,42]. Still, the consequences of this asymmetry for development of the larval arms
are unclear.

If the BMP–Nodal gene network is likewise involved in our reported arm-length asymmetries, then
we would predict that the arm-length asymmetries would coincide with rudiment formation. This is
not what we have observed. Indeed, at soft tissue stage iv [22] (stage bin A, day 25 in this experiment)
rudiment formation was already well underway and we did not observe any directional asymmetries
in arm length, which we first detected at skeletal stage 3–4 [22] (stage bin C, approx. day 31 in this
experiment; figures 2–4).

These observations suggest that if the BMP–Nodal gene network is involved in the directional
arm asymmetry, then this involvement is likely to be either indirect, or to involve subsequent
signalling steps. Still, our data reported here on double rudiments do suggest that there is a
mechanistic connection between rudiment asymmetry and the arm-length DA, as also reported
by Emlet [40] for the posterolateral arm-length asymmetry in the black sea urchin, Stomopneustes
variolaris (Echinoidea: Stomopneustidae). Evaluating the nature of this mechanistic connection could
involve examining arm asymmetries in the context of reduction-of-function manipulations (e.g. using
morpholino oligonucleotides) directed against BMP or Nodal signalling components. Specifically, one
could experimentally generate double-rudiment larvae, for example by inhibiting Nodal signalling [24],
and test whether such a manipulation results in loss of the DA, as we saw in our naturally occurring
double-rudiment larvae. If BMP–Nodal signalling is indeed connected to the arm-length asymmetries,
then it is possible that the expression of skeletal elongation genes such as p58b and p16 [43,44], and the
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skeletogenic gene network to which they belong [45], may integrate with the BMP–Nodal gene network
in an as yet unrecognized fashion.

4.2. Functional implications of the asymmetry for larval biology
The antagonistic relationship between rudiment growth and arm length in feeding pluteus larvae has
been well described in numerous taxa. Specifically, echinoid larvae show adaptive phenotypic plasticity
for arm growth relative to growth of the rudiment: under high food conditions, arm length is reduced
relative to rudiment growth; under low food, arms grow longer and rudiment growth is delayed
[9,23,46–64]. The adaptive nature of this plasticity is indicated by the increased food capture efficiency in
larvae with longer arms [9].

Therefore, there is presumably a mechanistic connection between rudiment growth and arm length,
and it may be that this same antagonistic connection underlies the late stage arm-length asymmetries
reported here and by Collin [38], Yanagisawa [39] and Emlet [40]. But why would such an antagonistic
connection only manifest on the left side of the larva during these late stages? Here, we consider two
functional hypotheses in turn for our observed directional asymmetries in arm length. According to the
developmental constraint hypothesis, the asymmetries that we report here result from some type of local
developmental constraint or trade-off, in which the rudiment grows at the expense of only the adjacent
larval arms. Alternatively, the swimming stability hypothesis predicts that this link is driven by selection
on a specific, asymmetric larval shape that facilitates stability or some other aspect of performance in the
water column.

The developmental constraint hypothesis envisions a scenario where some factor utilized in the
construction of both the rudiment and the larval arms is in limited supply. The increasing demands
in the rapidly growing rudiment for this hypothesized factor leaves less of it available for the growth of
nearby larval arms, and the result is shorter larval arms adjacent to the rudiment.

Although our experiments are not sufficient to falsify this hypothesis, our results are not wholly
consistent with it. On the one hand, the left larval arm that is most distant from the rudiment—the
left PRO arm—shows no evidence for DA in either D. excentricus or Str. purpuratus, thus offering some
support for a local constraint related to the rudiment. Furthermore, the constraint hypothesis would
predict that the local competition would become more pronounced as the rudiment grows ever larger
and more complex as ontogeny proceeds; our developmental time series with Str. purpuratus (figure 2 and
table 1) is more or less consistent with this prediction. However, when we analysed our larvae grouped
by rudiment development stage (figure 3 and table 2), we detected no increase in asymmetry at later
stages. Indeed, the stage with the most dramatic asymmetry was stage bin C, about mid-way through
rudiment development, where calcification of juvenile structures in the rudiment is at an early stage [22].
Furthermore, under a reduced food scenario, where arms grow longer and rudiment growth is delayed,
the constraint hypothesis would seemingly predict an even more dramatic asymmetry than in our well-
fed larvae. This is not what we observed; we saw no difference in the observed asymmetry between food
treatments.

Therefore, our data provide mixed support for the constraint hypothesis. Still there is some
precedence in other developing organisms for such a hypothesized local competition for factors or
resources. For example, the wing-reproduction trade-off in monarch butterflies (Danaus plexippus) has
been proposed to be related to a position-dependent mechanism, where juvenile hormone—produced
in the brain—travels in the hemolymph past the wings and through the thorax, ultimately reaching the
gonads in the posterior. Lessman & Herman [65] hypothesized that the highly active thorax during long-
distance flight acts like a gauntlet, breaking down active juvenile hormone as it passes, leaving lower
levels to arrive at the gonad, and therefore leading to reduced gonadal growth during flight. A second
proposed example is in horned beetles (Onthophagus spp.) and other insects, where a factor such as insulin
may be in limited supply, and could account for the apparent trade-off in the sizes of adjacent structures
([66–68]; but see [69]).

In the urchin pluteus example, what could such a factor be? One appealing possibility relates to the
availability of calcium, which is used to construct both the skeletal rods that support the larval arms
and the diverse juvenile skeletal elements forming in the rudiment at late-larval stages; these processes
may thus be in direct, local competition. A simple experiment that would test for calcium limitation
would be to add additional calcium to the seawater in which the larvae are grown—if calcium within
the larvae at these late stages is normally in limited supply, then the asymmetry could be attenuated
or disappear if excess calcium is provided. Alternatively, one could block calcium transport into the
tissues of the rudiment through morpholino microinjection [70] or treatment with chemical inhibitors,
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and test whether such treatments result in more symmetrical larvae than in controls. Indirect evidence
for this calcium limitation hypothesis follows from the findings of Byrne et al. [71], who reported
that Heliocidaris tuberculata (Echinoidea: Echinometridae) larvae reared at low pH showed notable
asymmetries (presumably FA) at early larval stages.

A second intriguing possibility is that the local rudiment–arm-length antagonism is regulated by
thyroid hormone (TH) signalling. Our previous studies [59] demonstrated that TH treatment results
in a phenotype similar to that previously described for low food treatments, where juvenile structures
grow faster, and larval arm growth is suppressed. Experiments with TH synthesis inhibitors [33,72–74]
indicate that feeding larvae have the capacity to produce TH internally, and our unpublished immuno-
labelling experiments indicate that the source for TH may be structures within the rudiment. Therefore, if
the rudiment is indeed the source for TH in plutei, and if TH levels correlate negatively with arm growth,
then one might expect arms near to the rudiment to be shorter than ones more distant: this is precisely
what we have observed here. A simple test of this scenario would be to provide excess TH exogenously
and see if the observed asymmetries disappear.

Finally, additional support for biased L–R allocation of materials in pluteus larvae comes from some
intriguing observations on sea star bipinnaria larvae, whose feeding larvae are considered homologous
to echinoid plutei [75]. Circulation of fluid in the blastocoel cavity of bipinnaria larvae has been described
as largely unidirectional: from the stomach, along the left side of the larva, and then around the mouth
to the right side of the larva ([76]; Jaeckle, personal communication). Furthermore, coelomic fluid flow
out of the left hydrocoel via the pore canal and hydropore to the exterior of the larva [77] would tend to
draw blastocoelar fluid towards the left side [78], with the growing rudiment in later stage larvae thus
being a possible sink for blastocoelar substances. This biased directional flow could therefore represent a
mechanistic basis for uneven distribution of blastocoelar substances, leading to the asymmetries that we
report here.

The swimming stability hypothesis proposes that the asymmetry in larval arms would provide a selective
advantage to larvae, whereby asymmetrical larvae would, for example, sink more slowly (and thus be
retained in the water column more efficiently) than symmetrical larvae. Such an asymmetry would be
predictably directional due to the substantial asymmetry in ballast provided by the rapidly growing and
calcifying rudiment, predominantly on the left side of the larva.

Indirect support for this hypothesis comes from several examples in the literature. First, Collin [38]
detected FA in early, pre-rudiment larval stages of the sand dollar D. excentricus, and documented the
first indication of a subtle DA in a single arm (PD) during mid- to late-larval development. FA is widely
viewed as a measure of developmental stability and perturbations to the developmental process, and
can have both genetic and environmental causes [79]. Indeed, several studies have demonstrated or
suggested an increase in FA or other asymmetries when sea urchin larvae or adults are exposed to toxins
(e.g. [80,81]). Nevertheless, the apparent continuity between FA in larval arms earlier in normal ontogeny
[38], and then increasing DA later ([38]; our data reported here) may indicate that the asymmetries
themselves may be functional throughout normal larval development. In this case, the forming rudiment
in late stages might impose additional constraints that could lead to predictably shorter arms on
the left.

Chan [82] reviewed a number of studies on pluteus larval morphology as it relates to stability and
swimming, under different flow regimes and through ontogeny. The basic pattern that Chan reports is
a slight tilt in the orientation of the larval body in flow increases the chances that a larva can maintain
upward swimming (and thus presumably stay in surface waters), rather than being carried downward.
In an unpublished study, Miyashita (personal communication) discovered that modelled, asymmetrical
D. excentricus larvae at the four-arm stage (pre-rudiment growth) are able to maintain upward swimming
more effectively than symmetrical ones.

The models that Chan and Miyashita employed were based upon those developed by Clay &
Grunbaum [10], again using the sand dollar D. excentricus, but focusing only on early (4 arm) larval
stages before the development of the rudiment. One important set of parameters in this model relates to
the centre of gravity, which would clearly change with the addition of an asymmetric, calcified rudiment,
as seen in the stages that we examined (though D. excentricus larvae become surprisingly more buoyant
as ontogeny proceeds; [83]). Furthermore, drag on larvae increases with both arm length and arm number
[15], which would be predicted to impact the stability of larvae in different flow regimes [8].

Taken together, the studies to date suggest that larval shape, orientation and asymmetries all can
contribute to position in the water column, which can have important consequences for dispersal
or near shore retention, prey encounter and predator avoidance throughout larval development, and
contacting the substrate in late-stage larvae preparing to settle to the benthos. Nevertheless, it is difficult
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to extrapolate from the previous modelling studies on much simpler larval morphologies to those in
fully formed, eight-arm larvae with an asymmetrically growing and calcifying rudiment in realistic flow
conditions.

Our experiments reported here do not directly address the swimming stability hypothesis. However,
one intriguing observation is that the three arm pairs that protrude the furthest from the larval midline—
the PO, PD and ALA arms—are the three pairs that showed clear directional asymmetries in one or both
species. By contrast, the arm pair that runs closest to the midline—the PRO arms—showed no signs of
DA in either species at any age or stage that we examined. Likewise, the observations by Yanagisawa
[39] and Emlet [40] of a dramatic asymmetry in late-stage larvae of the sea urchin Sto. variolaris was
specifically in a unique pair of arms that project off the posterior end of those larvae, the posterolateral
arms. All of these observations suggest that asymmetric arm growth is not simply a generic feature
of late-stage pluteus larval arm growth common to all arms, and may thus point towards a functional
explanation such as envisioned by the swimming stability hypothesis.

To adequately test this hypothesis experimentally, one would need to examine larvae under realistic
flow conditions, and see if the degree of asymmetry in late-stage larvae is related to their position in
the water column. In addition, one could develop more complex models of the pluteus larval form that
would extend from the Clay & Grunbaum [10] model, but include all four arm pairs and a growing
and calcifying, asymmetrical rudiment. The swimming stability hypothesis would predict that arm
asymmetries at these later stages would have clear consequences for position in the water column and/or
swimming ability.

Finally, we note that the developmental constraint and swimming stability hypotheses are not the
only two possible explanations for our observed asymmetries (and these themselves are not necessarily
mutually exclusive). For example, in recent years it has become clear that asexual larval cloning is
widespread in echinoids (which again, has been particularly well documented in D. excentricus), and
one method of such asexual cloning in larval sea stars [84,85]—as yet undocumented in larval echinoids
(but see [28])—is budding of the arm tips. It is possible that such budding occurs preferentially on the left
side of late-stage echinoid larvae, which would lead to a DA pattern such as we observed. Furthermore,
Emlet [40] suggested that the asymmetry in posterolateral arms in Sto. variolaris may be an adaptation
for more effective settlement to the benthos: a long left posterolateral arm could interfere with substrate
contact. A similar mechanical interference scenario might promote the evolution of shorter arms in late
stages in other urchins as well, as we have observed here.

5. Conclusion
We here identify and characterize the ontogeny of a DA in the shape of echinoid pluteus larvae that is
visible at late stages, alongside the well-known internal DA of the growing juvenile rudiment. Our data
from two disparate echinoids, separated by approximately 250 million years of evolution, suggests that
this consistent, previously undescribed asymmetry in multiple arms, and hence in overall larval shape,
may in fact be a common feature of late-stage echinopluteus ontogeny. By examining rare, anomalous
plutei with juvenile rudiments on both the left and the right side, we show that the asymmetry is
mechanistically and/or functionally connected to rudiment development. We explore several hypotheses
to account for this asymmetry, focusing on two main hypotheses: that the asymmetry aids in swimming
stability in the water column or that it is a result of a developmental constraint on material deposition
in arms versus the rudiment.

One feature of echinoids that makes them such a valuable taxon for comparative studies is their
great morphological diversity in the context of a relatively robust understanding of their phylogeny.
As with adult features, sea urchin larvae also show remarkable diversity: for example, in arm number,
their lengths relative to the body and their position [86]. Furthermore, there are many independently
evolved instances of loss of larval feeding, accompanied by partial to complete loss of these larval
arms [87]. And finally, functional and anatomical studies indicate that the similar larval morphology
in the brittle stars (class Ophiuroidea) represents a completely independent evolutionary acquisition of
the pluteus form [12,13]. Such diversity in form, with independent evolutionary events and an easily
quantifiable morphology, provides ample material for detailed comparative investigations into this DA:
a tractable aspect of functional morphology that can be studied in the context of the multiple ecological
requirements facing feeding and dispersing larvae in the ocean.
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Table S1: Analysis of fluctuating asymmetry (FA) and directional asymmetry (DA) in 

comparison to measurement error in purple urchin larvae. Note that we conducted this 

measurement error analysis on a separate batch of larvae from those used in the main 

experiment, and that these larvae were all in Stage Bin A (see Figure 3 legend), and had not yet

formed preoral (PRO) arms. Bold rows and asterisks in the FA column denotes all cases where 

α was < 0.05.

Arms Factor MeanSquare df FA DA

PO

Side 79.14 1

F18,38=6.32

p<0.01*

F1,18=0.06

p=0.80

Individuals 8327.54 18

Side x Individual 1247.35 18

Error 197.415 38

ALA

Side 475.603 1

F18,38=3.87

p<0.01*

F1,18=0.59

p=0.45

Individuals 6949.59 18

Side x Individual 810.45 18

Error 209.38 38

PD

Side 3763.49 1

F18,38=19.31

p<0.01*

F1,18=0.98

p=0.33

Individuals 13079.48 18

Side x Individual 3834.53 18

Error 198.57 38



Figure S1: Reduced larval food does not alter directional asymmetries in total arm length across 

stages. We detected asymmetry in total arm length with stage under both high food (upper graph) and 

low food (lower graphs) conditions in purple urchins, with no detectable differences in any arm pair 

between high and low food (see Results). Double axes and line colors as in Fig. 2. Abbreviations and 

error bars as in Fig. 1. Stage bins as in Fig. 3. Numbers of larvae as in Fig. 5. Note that there were no 

high food larvae in stage bin A, presumably due to their more rapid development than in the 

corresponding low food larval cohort.


	Background
	Material and methods
	Source populations, maintenance of adults and larval cultures
	Staging and measurements
	Statistical analysis

	Results
	Larvae of the sand dollar D. excentricus showed directional asymmetryin larval arm growth
	Larvae of the purple sea urchin Str. purpuratus showed directional asymmetry in larval arm growth that changes through ontogeny
	Food did not affect larval arm asymmetry in Str. purpuratus
	Strongylocentrotus purpuratus larvae with double rudiments do not exhibit right-biased directional asymmetry

	Discussion
	Possible developmental mechanisms underlying larval arm asymmetry
	Functional implications of the asymmetry for larval biology

	Conclusion
	References

