

NetBurner Network Development Kit

Programming Guide

Document Number: 350080-003, Revision 2.8, June 14, 2006

NetBurner Programmers Guide

 Page 2

1 INTRODUCTION ...5

1.1 HOW TO USE THIS GUIDE ...5
1.2 SOURCE CODE FOR EXAMPLE PROGRAMS ..5
1.3 HOW TO USE THE NETBURNER REFERENCE DOCUMENTS (IMPORTANT!) ..5
1.4 NETBURNER NETWORK DEVELOPMENT KIT CONTENTS ..5
1.5 GETTING STARTED ...6
1.5.1 Software Installation..6
1.5.2 Hardware Installation..7
1.5.3 Network Configuration ..7
1.5.4 Debug Port...8

2 NETWORKING DEVICE CONFIGURATION ..9

2.1 OVERVIEW..9
2.2 OBTAINING AN IP ADDRESS ...9
2.3 STATIC IP ADDRESS ...9
2.4 DYNAMIC IP ADDRESS (DHCP) ...9
2.5 NETWORK CONFIGURATION STEP BY STEP INSTRUCTIONS...9

3 HOW DO I SELECT AN IP ADDRESS?..10

4 WEB BROWSERS AND PROXY SERVERS ..11

5 USING THE NETBURNER IDE TO CREATE THE TEMPLATE PROGRAM12

5.1 IDE OVERVIEW ..12
5.2 CREATE A NEW PROJECT WITH THE APPWIZARD ...13
5.3 TEMPLATE PROGRAM SOURCE CODE ...17
5.4 TEMPLATE PROGRAM SETUP ..20
5.4.1 Testing the RS-232 Debug Connection ..20

5.5 COMPILING AND RUNNING THE APPLICATION ..21

6 DHCP - DYNAMIC HOST CONFIGURATION PROTOCOL..22

7 CHANGING IP ADDRESSES AT RUN-TIME ...24

7.1 THE CONFIGURATION RECORD ...24
7.2 READING THE CONFIGURATION RECORD..25
7.3 STATIC AND DHCP IP ADDRESS MODIFICATION EXAMPLE ...26

8 BASIC WEB SERVER FUNCTIONS ...33

8.1 INTRODUCTION ...33
8.2 EDIT THE INDEX.HTM WEB PAGE..33

9 INTERACTIVE WEB FORM EXAMPLE...35

9.1 INTRODUCTION ...35
9.2 HOW HTML FORMS WORK..35
9.3 COLLECTING USER INPUT: WEB FORMS VS. URL’S ...36
9.4 APPLICATION OBJECTIVES..36
9.5 APPLICATION FILES ..36
9.6 INTERACTIVE WEB FUNCTIONS ..36

10 TCP VS UDP..43

11 TCP - TRANSMISSION CONTROL PROTOCOL ..45

11.1 TCP SERVER INTRODUCTION ...45
1 WRITING A NETBURNER TCP SERVER ...46
11.1.1 NetBurner TCP Server Application Source Code..47

NetBurner Programmers Guide

 Page 3

11.1.2 Running the NetBurner TCP Server Application ...49
2 WRITING A WINDOWS TCP SERVER...51
11.1.3 Windows TCP Server Application Source Code ..52
11.1.4 Running the Windows TCP Server Application ...56

3 WRITING A NETBURNER TCP CLIENT ..56
11.1.5 NetBurner TCP Client Application Source Code...58
11.1.6 Main.cpp ..58
11.1.7 ClientWeb.h ...60
11.1.8 ClientWeb.cpp..60
11.1.9 Index.htm ...63

4 NETBURNER TCP CLIENT APPLICATION OPERATION...64

12 UDP - USER DATAGRAM PROTOCOL ..65

12.1 WRITING A NETBURNER UDP CLIENT/SERVER APPLICATION ...65
12.1.1 NetBurner UDP Application Source Code ..66
12.1.2 Running the Application ..69

12.2 WRITING A WINDOWS UDP CLIENT/SERVER APPLICATION ...69
12.2.1 Windows UDP Application Source Code...70
12.2.2 Running the Windows UDP Application..75

12.3 WRITING A WINDOWS JAVA UDP CLIENT/SERVER APPLICATION ..75
12.3.1 Windows Java UDP Application Source Code ..75
12.3.2 Running the Windows Java UDP Application ...79

13 UC/OS REAL-TIME OPERATING SYSTEM...80

13.1 OVERVIEW..80
13.2 PRE-EMPTIVE OPERATION AND BLOCKING ...80
13.3 DEFAULT CONFIGURATION AND RESOURCES ...81
13.4 CREATING TASKS ...81
13.5 INTERRUPTS..83

14 PROTECTING SHARED DATA STRUCTURES...84

14.1.1 Overview..84
14.1.2 Semaphore Example ..85
14.1.3 Mailbox Example ...87
14.1.4 FIFO Example ...89
14.1.5 OSCritObject Example ..91

15 FILE DESCRIPTORS...92

15.1 OVERVIEW..92
15.2 CREATING CUSTOM I/O DRIVERS USING FILE DESCRIPTORS ...92
15.3 USING FILE DESCRIPTORS TO PEND ON MULTIPLE EVENTS..93
15.4 EXAMPLE: CIRCULAR BUFFER IMPLEMENTATION USING FILE DESCRIPTORS ...93

16 MULTIPLE NETWORK INTERFACES ...98

16.1 MULTIPLE HARDWARE INTERFACES (ETHERNET, WIFI, PPP) ..98
16.1.1 WiFi Interface Example ...98

16.2 MULTI-HOME ...101
16.2.1 Multi-Home Example Program..101

17 USING THE COLDFIRE PROCESSOR ON-CHIP SRAM ON THE NETBURNER PLATFORM .104

17.1 INTRODUCTION ...104
17.2 HOW TO USE THE SRAM IN YOUR APPLICATION ..104
17.3 OPTION 1: MODIFYING THE SYS.LD LINKER SCRIPT...104
17.4 OPTION 2: CREATING A POINTER TO A STRUCTURE...105

18 THE TEMPLATE PROGRAM – COMMAND LINE MODE ...107

NetBurner Programmers Guide

 Page 4

18.1 TEMPLATE PROGRAM SOURCE CODE ...109
18.2 COMPILING AND RUNNING THE APPLICATION - OVERVIEW..110
18.3 CREATING A MAKEFILE...110
18.4 COMPILING THE APPLICATION..111
18.5 TEMPLATE PROGRAM SETUP ..111
18.5.1 Testing the RS-232 Debug Connection ..112

19 SOFTWARE LICENSING...113

19.1 NETBURNER LICENSE AGREEMENT..113
19.2 THE NETBURNER TOOLS SOFTWARE LICENSE ...113
19.3 THE NETBURNER EMBEDDED SOFTWARE LICENSE ..114

20 NETBURNER CONTACT INFORMATION...114

21 NETBURNER SUPPORT INFORMATION ..114

NetBurner Programmers Guide

 Page 5

1 Introduction

1.1 How to Use This Guide

The NetBurner Programming Guide is intended to provide an overview of the features and capabilities of the

NetBurner Network Development Kit. The primary goal of this guide is to provide a brief explanation of common

network applications and illustrate how you can implement these applications using NetBurner hardware, software

and development tools.

The approach of this guide is to learn by example. The first program example, called Template, can be used as a

starting point for most applications, and each application in this guide uses it as a base.

This guide should be useful to those new to embedded networking, and to experienced network professionals who

are unfamiliar with the NetBurner tools.

1.2 Source Code for Example Programs

Source code for all the examples in this manual, as well as the latest manual revision, can be downloaded from

http://www.netburner.com in the “support” section.

1.3 How to Use the NetBurner Reference Documents (IMPORTANT!)

There are a number of very useful resources available:

• The NetBurner NNDK Users Manual contains the function API documents. It is located in \nburn\docs, or

from the start menu at: Start -> Programs -> NetBurner NNDK -> NNDK Users Manual.

• The hardware platform documentation specific to the hardware you purchased with the development kit.

This is located at in \nburn\docs\platform\<platform.chm>, or from the start menu: Start -> Programs ->

NetBurner NNDK -> Platform -> <platform.chm>

• Your support account at http://support.netburner.com

• The NetBurner public newsgroup located at groups.yahoo.com

1.4 NetBurner Network Development Kit Contents

You development kit contains everything you need to immediately begin writing network applications:

• NetBurner Hardware Platform

• uC/OS Real-Time Operating System

• NetBurner TCP/IP Stack

• NetBurner Web Server

• Integrated Development Environment (IDE)

• GNU C/C++ Compiler

• GDB/Insight Debugger

• NetBurner Configuration Utilities including IPSetup and AutoUpdate

• Power Supply

• Serial Cable, Standard Network Cable (blue) and Cross-wired Network Cable (red)

NetBurner Programmers Guide

 Page 6

1.5 Getting Started

This guide will provide an overview of how to install and configure your NetBurner tools and devices, but please

refer to the Quick Start Guide and User Manual (from Windows: Start� Programs � Netburner NNDK � NNDK

Users Manual) that came with your development kit for additional details.

1.5.1 Software Installation

NetBurner software and tools run on Windows NT 4.0, 2000, and XP. Insert the CD into the CD-ROM drive. The

Autorun feature should automatically start the install. If it does not, run “setup.exe” from the CD-ROM.

NetBurner Programmers Guide

 Page 7

1.5.2 Hardware Installation

Your Network Development Kit includes one of several possible NetBurner hardware platforms. Each platform will

require a power connection, an Ethernet network connection, and an optional serial connection. Please refer to the

Quick Start Guide that came with your hardware platform for detailed instructions. Once the hardware installation is

complete, you should have the equivalent of one of the two block diagrams below:

Connection using cross-over Ethernet cable (red):

Connection using standard (blue) Ethernet cables:

1.5.3 Network Configuration

Once the hardware and software installations are complete, you will need to either verify automatic network

settings, or assign static network settings of the NetBurner device.

1. Verify the hardware is connected correctly. A link light is located near the RJ-45 Ethernet connector on

your NetBurner board. The link light will be lit if the network cable is connected correctly to both the host

computer and the NetBurner device. Note: If the link light is not lit, network communication will not be

possible.

2. Run the NetBurner IPSetup program. (From Windows: Start � Programs � Netburner NNDK �IP Setup

tool.) IPSetup will allow you to view your NetBurner device’s current settings, or modify the settings. If

you are using DHCP, then the values in the left pane in the IP Setup window will be zero, and the IP

address assigned by the DHCP server will appear in the “Select a Unit” pane as shown below. The name

following the IP address indicates the NetBurner platform name. If your running application supports a

web interface, the “Launch Webpage” button will open up (when clicked) your default web browser to

display your NetBurner device’s home page.

RS-232

Host

Computer

NetBurner

Hardware

Ethernet (red cross-over cable)

RS-232

Host

Computer

NetBurner

Hardware

Ethernet
Ethernet

Switch Ethernet

NetBurner Programmers Guide

 Page 8

3. If you wish to assign a static IP address, enter the information into the “NDK Settings” pane (as shown

below) and click on the “Set” button. There will be a short pause while parameters are updated. If you do

not see your device in the “Select a Unit” window, click on the “Search Again” button. If your running

application supports a web interface, the “Launch Webpage” button (when clicked) will open up your

default web browser to display your NetBurner board’s home page.

1.5.4 Debug Port

Throughout this guide, we will refer to the “debug port”. The debug port is one of the RS-232 ports that can be used

to interact with your NetBurner device in the example programs. By default stdout, stdin and stderr are mapped to

the debug port, so when you use functions like printf(), scanf(), gets(), etc. they read and write to the debug port.

All of this is configurable. You can also disable the debug port and use the port as a general purpose UART, or you

can reassign the stdio file descriptors to use other serial or network interfaces.

NetBurner Programmers Guide

 Page 9

2 Networking Device Configuration

2.1 Overview

The NetBurner hardware and software solution supports Ethernet and PPP network connections. The Ethernet

connection is made through the RJ-45 connector on your NetBurner device, which then will connect directly to your

host computer (use the red crossover cable for direct connections without a hub, switch or router), to your Local

Area Network (LAN) through a hub, switch or router, the Internet, or both. A PPP connection can be made using a

RS-232 serial port as a hard-wired connection, or through a modem. The NNDK supports the modem initialization

for a ZOOM 56K modem. If you are using a different modem, you may need to modify the modem initialization

string. Contact the manufacturer of your modem for additional information.

2.2 Obtaining an IP Address

To get your NetBurner Network Development Kit (NNDK) up and running as quickly as possible, you must have an

IP Address for both your host computer and your NetBurner device. The NetBurner factory application supports

both static and DHCP assigned IP addresses.

2.3 Static IP Address

If you are part of an existing network and want to use a static IP address, you must get the address from your

network administrator. If you connecting your NetBurner hardware to a single computer, or are on an

isolated network, you should select one of the reserved addresses described in the “How do I select an IP address”

section of this guide.

2.4 Dynamic IP Address (DHCP)

When the factory program boots, it will first attempt to obtain an address from a DHCP server. If you are connected

to a network with a DHCP server, everything should get configured automatically.

2.5 Network Configuration Step by Step Instructions

1. Get a static IP address, or use DHCP.

2. Install the NetBurner Development Tools on your host computer.

3. Connect the 12 VDC power supply (US and Canadian customers only) to the board by inserting the P5

male connector on the power supply cord into the P5 female connector on the board assembly (on the edge

of the board near the DB-9 connector). Please refer to your Quick Start Guide for additional information.

4. If you are part of an existing network, or are using a hub: Use the blue RJ-45 patch cord to connect your

NetBurner board to an unused network jack or hub port. Note: You cannot use the blue patch cable to

connect directly to a network card in a computer. When finished, skip to step 6.

5. If you do not have a hub and want to connect directly to your host computer: Use the red RJ-45 patch cable

to connect your NetBurner board to your host computer. Note: You cannot use the red patch cable to

connect to a network hub or existing network jack.

6. Plug in the power supply (120VAC input).

NetBurner Programmers Guide

 Page 10

7. Execute the IPSetup.exe program. From the Windows: Start� NetBurner� IPSetup tool. (If you used the

default installation settings, the program is located in the C:\nburn\pctools\ipsetup directory).

8. The IPSetup program will automatically locate all NetBurner devices on your network. If more than one

device appears, select your device by matching the MAC address displayed in IPSetup with the MAC

address sticker on your NetBurner board.

If using a static IP address: Enter your IP Address and Mask in the corresponding IPSetup text boxes. For

example, if you are on an isolated network, the IP Address could be 10.1.1.11 and the Mask could be

255.255.255.0 (see “How Do I Select an IP Address”). Select the “Set” button to send the modifications in

the CFV2-40.

If using DHCP: Verify that the IP address and mask have been set.

9. Your NetBurner hardware is now configured! Simply click on the “Launch Webpage” page button in the

IPSetup window to view the factory application.

For additional information, please refer to your User Manual. From the Windows Start Menu: Start� Programs�

NetBurner NNDK� NNDK Users Manual.

3 How Do I Select an IP Address?

If you are part of an existing network and are not using DHCP, stop reading now and go get an IP address and

network mask from your network administrator. If you follow the advice in this paragraph on an

existing network without an assigned IP address, the Administrator will hunt you down.....

IP addresses are used to route packets from place-to-place on Intranets/Internet. If you are not part of an established

network, and your Ethernet segment is isolated, you can choose just about any IP address you desire.

The powers that be have actually set aside some addresses for isolated networks. They are documented in RFC1918.

The reserved ranges are:

10.0.0.0 to 10.255.255.255 Class A

172.16.0.0 to 172.31.255.255 Class B

192.168.0.0 to 192.168.255.255 Class C

NetBurner Programmers Guide

 Page 11

If you are doing development on an isolated network, you can use the following addresses (they will be used for all

of the examples in the documentation):

• Set Your PC’s Network Adapter Card IP Address to 10.1.1.10 (only change the Network Adapter Card, do

not change your Dial-Up Adapter settings)

• Set the IP address of the NetBurner board to 10.1.1.11

• Set the network mask for both the PC network adapter and the NetBurner board to 255.255.255.0

4 Web Browsers and Proxy Servers

If you are working on a corporate LAN that uses a proxy server for Internet web browsing, you will need to exclude

the IP address of your NetBurner hardware in your web browser’s proxy server settings/preferences. Otherwise, an

attempt to connect to a web page on the LAN will fail because the proxy server will attempt to route the request

outside the LAN. For most web browsers, this can be accomplished in the advanced settings for the proxy server

configuration. If you are using IE 6.x, click on Tools � Internet Options � Connections � LAN Settings � Proxy

server. For additional information, please contact your IT Department.

NetBurner Programmers Guide

 Page 12

5 Using the NetBurner IDE to Create the Template Program

This section serves as both an introduction to the IDE as well as describing how to create a simple network

application program that can be used as a template for more complex applications. By the end of this section you

will know how to create a project, compile and application and download the application to your NetBurner device.

If you prefer command line tools, you can do all of your development using the make utility. Please see the section

entitled “Using the NetBurner Command Line Tools to Create the Template Program” for details.

Traditionally called the “Hello World” program, the “Template Program” will specify a minimal code base from

which you can write your future applications. The objective of this template program is to print the characters “Hello

World” out the debug port of your NetBurner device. In addition, this template program will enable network

services so that it can be downloaded over a network connection instead of through a serial port or a BDM

(Background Debug Mode) port.

5.1 IDE Overview

The Integrated Development Environment (IDE) enables you to create, edit, compile and download applications to

your NetBurner device.

Features include:

� An Application wizard for creating new applications

� The ability to create new projects for existing applications

� Project Manager

� Customizable syntax highlighting

� Compile, link and download applications in one easy step

� Class browser

� Function Listing

The Debug Monitor

The NetBurner device contains a flash memory boot sector loaded with a boot program called

the “Debug Monitor”. This program is designed to be very small and takes up less than 16

Kbytes of memory space. The Debug Monitor is not designed to provide full TCP network

communications, although it does support the TFTP protocol.

The full TCP/IP Stack functionality is compiled as part of your application. If you download an

application that immediately crashes when it boots, full network services will not be available. In

this case, the NetBurner Debug Monitor comes to the rescue. Once in the Debug Monitor (at the

NB> prompt), you can download a working application through the serial debug port. See the

section on serial downloads using the Debug Monitor for more information.

NetBurner Programmers Guide

 Page 13

5.2 Create a New Project with the AppWizard

The NetBurner Application Wizard will create a project and C/C++ source code for your application. This is a great

way to start a new project since you can add functions like DHCP and HTML processing by selecting the

appropriate checkbox items in the AppWizard dialog box.

 Using C++ File Extensions

Throughout this manual, we will always use the .cpp extension to indicate the source files are

C++. This is done to take advantage of the benefits of the C++ compiler as well as support those

programmers using C++. Note: You do not need to know any C++ to use the NetBurner

Development Kit, and the majority of examples in this guide do not use C++.

NetBurner Programmers Guide

 Page 14

To create a new project:

1. Create a project directory on your hard drive. For example, you could use windows explorer to create a

directory called c:\netburner\myapp.

2. Start DevC++ from the Windows start menu: Start->Programs->NetBurner NNDK->DevC++

3. From the DevC++ main menu, select File->New->AppWizard, as shown below:

The New Project dialog box will then appear as shown below:

NetBurner Programmers Guide

 Page 15

4. Change the default name in the Project/Application Name field.

5. Use the “Choose” button to select the directory you created earlier.

6. Selecting the AutoUpdate checkbox will enable you to download your application code from the IDE

directly to the NetBurner device.

7. Selecting the Include DHCP checkbox will enable your device to use both DHCP and static IP addressing.

8. Selecting the Include Webserver checkbox will cause your application to start the web server, as well as

create a html directory in which your html files will be stored and edited.

Note that all the above options are used to create C/C++ source code for your application. If you change your

mind about any of these features you can easily modify the source code to remove them or change the

functionality.

The AppWizard will create a number of files, as shown below:

• main.cpp is the C/C++ source code file containing UserMain(), the main thread of the application.

• The dcpp_makefile is the project makefile. You do not need to edit or view this file.

• MyApp.dev is the DevC++ project file. You do not need to edit or view this file.

• The html subdirectory is where you will store any HTML files for your application.

That’s it! You have created a project and application code that can now be compiled and run. It will serve as a

base for future customizations. Note that this is a full featured network application that includes the TCP/IP

Stack, Web Server, RTOS and network code update capability.

NetBurner Programmers Guide

 Page 16

Your DevC++ screen should now look like the screenshot below:

NetBurner Programmers Guide

 Page 17

5.3 Template Program Source Code

While in the DevC++ project view, edit the top of the file to add the Template header description as shown below.

Comments have been added to the source code to explain the function of each section.

/*---
 Description: The Template Program
 Filename: main.cpp
 ---*/
#include "predef.h"
#include <stdio.h> // standard input and output functions
#include <ctype.h> // char types
#include <startnet.h> // required for network communications
#include <autoupdate.h> // required for AutoUpdate functionality
#include <dhcpclient.h> // required for DHCP operation
#include <taskmon.h> // required for EnableTaskMonitor()
#include <smarttrap.h> // required for EnableSmartTraps()

extern "C" {
 void UserMain(void * pd);
}

const char * AppName="MyApp";

void UserMain(void * pd)
{

InitializeStack(); // Init TCP Stack
if (EthernetIP==0)GetDHCPAddress(); // Get DHCP address if necessary
OSChangePrio(MAIN_PRIO); // Set UserMain task priority
EnableAutoUpdate(); // Enable network code downloads
StartHTTP(); // Start web server
EnableTaskMonitor(); // Optional: Enable RTOS task scan for debug
EnableSmartTraps(); // Optional: Enable smart traps. Cannot be used
 // with GDB/Insight Debugger

iprintf("Application started");

 while (1)
 {

iprintf(“Hello World\r\n”); // integer version of printf()
 OSTimeDly(TICKS_PER_SECOND * 1); // Delay 1 second
 }
}

The above program is a fully functional network application in just a few lines of code! The only application

specific code is inside the while(1) loop; the remainder of the program is what we will refer to as the “Template

Program”. Although the purpose of our application is to print “Hello World” out the debug serial port, adding the

network support will allow fast code development using the NetBurner “make load” build command, and also allow

network configuration using the NetBurner IPSetup utility (i.e. IPSetup tool). For additional information on IPSetup

and AutoUpdate please refer to your NNDK User Manual. From Windows: Start � Programs � Netburner NNDK

� NNDK Users Manual.

The “extern C” declaration is used to so that UserMain() is compatible with both C and C++ applications; it

prevents the name mangling associated with C++.

extern "C" {
 void UserMain(void * pd);
}

NetBurner Programmers Guide

 Page 18

The line: const char * AppName="MyApp"; will enable the IPSetup utility to display the application

name. You can change MyApp to any string you wish. If this variable is not set, IPSetup will not display a value for

this field.

The UserMain() function is a thread created by the system to be your application’s main entry point for taking

control over the function of the device . The parameter passed to UserMain() is a void pointer to some type of data.

This is a feature of the uC/OS RTOS, but it is not needed for the NetBurner tool set.

The next group of function calls handle system initialization:

 InitializeStack();
 if (EthernetIP == 0) GetDHCPAddress();
 OSChangePrio(MAIN_PRIO);
 EnableAutoUpdate();
 StartHTTP();

InitializeStack() initializes the TCP/IP Stack. This is required for any network communications to take place.

The line: if (EthernetIP = = 0) GetDHCPAddress(); checks the NetBurner device’s IP address setting, and if the IP

address is 0.0.0.0, the device will attempt to contact a DHCP Server and obtain a dynamic IP configuration,

including the IP address, mask, gateway and DNS Server.

The function call OSChangePrio(MAIN_PRIO) sets the UserMain task priority to the default, which is 50. The

RTOS has a total of 63 priority levels. Level 1 is the highest, and level 63 is the lowest priority. In a preemptive

RTOS, the highest priority task ready to run will execute. For example, the TCP/IP stack task is a higher priority

task (lower priority number), and will interrupt UserMain() when necessary to process network data.

Some of the tasks are reserved. For example, task 63 is the system idle task, which runs when no other tasks are

ready to run. The system defines the following tasks in \nburn\include\constants.h:

#define MAIN_PRIO (50)
#define HTTP_PRIO (45)
#define PPP_PRIO (44)
#define TCP_PRIO (40)
#define IP_PRIO (39)
#define ETHER_SEND_PRIO (38)

In addition, task 0 and task 63 are reserved. Tasks available for user applications are any of the remaining task

priority numbers. Some network modules such as FTP and Telnet Command will also use task priorities, but the

priority will be an option passed to the function that starts the task.

What if DHCP fails?

If you run IPSetup and notice that the IP address of your device is 0.0.0.1, this is an indication

that a DHCP Server could not be found on your network. The DHCP Client runs as a separate

task, so it will keep trying to get a DHCP address until it succeeds, or the application explicitly

calls StopDHCP();.

NetBurner Programmers Guide

 Page 19

An easy way to keep track of priority levels for user applications is to use the MAIN_PRIO definition and add or

subtract a number from it. For example, if you create a new task and want it to be of higher priority than UserMain,

then use (MAIN_PRIO – 1). If you want it to be of lower priority, the add 1, etc.

The function EnableAutoUpdate(); will enable the network flash memory update capability of the device. The

Autoupdate utility is used both during development to quickly download code to flash memory, and also as an

update mechanism once the device is deployed.

The StartHTTP() function starts the HTTP Web Server task. When you build your project, the web page data in

your project’s “html” directory will be processed and made available to be served up as a web page. For example,

you will probably have a web page called “index.htm”. The StartHTTP()function will start a task that listens on

port 80 for incoming HTTP requests such as those from a web browser. An optional parameter may be passed to the

function to select a different port number. For example, StartHTTP(81); will start the Web Server and tell it to

listen on port 81. StartHTTP() may only be called once.

The EnableTaskMonitor() enables TaskScan, a network debugging tool that is used to view tasks and their

status in a running application. To use TaskScan you must add #include <taskmon.h> in your application's main.cpp

file and EnableTaskMonitor(); in user main. When the TaskScan utility is run on your Windows computer you can

view the running tasks, their status and current source code line number. There are no performance hits if you

include TaskScan in your application; the the only time it will be invoked is when you run the TaskScan utility and

connect to your netburner device. TaskScan is covered later in this manual.

The NetBurner system will catch programming errors that cause traps, such as null pointers, and display debug

information such as the program counter, address registers and data registers. The EnableSmartTraps() function

call provides more detailed debugging information when a trap occurs, such as the RTOS task information. Note that

if you are using GDB/Insight Debugging, EnableSmartTraps() must called before the GDB stub function.

The inside of the while loop is where you would place your application code:

 while (1)
 {
 iprintf(“Hello World\r\n”); // integer version of printf()
 OSTimeDly(TICKS_PER_SECOND * 1);
 }

The iprintf() and OSTimeDly(20) are just there for the example; you would replace those lines with whatever

you want your application to do. Note that you should never return from this while loop; if you did, then your

application would lose control of the hardware.

Always check the return value when creating a task!

If you call a function that creates a new task and you specify a task priority that is already in use,

the function will return an error.

NetBurner Programmers Guide

 Page 20

5.4 Template Program Setup

Before running our program, lets make sure your hardware is set up correctly. To run the Template program, you

will need your hardware to be set up as shown below:

Connection using cross-over Ethernet cable (red):

Connection using standard (blue) Ethernet cables:

The Ethernet connection should be between your host computer and your NetBurner device’s RJ-45 connector. The

RS-232 connection should be made between your host computer's Serial port and the Debug Serial port of your

NetBurner device. The Serial port connection on the NetBurner device will vary with each hardware platform, but it

should be a DB9 connector on the processor board itself, or on a separate Adapter board or Carrier board supplied

with your kit. Please refer to your Quick Start Guide for additional details on how to "make" and download files to

your NetBurner device.

5.4.1 Testing the RS-232 Debug Connection

You can determine if you are properly connected to the debug port with the following test:

1. Start the dumb terminal program MTTTY, which is included in your NetBurner tools. You can start it from

within the IDE “Tools” menu, or from the Windows start menu: Start � Programs � Netburner NNDK �

Mttty Serial Terminal. Set the com port to whichever port you are using on your computer (usually com1),

and set the baud rate to 115,200. Make sure to click on the “Connect” button in the MTTTY window to

establish the connection.

2. Power on or reset your NetBurner device. The MTTTY screen should display a sign-on message similar to:

“Waiting to boot……….”. If you see this message, then you are connected correctly.

For additional information, please refer to your User Manual. From Windows: Start � Programs � Netburner

NNDK � NNDK Users Manual.

RS-232

Host

Computer

NetBurner

Hardware

Ethernet (red cross-over cable)

RS-232

Host

Computer

NetBurner

Hardware

Ethernet
Ethernet

Switch Ethernet

NetBurner Programmers Guide

 Page 21

5.5 Compiling and Running the Application

Now that we have the application source code file, we need to compile it into a code image and download it to your

NetBurner device. There are four methods to download your applications:

1. Through the serial port

2. Through a network connection using AutoUpdate. This is the preferred method, and can be run from within

the IDE, or as a stand-alone application.

3. Through a network connection using TFTP

4. Through a network connection using FTP

In this example, we will use the AutoUpdate method from within the IDE. In order to run your application on your

NetBurner device you will need to do the following:

1. Compile the source code into an application image

2. Download the application image to the flash memory of the NetBurner device

3. Reboot the NetBurner device so the application can begin execution

Thankfully, this is a very simple process that can be accomplished with a single build command. From the IDE main

menu, select “Build� Compile & Load” (or use the F9 shortcut key). A dialog box will appear, showing the

compile status, followed by a progress bar that shows the progress of the download. Once the download is complete,

you will see the debug messages appear in MTTTY, along with “Hello World”.

Flash and RAM application files

When your code compiles correctly, two files are created: template.s19 and template_APP.s19.

The template.s19 file is memory mapped to run from RAM, while template_APP.s19 is memory

mapped to run from Flash memory. Note: All compiled images will be located in the

c:\nburn\bin directory . This guide will focus on Flash downloads. Please refer to the section on

Downloading to RAM in your User Manual for more information on downloading applications

to RAM. (From Windows: Start � Programs � NetBurner NNDK � NNDK Users Manual.)

NetBurner Programmers Guide

 Page 22

6 DHCP - Dynamic Host Configuration Protocol

DHCP is used to provide host configuration parameters on a TCP/IP network. DHCP is built on a client-server

architecture in which one or more designated DHCP Servers allocate network addresses and other configuration

information to hosts (DHCP Clients). Note: All NetBurner devices can function as a DCHP Client. For additional

information about DHCP, please refer to your NNDK User Manual. From Windows: Start � Programs �

NetBurner NNDK � NNDK Users Manual.

To enable DHPC Client services, your application code must contain DHCP Client API function calls to enable the

service. DHCP can dynamically configure many parameters, including:

1. IP Address

2. Subnet Mask

3. Gateway Address

4. DNS Server Address

The example code below checks the first interface, but you can modify it to check for the second or third interfaces.

Typically the first interface will be your primary Ethernet interface. To use the network interface functions, you

must include netinterface.h.

// Get first interface identifier. Use GetNextInterface(<last interface>) to
// obtain additional interface numbers if necessary.
int FirstInterface = GetFirstInterface();
InterfaceBlock *ib = GetInterFaceBlock(FirstInterface); // Get interface data

if (ib->netIP == 0) // Check IP address for 0.0.0.0, and use DHCP if necessary
{
 iprintf("\r\nNo static IP address set, attempting DHCP\r\n");
 if (GetDHCPAddress(FirstInterface) == DHCP_OK)
 {
 iprintf("DHCP address: "); ShowIP(ib->netIP); iprintf("\r\n");
 else
 {
 iprintf("Error: could not obtain a DHCP address\r\n");
 }
}

The code checks the interface block variable ib->netIP to determine if the host IP address is 0. If the IP address is 0,

then the DHCP Client should be invoked to obtain a dynamic IP parameters. If EthernetIP is not 0, then the system

assumes a static IP address has been assigned, and DHCP is not used.

In previous tools releases that did not include multiple network interface support, a global variable named

EthernetIP was used to access the Ethernet IP address of the device. While this variable will still work for backward

compatibility, it is recommended that the interface functions be used for all new applications.

An easy way to check your NetBurner board to determine if it has a DHCP assigned IP address is to use the IPSetup

program (from Windows: Start� Programs � Netburner NNDK � IP Setup tool). In the screenshot below, the IP

address field representing the static IP address is shown as 0.0.0.0, followed by the DHCP-assigned IP address (i.e.

10.1.1.101). Other parameters such as the network mask, gateway and DNS are also assigned and can be accessed as

parameters in your application. The NDK Settings section (left pane of the IPSetup window), represents the static

settings.

NetBurner Programmers Guide

 Page 23

For additional information about IP Setup, please refer to your NNDK User Manual. From Windows: Start �

Programs � Netburner NNDK � NNDK Users Manual.

NetBurner Programmers Guide

 Page 24

7 Changing IP Addresses at Run-Time

System configuration parameters such as IP address, mask, gateway and DNS are stored in two places:

1. Configuration Records used by the system to store configuration parameters in flash memory.

2. Interface Blocks used by the system at run time.

There are 3 Configuration Records, numbered 0, 1 and 2, as defined in \nburn\include\netinterface.h:

 #define CONFIG_IF_ID_ETHERNET (0)
 #define CONFIG_IF_ID_WIFI (1)
 #define CONFIG_IF_ID_ETHERNET2 (2)

The Configuration Record is a structure that contains all the system configuration parameters. When your NetBurner

device boots, it copies these parameters to run-time variables that are used during normal system operation, called

Interface Blocks. This application illustrated how to read and modify both runtime and stored flash configuration

parameters.

NOTE: This application note was written for tools release 1.95. If you are using a later revision, please check the

system file references to verify specific information on function calls and structures. This application note does not

apply to prior releases.

7.1 THE CONFIGURATION RECORD

Configuration Records are stored in an 8k bytes sector of flash memory. There is one ConfigRecord structure for

each network interface in your NetBurner device. In the 1.95 release, the each ConfigRecord occupies 256 bytes.

To enable an application to modify and save the network settings you must retrieve the ConfigRecord for a specific

interface, modify it, and save it to flash. The ConfigRecord structure is defined in \nburn\include\system.h:

typedef struct
{
 unsigned long recordsize; /* The stored size of the struct */
 unsigned long ip_Addr; /* The device IP Address */
 unsigned long ip_Mask; /* The IP Address Mask */
 unsigned long ip_GateWay; /* The address of the P gateway */
 unsigned long ip_TftpServer; /* The address of the TFTP server to load
 data from */
 unsigned long baud_rate; /* The initial system Baud rate */
 unsigned char wait_seconds; /* The number of seconds to wait before
 booting */
 unsigned char bBoot_To_Application; /* True = app., False = monitor */
 unsigned char bException_Action; /* What should we do when we have an
 exception? */
 unsigned char m_FileName[80]; /* The file name of the TFTP file to load */
 unsigned char mac_address[6]; /* The Ethernet MAC address */
 unsigned char ser_boot;
 unsigned long ip_DNS_server;
 unsigned char core_mac_address[6]; /* The Base unit MAC address */
 unsigned char typeof_if;
 unsigned char direct_Tx;
 unsigned long m_ExtraData[4];
 unsigned char m_bUnused[3];
 unsigned char m_q_boot; /* True to boot without messages */
 unsigned short checksum; /* A Checksum for this structure */
 }__attribute__((packed)) ConfigRecord;

NetBurner Programmers Guide

 Page 25

 /* The read-only system config record */
 extern const ConfigRecord gConfigRec;

7.2 Reading the Configuration Record

The functions to retrieve and save a ConfigRecord are:

ConfigRecord *GetIfConfig(int num);
void SaveIfConfig(ConfigRecord *cr, int num);

where num represents the interface number: 0, 1 or 2. The *cr pointer would point to the new ConfigRecord you

wish to save in flash memory.

Although the gConfigRec is available as the run-time copy for the first interface, it is recommended you use the

GetIfconfig() function to get a fresh copy for the specific interface you want to modify.

THE NETWORK INTRFACE BLOCK

While the ConfigRecord described in the previous section is used to store parameters in flash, the InterfaceBlock

structure is used during system run-time to store the network configuration settings for each network interface. At

boot time, the network settings from the ConfigRecord are read and copied to the InterfaceBlock.

As of tools revision 1.95, the values of the device IP address, mask, gateway, DNS, etc. are controlled by a structure

located in \nburn\include\netinterface.h. The netinterface method was created to enable devices to have multiple

network interfaces, such as multiple Ethernet ports and WiFi. The configuration information is kept in a linked list

of structures with the following format:

struct InterfaceBlock
{
 MACADR theMac;
 IPADDR netIP;
 IPADDR netIpMask;
 IPADDR netIpGate;
 IPADDR netDNS;
 SendNetBuffer *send_func;
 KillInterface *kill_if;
 fEnableMulticast *enab_multicast;
 const char *InterfaceName;
 int config_num;
};

The functions to get an existing structure or save a modified structure are:

int GetFirstInterface();
int GetnextInterface(int last);

Functions to read InterfaceBlock parameters are:

IPADDR InterfaceIP(int InterfaceNumber);
IPADDR InterfaceDNS(int InterfaceNumber);
IPADDR InterfaceMASK(int InterfaceNumber);
IPADDR InterfaceGate(int InterfaceNumber);
MACADR InterfaceMAC(int InterfaceNumber);

NetBurner Programmers Guide

 Page 26

Where InterfaceNumber is the interface number: 1, 2, 3, etc.

If all you wish to do is to change a network parameter at run-time, then you only need to change the InterfaceBlock

value.

EXAMPLE: MODIFY AND CHANGE NETWORK SETTINGS

The following is an example program illustrating how modify and save a network setting:

1. Read ConfigRecord

2. Read InterfaceBlock

3. Modify InterfaceBlock to affect run-time values

4. Save ConfigRecord to store new parameters

7.3 Static and DHCP IP Address Modification Example

/**
 Example program to illustrate how an application can change the
 run-time and stored Flash values for Ethernet IP, mask, Gateway
 and DNS.

 THIS EXAMPLE APPLIES TO TOOLS RELEASE 1.95 OR LATER

 INTRODUCTION FOR CONFIGURATION RECORDS AND INTERFACE BLOCKS
 - The NetBurner device contains runtime and stored (Flash) system
 configuration parameters. Interface Blocks are used at runtime,
 and Configuration Records are stored in Flash. At boot time,
 data from the Configuration Records are copied to Interface
 Blocks.

 - There are 3 Configuration Records as defined in netinterface.h:
 #define CONFIG_IF_ID_ETHERNET (0)
 #define CONFIG_IF_ID_WIFI (1)
 #define CONFIG_IF_ID_ETHERNET2 (2)

 The order of these configuration records is fixed, regardless of
 the Interface Block number. For example, if you have only a WiFi
 interface, you still use Configuration Record 1.

 - Configuration Records are numbered 0, 1 and 2. Interface Blocks
 are numbered 1, 2, 3. There is no correlation between this
 numbering. Interface Block 3 could reference Configuration Record
 1, depending on the order of interface registration calls by your
 application.

 - This example will provide a menu through the serial debug port
 that enables you to set/clear static IP settings, and start/stop
 the DHCP Client service.

**/
#include "predef.h"
#include <stdio.h>
#include <ctype.h>
#include <startnet.h>

NetBurner Programmers Guide

 Page 27

#include <autoupdate.h>
#include <dhcpclient.h>

// Make sure to include these header files
#include <bsp.h>
#include <string.h>
#include <utils.h>
#include <system.h>
#include <netinterface.h>

extern "C" {
 void UserMain(void * pd);
}

// Application name
const char * AppName = "Change IP Example";

// Variable to indicate if appliction tried to obtain runtime IP settings
// from a DHCP server.
bool AssignedDHCP = FALSE;

// Since we want to be able to start and stop DHCP, we need to create out
// own DHCP Object instead of using the GetDHCPAdderss() function which
// handles this automatically.
DhcpObject *pDhcpObj;

// Add a device name for DNS
const char *DeviceName = "NetBurner";
extern const char *pDHCPOfferName; // point this at above name in UserMain

/*---
 Display runtime IP values
 This function demonstrates two methods to read the runtime IP
 values:
 1. Using the read-only Interface function calls
 2. Using the GetInterfaceBlock() function to get a pointer to an
 Interface Record.
 ---*/
void DisplayRuntimeIPSettings(int InterfaceNumber)
{
 iprintf("\r\n\r\n--- RUNTIME IP SETTINGS ---\r\n");
 if (AssignedDHCP)
 iprintf("Values assigned by DHCP Server\r\n");

 // Display current runtime values using Interface read-only functions
 iprintf("IP runtime settings using Interface Functions for interface %d:\r\n",
 InterfaceNumber);
 iprintf("IP: "); ShowIP(InterfaceIP(InterfaceNumber)); iprintf("\r\n");
 iprintf("Mask: "); ShowIP(InterfaceMASK(InterfaceNumber)); iprintf("\r\n");
 iprintf("Gate: "); ShowIP(InterfaceGate(InterfaceNumber)); iprintf("\r\n");
 iprintf("DNS: "); ShowIP(InterfaceDNS(InterfaceNumber)); iprintf("\r\n");

 // Display current runtime values by getting a pointer to the Interface Block
 // and accessing it's variables.
 iprintf("\r\nIP runtime settings using GetInterfaceBlock() for interface %d:\r\n",
 InterfaceNumber);
 InterfaceBlock *ib = GetInterFaceBlock(InterfaceNumber);
 iprintf("IP: "); ShowIP(ib->netIP); iprintf("\r\n");
 iprintf("Mask: "); ShowIP(ib->netIpMask); iprintf("\r\n");

NetBurner Programmers Guide

 Page 28

 iprintf("Gate: "); ShowIP(ib->netIpGate); iprintf("\r\n");
 iprintf("DNS: "); ShowIP(ib->netDNS); iprintf("\r\n");
 iprintf("Interface Name: %s\r\n", ib->InterfaceName);
 iprintf("\r\n");
}

/*---
 Display Flash IP values
 This function demonstrates two methods to read the IP settings
 stored in the Flash Configuration Record:
 1. Using the gConfigRec global read-only structure
 2. Using the RawGetConfig() functoin to obtain a pointer to a
 specific Configuration Record.
 ---*/
void DisplayFlashIPSettings(int RecordNumber)
{
 // Note that gConfigRec only applies to ConfigRecord 0
 iprintf("\r\n--- FLASH IP SETTINGS ---\r\n");
 iprintf("These values will be 0 if you are using DHCP\r\n");
 iprintf("IP Flash settings using gConfigRec for Record 0:\r\n");
 iprintf("IP: "); ShowIP(gConfigRec.ip_Addr); iprintf("\r\n");
 iprintf("Mask: "); ShowIP(gConfigRec.ip_Mask); iprintf("\r\n");
 iprintf("Gate: "); ShowIP(gConfigRec.ip_GateWay); iprintf("\r\n");
 iprintf("DNS: "); ShowIP(gConfigRec.ip_DNS_server); iprintf("\r\n");

 // Note that ConfigRecord structures start at 0 for the first interface
 ConfigRecord *cr = RawGetConfig(RecordNumber);
 iprintf("\r\nIP Flash settings using RawGetConfig() for Record %d:\r\n",
 RecordNumber);
 iprintf("IP: "); ShowIP(cr->ip_Addr); iprintf("\r\n");
 iprintf("Mask: "); ShowIP(cr->ip_Mask); iprintf("\r\n");
 iprintf("Gate: "); ShowIP(cr->ip_GateWay); iprintf("\r\n");
 iprintf("DNS: "); ShowIP(cr->ip_DNS_server); iprintf("\r\n");
}

/*---
 Change the runtime IP settings.
 This function will display the current IP address and mask,
 change the runtime variables to new values, then display the
 new values.
 ---*/
void ChangeRuntimeIPSettings(int InterfaceNumber, IPADDR IpAddr, IPADDR IpMask, IPADDR
IpGate, IPADDR IpDNS)
{
 iprintf("\r\nChanging IP runtime settings for interface %d:\r\n",
 InterfaceNumber);

 // Display current values
 InterfaceBlock *ib = GetInterFaceBlock(InterfaceNumber);
 iprintf("Old Settings:\r\n");
 iprintf(" IP: "); ShowIP(ib->netIP); iprintf("\r\n");
 iprintf(" Mask: "); ShowIP(ib->netIpMask); iprintf("\r\n");
 iprintf(" Gway: "); ShowIP(ib->netIpGate); iprintf("\r\n");
 iprintf(" DNS: "); ShowIP(ib->netDNS); iprintf("\r\n");
 iprintf(" Interface Name: %s\r\n", ib->InterfaceName);

 // Change to new values
 ib->netIP = IpAddr;
 ib->netIpMask = IpMask;
 ib->netIpGate = IpGate;

NetBurner Programmers Guide

 Page 29

 ib->netDNS = IpDNS;

 // Display new values. At this point, you can communicate with the
 // device using the new ip address and mask.
 iprintf("New Settings:\r\n");
 iprintf(" IP: "); ShowIP(ib->netIP); iprintf("\r\n");
 iprintf(" Mask: "); ShowIP(ib->netIpMask); iprintf("\r\n");
 iprintf(" Gway: "); ShowIP(ib->netIpGate); iprintf("\r\n");
 iprintf(" DNS: "); ShowIP(ib->netDNS); iprintf("\r\n");
 iprintf(" Interface Name: %s\r\n", ib->InterfaceName);
}

/*---
 Store new IP address and mask settings to the configuration record
 in Flash. In most cases you would have already changed the runtime
 values to the same settings.
 ---*/
void ChangeFlashIPSettings(int RecordNumber, IPADDR IpAddr, IPADDR IpMask, IPADDR
IpGate, IPADDR IpDNS)
{
 iprintf("\r\nChanging Flash settings using RawGetConfig() for Record %d:\r\n",
 RecordNumber);

 // Get pointer to Configuration Record
 ConfigRecord *cr = RawGetConfig(RecordNumber);

 // Display current Flash values
 iprintf("Old Settings:\r\n");
 iprintf(" IP: "); ShowIP(cr->ip_Addr); iprintf("\r\n");
 iprintf(" Mask: "); ShowIP(cr->ip_Mask); iprintf("\r\n");
 iprintf(" Gate: "); ShowIP(cr->ip_GateWay); iprintf("\r\n");
 iprintf(" DNS : "); ShowIP(cr->ip_DNS_server); iprintf("\r\n");

 // create new config record and copy data
 ConfigRecord NewRec;
 memcpy(&NewRec, cr, sizeof(NewRec));

 // Change parameters
 NewRec.ip_Addr = IpAddr;
 NewRec.ip_Mask = IpMask;
 NewRec.ip_GateWay = IpGate;
 NewRec.ip_DNS_server = IpDNS;

 // Write new values to Flash system configuration sector
 UpdateConfigRecord_Num(&NewRec, RecordNumber);

 // Display current Flash values
 iprintf("New Settings:\r\n");
 iprintf(" IP: "); ShowIP(cr->ip_Addr); iprintf("\r\n");
 iprintf(" Mask: "); ShowIP(cr->ip_Mask); iprintf("\r\n");
 iprintf(" Gate: "); ShowIP(cr->ip_GateWay); iprintf("\r\n");
 iprintf(" DNS : "); ShowIP(cr->ip_DNS_server); iprintf("\r\n");

 // You do not need to reboot if you change both the runtime
 // and flash values. This function call requires #include <bsp.h>
 // ForceReboot();
}

/*---
 DisplayUserMenu
 Displays menu through the serial port to interact with program.

NetBurner Programmers Guide

 Page 30

 ---*/
void DisplayUserMenu()
{
 iprintf("\r\n--- Main Menu ---\r\n");
 iprintf("1. Display Runtime Settings\r\n");
 iprintf("2. Display Flash Settings\r\n");
 iprintf("3. Change Runtime Static Settings\r\n");
 iprintf("4. Change Flash Static Settings\r\n");
 iprintf("5. Change Flash & Runtime Static Settings to 0.0.0.0\r\n");
 iprintf("6. Start DHCP Client Servce\r\n");
 iprintf(" and attempt to get a DHCP address\r\n");
 iprintf("7. Stop DHCP Client Service\r\n");
}

/*---
 MyStartDHCP
 Most applications can just use the GetDHCPAddress() function at boot
 time to enable the DHCP Client. If you require more control over the
 DHCP service, such as starting and stopping, then a few lines of
 code are required to create a DhcpObject and check a semaphore to
 determine if the DHCP request was successful. This is essentially
 what the GetDHCPAddress() function does.
 ---*/
void MyStartDHCP(InterfaceBlock *ib)
{
 int FirstInterface = GetFirstInterface(); // Get first interface identifier

 // The following lines of code are essentially what the GetDHCPAddress() function
 // does to make the DHCP process easier.
 pDhcpObj = new DhcpObject(FirstInterface);
 pDhcpObj->StartDHCP(); // Start DHCP

 // Pend on semaphore to verify an address was obtained
 if (OSSemPend(&(pDhcpObj->NotifySem), 10 * TICKS_PER_SECOND) == OS_TIMEOUT)
//Wait 10 seconds
 {
 iprintf("\r\n\r\n*** WARNING ***\r\n");
 iprintf("IP Address was set to 0.0.0.0, and a DHCP server could not be
found.\r\n");
 iprintf("Device does not have a valid IP address.\r\n\r\n");
 }
 else
 {
 iprintf("DHCP assigned the following values:\r\n");
 iprintf("IP: "); ShowIP(ib->netIP); iprintf("\r\n");
 iprintf("Mask: "); ShowIP(ib->netIpMask); iprintf("\r\n");
 iprintf("Gate: "); ShowIP(ib->netIpGate); iprintf("\r\n");
 iprintf("DNS: "); ShowIP(ib->netDNS); iprintf("\r\n");
 iprintf("Interface Name: %s\r\n", ib->InterfaceName);
 iprintf("\r\n");
 AssignedDHCP = TRUE;
 }
}

/*---
 UserMain task
 ---*/
void UserMain(void * pd)
{
 InitializeStack();
 pDHCPOfferName = DeviceName; // Host name for DNS

NetBurner Programmers Guide

 Page 31

 int FirstInterface = GetFirstInterface(); // Get first interface identifier
 InterfaceBlock *ib = GetInterFaceBlock(FirstInterface); // Get interface data

 if (ib->netIP == 0) // Check IP address for 0.0.0.0, and use DHCP if necessary
 {
 iprintf("\r\nNo static IP address set, attempting DHCP\r\n");
 MyStartDHCP(ib);
 }

 OSChangePrio(MAIN_PRIO);
 EnableAutoUpdate();
 StartHTTP();

 DisplayUserMenu();
 while (1)
 {
 char c = getchar();
 switch (c)
 {
 case '1': // Display runtime IP values
 DisplayRuntimeIPSettings(FirstInterface);
 break;

 case '2': // Display Flash IP values
 // This example uses only 1 Configuration Record, 0
 DisplayFlashIPSettings(0);
 break;

 case '3': // Change the runtime IP address and mask
 // After this function, the device will respond to the new IP settings
 ChangeRuntimeIPSettings(FirstInterface, // Interface Block
 AsciiToIp("10.1.1.24"), // New IP address
 AsciiToIp("255.255.255.0"), // New IP mask
 AsciiToIp("10.1.1.1"), // New IP gateway
 AsciiToIp("10.1.1.2")); // New IP dns
 break;

 case '4': // Change the Flash IP address and mask
 // If the device reboots, the new values will be in effect
 ChangeFlashIPSettings(0, // Use first Config Record, 0
 AsciiToIp("10.1.1.24"), // New IP address
 AsciiToIp("255.255.255.0"), // New IP mask
 AsciiToIp("10.1.1.1"), // New IP gateway
 AsciiToIp("10.1.1.2")); // New IP dns
 break;

 case '5': // Set all flash values to 0.0.0.0
 ChangeFlashIPSettings(0, // Use first Config Record, 0
 AsciiToIp("0.0.0.0"), // New IP address
 AsciiToIp("0.0.0.0"), // New IP mask
 AsciiToIp("0.0.0.0"), // New IP gateway
 AsciiToIp("0.0.0.0")); // New IP dns

 ChangeRuntimeIPSettings(FirstInterface, // Interface Block
 AsciiToIp("0.0.0.0"), // New IP address
 AsciiToIp("0.0.0.0"), // New IP mask
 AsciiToIp("0.0.0.0"), // New IP gateway
 AsciiToIp("0.0.0.0")); // New IP dns
 break;

 case '6': // Start DHCP Client service
 if (!AssignedDHCP)

NetBurner Programmers Guide

 Page 32

 {
 iprintf("Contacting DHCP Server ...\r\n");
 MyStartDHCP(ib);
 }
 else
 {
 iprintf("\r\n*** Error: DHCP Client service is alredy running\r\n");
 }
 break;

 case '7': // Stop DHCP Client service
 if (AssignedDHCP)
 {
 pDhcpObj->StopDHCP(); // Stop DHCP
 AssignedDHCP = FALSE; // Flag for this application
 iprintf("\r\nDHCP Release sent and DHCP Client service has been
stopped\r\n");
 DisplayRuntimeIPSettings(FirstInterface);
 }
 else
 {
 iprintf("\r\n*** Error: DHCP Client service is not running\r\n");
 }
 break;

 default: DisplayUserMenu();
 }
 }
}

NetBurner Programmers Guide

 Page 33

8 Basic Web Server Functions

8.1 Introduction

The Template program is now at the point where it will boot up, display its IP address (static or acquired by DHCP),

and loop forever printing messages to stdout (the debug serial port). In this chapter, we will use the web server to

display some very simple static content. The NetBurner Web Server excels at providing dynamic content as well,

which will be discussed in the next chapter.

A web server is a specialized case of a generic TCP server that listens on the “well known port number” 80. The

web server operates as a task that waits for incoming TCP connections on port 80, then delivers the requested

content to the client - which is usually a web browser.

To initiate the transfer, the web browser sends a GET request. If no file name is specified in the GET request, a

default file named index.htm or index.html is returned. The NetBurner Web Server assumes a default of index.htm

(you can change this to html if you desire). Once the web server sends the requested data, it terminates the TCP

connection.

To enable the web server and serve up pages to a web browser an application needs the following:

1. Add the StartHTTP() function call to start the Web Server

2. A directory named “html” in the project directory

3. Create a web page called index.htm.

All of the above steps are done automatically by the AppWizard if you select the appropriate checkbox items. Since

we did this with the initial template program, all we need to do now is edit the HTML content in the index.htm file.

8.2 Edit the index.htm Web Page

Next we will edit the index.htm file created by the AppWizard. The page will contain some text and an image.

Creating a Blank Project for Existing Code

If you have an existing project with c, c++ and web content, you can create a “blank project”

instead of using the AppWizard. Once you have a blank project the IDE will be able to scan your

html directory and automatically add the html content to the project. Please see the IDE

instructions on creating a blank project for more details.

Using HTML Tools

You can use HTML tools such as Dreamweaver to create your web content. However, remember

that EVERYTHING in the html directory is included in the application image. Some HTML

tools can leave large project files in the html directory that will take up a large portion of your

application space. You should remove any such files before building your project.

NetBurner Programmers Guide

 Page 34

Edit the index.htm file as shown below:

<HTML>
<BODY>

<H1>Thank you for NetBurning!</H1>

</BODY>
</HTML>

The <HTML> and <BODY> tags define the file as containing HTML content and provide delimiters for the body of

the web page. The tags are used to display the logo and board pictures. The text message “Thank you for

NetBurning” is then displayed. The <H1> tags specify that the text be displayed as a header in larger bold font.

Note: The images are available with the project files as a download from www.netburner.com. If you do not have

these files, you can simply delete the two lines with the tags and display only the text.

Now compile and download the application. When you view the web page the output should look like the screen

shot below:

NetBurner Programmers Guide

 Page 35

9 Interactive Web Form Example

9.1 Introduction

In the previous chapter, our basic web page example demonstrated static web content. Your NetBurner platform can

easily do dynamic content as well. In this example we will create a configuration web page interface that will

provide submission and recall of changeable data by using HTML forms. Below is a screen shot of this application:

9.2 How HTML Forms Work

You have probably encountered forms many times on the web, especially for ecommerce and feedback forms. The

format is typically some number of text fields, checkboxes, radio buttons, combo boxes and a submit button. When

you click on the submit button, the data from the form is sent to the web server as a HTTP POST. The web server

then parses the data and takes appropriate action. If you have ever purchased anything on the web, filled out the

order information, and clicked on a button like “confirm order” or “buy”, you most likely submitted form

information and were then redirected to a page confirming the order.

A form is defined in HTML by the <FORM></FORM> tags. User input is accomplished using the <INPUT> tag,

representing text fields, checkboxes, radio buttons, etc.. For example,

<FORM ACTION="name.htm" METHOD="POST">
<INPUT TYPE="radio" VALUE="UTC" NAME="RadioGroup1" CHECKED=”1”> UTC Time
<INPUT TYPE="radio" VALUE="Local" NAME="RadioGroup1">Local Offset:

NetBurner Programmers Guide

 Page 36

<INPUT NAME="tfHours" VALUE=”9” TYPE="text" SIZE="20"> Hours
<INPUT TYPE="submit" VALUE="Submit”>
</FORM>

The above HTML source code shows the first few form items of the example explained in this chapter. The above

form has two mutually exclusive radio buttons, one text field and the form submit button. The web browser will

identify the input types and create the respective graphics on the web page. Note: The items in bold text will be

created dynamically by the application source code in our example program. The user will select a radio button,

enter text in the text field, and finally click on the submit button. The user form values will then be sent to the web

server as a POST.

9.3 Collecting User Input: Web Forms vs. URL’s

There are two common methods for moving data from the client web browser to the web server on an embedded

platform: HTML Forms using POST, and storing the data in the URL. The previous section described form

operation. You have probably seen the URL method many times in e-commerce applications.

For example, the URL - http://www.store.com/orderform?type=order123 is storing the data type=order123 in the

URL. Basically, everything following the ‘?’ character is ignored by the browser, so your application can store

whatever data it needs after the character. A big advantage of this method is that the application is stateful, meaning

multiple users can access the same application and each user’s session maintains its specific data in the URL.

9.4 Application Objectives

We will create a web page interface using forms that can:

• Modify and recall text fields, checkboxes and radio buttons

• Store and recall settings in flash memory using the Get/Set API function calls

• Use the Submit web page feature to modify settings

• Parse web form data submissions

• Use the FUNCTIONCALL HTML tag to link HTML I/O to C/C++ code

9.5 Application Files

Our application is divided up into the following files:

File Name Description

main.cpp This is the same as in the basic web example with one modification: the IP

Address only prints to the debug port one time.

iadweb.cpp Source code module for the interactive web functions.

iadweb.h Header file for iadweb.cpp

html\index.htm HTML source file.

9.6 Interactive Web Functions

NetBurner Programmers Guide

 Page 37

The source code file iadweb.cpp handles the web functions and interface for the application. It has the following

functions:

• Definition and initialization of non-volatile flash storage

• Handles FUNCTIONCALL tags from the web page (index.htm)

• Handles web page POSTs, and extracts form data

The source code for iadweb.cpp is shown below:

#include "predef.h" 1
#include <stdio.h> 2
#include <stdlib.h> 3
#include <startnet.h> 4
#include <iosys.h> 5
#include <utils.h> 6
#include <ip.h> 7
#include <tcp.h> 8
#include <htmlfiles.h> 9
#include <http.h> 10
#include <string.h> 11
#include <basictypes.h> 12
#include "iadweb.h" 13
 14
 15
#define VERIFY_KEY (0x10220002) // NV Settings key code 16
 17
 18
typedef struct NV_SettingsStruct // non-volatile storage structure 19
{ 20
 DWORD VerifyKey; 21
 BOOL bUTC; 22
 int nLocalOffset; 23
 BOOL bCkboxLeapSecDay; 24
 int nLeapSecDay; 25
 BOOL bLeapSecDayAdd; 26
 BOOL bEnableDST; 27
}; 28
 29
 30
//----- global vars ----- 31
char gPostBuf[1000]; 32
NV_SettingsStruct NV_Settings; 33
const char FirmwareVersion[] = "1.0, 12/17/2002"; 34
 35
 36
 37
/*--- 38
 Check NV Settings 39
 Assign default values if VerifyKey is not valid, otherwise load 40
 stored flash values. 41
 --*/ 42
void CheckNVSettings() 43
{ 44
 NV_SettingsStruct *pData = (NV_SettingsStruct *)GetUserParameters(); 45
 NV_Settings.VerifyKey = pData->VerifyKey; 46
 NV_Settings.bUTC = pData->bUTC; 47
 NV_Settings.nLocalOffset = pData->nLocalOffset; 48
 NV_Settings.bCkboxLeapSecDay = pData->bCkboxLeapSecDay; 49
 NV_Settings.nLeapSecDay = pData->nLeapSecDay; 50

NetBurner Programmers Guide

 Page 38

 NV_Settings.bLeapSecDayAdd = pData->bLeapSecDayAdd; 51
 NV_Settings.bEnableDST = pData->bEnableDST; 52
 53
 if (NV_Settings.VerifyKey != VERIFY_KEY) 54
 { 55
 iprintf("Reset NV Memory Defaults\n"); 56
 57
 NV_Settings.VerifyKey = VERIFY_KEY; 58
 NV_Settings.bUTC = TRUE; 59
 NV_Settings.nLocalOffset = 0; 60
 NV_Settings.bCkboxLeapSecDay = FALSE; 61
 NV_Settings.nLeapSecDay = 0; 62
 NV_Settings.bLeapSecDayAdd = TRUE; 63
 NV_Settings.bEnableDST = TRUE; 64
 65
 SaveUserParameters(&NV_Settings, sizeof(NV_Settings)); 66
 } 67
} 68
 69
 70
 71
/*--- 72
 --*/ 73
void WebUTC(int sock, PCSTR url) 74
{ 75
 iprintf("Entered WebUTC\r\n"); 76
 if (NV_Settings.bUTC) 77
 writestring(sock, "CHECKED=\"1\" "); 78
} 79
 80
/*--- 81
 --*/ 82
void WebLocal(int sock, PCSTR url) 83
{ 84
 if (! NV_Settings.bUTC) 85
 writestring(sock, "CHECKED=\"1\" "); 86
} 87
 88
 89
/*--- 90
 --*/ 91
void WebLocalOffset(int sock, PCSTR url) 92
{ 93
 char buf[80]; 94
 95
 sprintf(buf, "VALUE=\"%d\" ", NV_Settings.nLocalOffset); 96
 writestring(sock, buf); 97
} 98
 99
 100
 101
/*--- 102
 --*/ 103
void WebLeapCkbox(int sock, PCSTR url) 104
{ 105
 if (NV_Settings.bCkboxLeapSecDay) 106
 writestring(sock, "checked"); 107
} 108
 109
/*--- 110
 --*/ 111
void WebLeapSecDay(int sock, PCSTR url) 112
{ 113

NetBurner Programmers Guide

 Page 39

 char buf[80]; 114
 115
 sprintf(buf, "VALUE=\"%d\" ", NV_Settings.nLeapSecDay); 116
 writestring(sock, buf); 117
} 118
 119
/*--- 120
 --*/ 121
void WebLeapSecDayAdd(int sock, PCSTR url) 122
{ 123
 if (NV_Settings.bLeapSecDayAdd) 124
 writestring(sock, "CHECKED=\"1\" "); 125
} 126
 127
/*--- 128
 --*/ 129
void WebLeapSecDaySub(int sock, PCSTR url) 130
{ 131
 if (! NV_Settings.bLeapSecDayAdd) 132
 writestring(sock, "CHECKED=\"1\" "); 133
} 134
 135
/*--- 136
 --*/ 137
void WebEnableDST(int sock, PCSTR url) 138
{ 139
 if (NV_Settings.bEnableDST) 140
 writestring(sock, "CHECKED=\"1\" "); 141
} 142
 143
/*--- 144
 --*/ 145
void WebDisableDST(int sock, PCSTR url) 146
{ 147
 if (! NV_Settings.bEnableDST) 148
 writestring(sock, "CHECKED=\"1\" "); 149
} 150
 151
 152
/*--- 153
 Handle HTTP Post 154
 155
 WARNING WARNING WARNING CAUTION CAUTION CAUTION 156
 The User data space is 8K in size. The object we are storing is 157
 less than 200 bytes long, thus it is probably ok to make an automatic 158
 variable out of it. It would NOT BE OK to make an 8K automatic 159
 variable. The choices for doing this with an 8K object... 160
 161
 First choice: make a global variable, this way the linker will 162
 allocate space for it. All errors will be at link time not run time. 163
 164
 Second choice: Increase the HTTP stack size in constants.h and 165
 recompile the whole system directory. 166
 167
 Third choice: use malloc and free. The only problem is what do 168
 you do if malloc fails? 169
 --*/ 170
int MyDoPost(int sock, char * url, char * pData, char * rxBuffer) 171
{ 172
 int max_chars = 40; 173
 char *buf = gPostBuf; // post buffer is global 174
 175
 iprintf(pData); // print all data sent from app 176

NetBurner Programmers Guide

 Page 40

 177
 178
 // Process UTC/Local radio buttons 179
 if (ExtractPostData("radioUTC-Local", pData, buf, max_chars) == -1) 180
 iprintf("Error reading post data: radioUTC\r\n"); 181
 else 182
 { 183
 if (strcmp(buf, "UTC") == 0) 184
 NV_Settings.bUTC = TRUE; 185
 else 186
 NV_Settings.bUTC = FALSE; 187
 } 188
 189
 // Process Local Offset Hours text field 190
 if (ExtractPostData("tfLocalOffHours", pData, buf, max_chars) == -1) 191
 iprintf("Error reading post data: tfLocalOffHours\r\n"); 192
 else 193
 NV_Settings.nLocalOffset = atoi(buf); 194
 195
 // Process Leap Second Day checkbox 196
 if (ExtractPostData("ckboxLeapSecDay", pData, buf, max_chars) == -1) 197
 NV_Settings.bCkboxLeapSecDay = FALSE; 198
 else 199
 NV_Settings.bCkboxLeapSecDay = TRUE; 200
 201
 // Process Leap Second Day text field 202
 if (ExtractPostData("tfLeapSecDay", pData, buf, max_chars) == -1) 203
 iprintf("Error reading post data: tfLeapSecDay\r\n"); 204
 else 205
 NV_Settings.nLeapSecDay = atoi(buf); 206
 207
 // Process Leap Sec Day Add/Sub radio buttons 208
 if (ExtractPostData("radioLeapAddSub", pData, buf, max_chars) == -1) 209
 iprintf("Error reading post data: radioLeapAddSub\r\n"); 210
 else 211
 { 212
 if (strcmp(buf, "Add") == 0) 213
 NV_Settings.bLeapSecDayAdd = TRUE; 214
 else 215
 NV_Settings.bLeapSecDayAdd = FALSE; 216
 } 217
 218
 // Process DST radio buttons 219
 if (ExtractPostData("radioDST", pData, buf, max_chars) == -1) 220
 iprintf("Error reading post data: radioDST\r\n"); 221
 else 222
 { 223
 if (strcmp(buf, "Enable") == 0) 224
 NV_Settings.bEnableDST = TRUE; 225
 else 226
 NV_Settings.bEnableDST = FALSE; 227
 } 228
 229
 230
 // Now to store it in flash. 231
 // WARNING: If new settings are added, remember to add them to 232
 // NV Settings default initialization! 233
 NV_Settings.VerifyKey = VERIFY_KEY; 234
 if (SaveUserParameters(&NV_Settings, sizeof(NV_Settings)) != 0) 235
 iprintf("New Settings Saved\r\n"); 236
 else 237
 iprintf("ERROR: Could not save new settings\r\n"); 238
 239

NetBurner Programmers Guide

 Page 41

 240
 // We have to respond to the post with a new HTML page. In 241
 // this case we will redirect so the browser will go to 242
 // that URL for the response. 243
 RedirectResponse(sock, "index.htm"); 244
 245
 return 0; 246
} 247
 248
 249
/*--- 250
 Register Post 251
 This function sets the HTTP POST handler to point to our 252
 function. 253
 --*/ 254
void RegisterPost() 255
{ 256
 SetNewPostHandler(MyDoPost); 257
} 258

Line 16: VERIFY_KEY is used to determine if the flash memory space contains valid data. If the key is not

found, then the flash memory is initialized with default values. This is useful to handle two conditions:

when the hardware is used for the first time, and when a software modification changes the non-volatile

data structure (the key would be incremented to a new value to force initialization again).

Lines 19-28: This is the non-volatile memory structure. The user parameter flash storage area is an 8k flash

sector (8k by default, but can be expanded). Applications store and recall data to this sector by writing the

entire structure with the API calls SaveUserParameters() and GetUserParameters().

Lines 72 – 150: Each FUNCTIONCALL tag in the index.htm file has a corresponding function defined in

the format: void foo(int sock, PCSTR url), where foo is the name of the function, sock is a

handle to the network socket connection, and url is the actual URL that was sent to the web server from the

web browser. Some or all of these parameters will be used depending on your application. If the function

needs to write data to the web client, then the write() function can be used with the sock parameter. This

can be useful for filling in data fields or generating graphs.

The important thing to remember is that the client web browser will not see the FUNCTIONCALL tag. As

far as the browser is concerned, all the data is just an input stream from a TCP connection. To verify this,

you can view the HTML source in your web browser. All the FUNCTIONCALL tags should be replaced

with HTML data. In this example application, most of the functions fill in a piece of a HTML tag to show

text field data or remember which radio button was selected in a group.

Your application does not need to explicitly call any of these functions. As the web sever is delivering the

web content to the web browser, it will automatically call each function with a FUNCTIONCALL tag.

Line 171: The MyDoPost() function will be called whenever a HTML form is submitted, which occurs

when a user selects the “submit” button in a HTML form. The web server has a standard function to handle

POSTs; the function RegisterPost() is used to intercept a POST and send it to MyDoPost(). The return

value of MyDoPost() is not currently used, but currently should return a value of 0 to be compatible with

possible future expansin.

NetBurner Programmers Guide

 Page 42

The parameters passed in MyDoPost() are:

Parameter Type Description

sock The file descriptor for the socket that this function should send a response to.

url A string containing the URL of the POST destination. This field is used to

determine which form the POST came from.

pData A pointer to a string containing the form data (i.e. text fields, radio button and

check box selections, etc)

rxbuffer A pointer to the entire HTTP request. This is not normally needed.

Data is extracted from the form using the function:

 int ExtractPostData(PCSTR name,PCSTR data, PSTR dest_buffer,int maxlen)

This function takes the HTML post data sent to the POST function, extracts the data associated with a

specific name and returns it in dest_buffer. For example,

 ExtractPostData("radioUTC-Local", pData, buf, max_chars)

looks for the name radioUTC-Local in the string pData and returns the data portion in buf. The max_chars

parameter specifies the maximum length of characters to store in buf to avoid an overflow.

Once the data is stored in buf, the example application stores the value in an array and the array is written

to the user flash storage area with the function:

 SaveUserParameters(&NV_Settings, sizeof(NV_Settings))

SaveUserParameters() is an API function that will take a pointer to the data to be stored, in this case the

address of NV_Settings, and a second parameter representing the size of the data. This is easily done by

using a structure and the sizeof() function.

NetBurner Programmers Guide

 Page 43

10 TCP vs UDP

A very common question that arises when designing an network application is whether to use TCP

(Transmission Control Protocol) or UDP (User Datagram Protocol). There are a few guidelines and features

that can determine which would be the preferred protocol. Some of the issues discussed may not mean

much before your read the TCP and UDP sections later in this guide, but discussing these issues now may

make you aware of certain issues as you read those sections.

In general, TCP is a connection oriented byte stream used for point-to-point communications where

reliability and sequencing of data is required. TCP handles retransmission of data, acknowledgements, error

detection and will guarantee the data received will be sequenced in the same order as it was sent.

UDP can be thought of as a scaled down protocol as compared with TCP. It is a connectionless protocol

that does not guarantee delivery and does not sequence the segments (although each segment is numbered).

UDP is a “send and forget” protocol that does not use acknowledgements. A common comparison is that

TCP is similar to a phone call and UDP is similar to a post card (although the time difference between a

phone call and the mail must be ignored). With TCP, you connect to a specific destination phone number.

When that person answers they say “hello”, you say “Hi, my name is Bob”, and then the conversation

continues with each side speaking and responding (in a well-behaved conversation!). With UDP you

essentially transmit a datagram, like writing on a post card, and send it without verifying it was received or

undamaged along the way.

When choosing between TCP and UDP, some major concerns are the overhead it takes to establish a TCP

connection, speed and the reliability of data transmission. For example, SNMP uses UDP. SNMP is used to

monitor a network and sends a lot of messages for status updates and alerts. If TCP were used, the overhead

of establishing, maintaining and closing a connection for each message would bog down the network

leaving little room for other traffic. A second example of when UDP is a better choice is when an

application handles it’s own reliability at the application layer. Using TCP in this instance would be

redundant. The NetBurner UDP Class implementation also has a speed advantage over TCP. Data stored in

a UDP packet is dispatched by providing the stack functions with a pointer to the data – it does not copy the

data to separate buffer locations. This factor alone should provide a 30% speed increase over TCP, which

must be buffered.

In addition, TCP is a stream based protocol and UDP is a datagram based protocol. Let’s take an example

of an application in which a NetBurner device takes A/D readings and sends them to another network

device or host PC. Using UDP, each output operation (i.e. creating and sending a UDP packet) results in

exactly one IP packet being created and sent. The result of taking and sending 10 A/D readings is that the

host will receive 10 individual packets, each containing one reading. The host PC can then easily identify

each reading, although each reading will have to be sent with a sequence number so that the reading order

can be recreated. If TCP is used with a single continuous network connection (i.e. the connection is not

closed and reestablished for each reading), you do not have control over how many readings are send with

each IP packet. You would need to add start message and stop message identifiers to separate the data from

each reading.

NetBurner Programmers Guide

 Page 44

An example of sending data of different sizes using TCP vs UDP is illustrated below:

Applications that use TCP are: HTTP, FTP, Telnet and SMTP. Applications that use UDP are: DHCP,

BOOTP, SNMP and DNS.

UDP Transfer

32 Bytes

64 Bytes

128 Bytes

Device Stack Host Stack

32 Bytes

64 Bytes

128 Bytes

32 Bytes

64 Bytes

128 Bytes

224 Bytes

TCP Transfer

Device Stack Host Stack

NetBurner Programmers Guide

 Page 45

11 TCP - Transmission Control Protocol

TCP is used to create a reliable byte stream connection between two devices. Usually one device is called a

server and the other a client. The first sentence contains important descriptive words that you need to

consider when choosing between TCP and UDP:

Connection-oriented: The devices must establish a connection before they can exchange data

Reliable: TCP uses acknowledgements, retransmissions, checksums and flow control

Stream based: Although TCP and UDP both use IP, TCP sends information as a byte stream. There are no

record markers to delimit the data. For example, if a server device is sending analog-to-digital (A/D)

readings to a client device, the client will see a stream of digits; TCP will not automatically insert

delimiters to allow the client to determine where one measurement ends and the next begins. To the client,

the stream may look like: “98273129323424”. Even if the client knew each reading was 4 digits, it would

not know where one ended and the next began.

In contrast to TCP, UDP (covered in the next chapter) is an unreliable, datagram-oriented connectionless

protocol. Delivery is not guaranteed, but each output operation creates and sends one UDP datagram. In the

above A/D example, each reading (or some number of multiple readings) could be sent as a single

datagram and the client could then process one datagram at a time.

11.1 TCP Server Introduction

A TCP server is basically an application that creates a listening socket, and then listens on the socket for

incoming connections. When an incoming connection is detected, the connection is then accepted. A web

server is an example of a familiar TCP server. A web server listens on "well-known" port number 80 for

incoming connections. Once a connection is established, the web browser will send a GET request to the

web server, which will then send the requested information and terminate the connection. A web server is

just a specific case of a TCP server.

To connect to a TCP server you must specify a port number. A port number is a 16-bit value. Since you

must know the port number before connecting, many port numbers have been defined for common

protocols, and are called well-known port numbers. Some of these values are shown below:

FTP 21

Telnet 23

SMTP 25

DNS 53

TFTP 69

HTTP 80

POP3 110

NTP 123

Network Bandwidth and Packet Size

Network bandwidth and packet size are significant considerations when writing an application.

In practice, an application such as the A/D example would probably create packets with a

“number of reading” field, or send a fixed multiple number of readings in each packet.

NetBurner Programmers Guide

 Page 46

An important thing to remember is that it takes 4 parameters to define any TCP connection: Source IP

address, Source port number, Destination IP address and Destination port number.

1 Writing a NetBurner TCP Server

Writing a TCP server on the NetBurner platform is very straightforward:

1. Create a listening socket with the listen() function

2. Wait for an incoming connection with the blocking call accept()

Call listen() function.

Returns file descriptor

Call accept() function.

Will block until accepting

incoming connection, then

return the connection's file

descriptor

Send and Receive data using

read() and write()

Call close() to close the

connection

Call connect() function

to connect to server. Returns

connection's file descriptor

Send and Receive data using

read() and write()

Call close() to close the

connection

Server Client

NetBurner Programmers Guide

 Page 47

11.1.1 NetBurner TCP Server Application Source Code

This example program will listen on port 23 for incoming connections, send a sign on message to the client

when a connection is made, and display all received data to the debug serial port. A telnet program on a

host PC will be used to connect to the server as a client.

/*---
 Description: Simpe TCP Server Example
 Filename: main.cpp
 ---*/
#include "predef.h"
#include <stdio.h>
#include <ctype.h>
#include <startnet.h>
#include <autoupdate.h>
#include <dhcpclient.h>
#include <tcp.h>

#define TCP_LISTEN_PORT 23 // Telent port number
#define RX_BUFSIZE (4096)

//----- Global Vars -----
char RXBuffer[RX_BUFSIZE];

extern "C" {
void UserMain(void * pd);
}

const char * AppName="TCPSrv-NBSimple";

/*---
 Convert an IP address of type IPADDR to a string.
 Warning: make sure the output string s has enough storage!
 --*/
void IPtoString(IPADDR ia, char *s)
{
 PBYTE ipb= (PBYTE)&ia;
 siprintf(s, "%d.%d.%d.%d",(int)ipb[0],(int)ipb[1],(int)ipb[2],(int)ipb[3]);
}

/*---
 UserMain
 --*/
void UserMain(void * pd)
{
 InitializeStack();
 if (EthernetIP==0)GetDHCPAddress();
 OSChangePrio(MAIN_PRIO);
 EnableAutoUpdate();
 StartHTTP();

 iprintf("Application started");
 iprintf("My IP Address is: "); ShowIP(EthernetIP);
 iprintf("\r\n");
 while (1)
 {
 // Set up the listening TCP socket
 int fdListen = listen(INADDR_ANY, TCP_LISTEN_PORT, 5);

 if (fdListen > 0)
 {
 IPADDR client_addr;
 WORD port;

 while(1)
 {
 /* Wait to accept incoming connection. Display debug messages to serial

NetBurner Programmers Guide

 Page 48

 port.
 When a connection is terminated, the application will come back to
 this accept() call and wait for another connection.
 */
 iprintf("Wainting for connection on port %d...\n", TCP_LISTEN_PORT);
 int fdnet = accept(fdListen, &client_addr, &port, 0);
 iprintf("Connected to: "); ShowIP(client_addr);
 iprintf(":%d\n", port);

 // Display sign-on message to connecting client
 writestring(fdnet, "Welcome to the NetBurner TCP Server\r\n");
 char s[20];
 IPtoString(EthernetIP, s);
 siprintf(RXBuffer, "You are connected to IP Address %s, port %d\r\n", s,

TCP_LISTEN_PORT);
 writestring(fdnet, RXBuffer);

 /* Loop while connection is valid. The read() function will return
 0 or a negative number if the client closes the connection, so we
 test the return value in the loop.
 */
 int n = 0;
 do {
 n = read(fdnet, RXBuffer, RX_BUFSIZE);
 RXBuffer[n] = '\0';
 iprintf("Read %d bytes: %s\n", n, RXBuffer);
 } while (n > 0);

 // Don't foreget to close !
 close(fdnet);
 }
 }
 }
}

This is an extremely simple example designed to illustrate how the accept() and listen() calls operate.

It only listens to a single port number, and processes a single connection at a time. Any information sent

from the Client will be displayed in the MTTTY window. The application does not have the capability to

terminate the incoming connection.

We have added the #defines for the TCP listen port number, and the incoming TCP buffer storage array

size. RXBuffer[] is then declared and will hold the received data. The listen() function call sets up a

socket to listen for an incoming connection from any IP address on port number 23, the Telnet port number.

If the listen() succeeds , we then enter a second while loop. The application will then block at the

accept() function call until an incoming connection is detected, such as when we run the Telnet program

on the PC. When this connection is established, the accept()function returns and the sign-on message is

sent to the Telnet application.

We now enter the do loop: while(n > 0). The read() function will block until data is received or an

error occurs such as the client terminating the connection. When data is sent from the Telnet application,

the read() function will return with the data in the RXBuffer[] array. The application will stay in this

while loop until the connection is terminated by the Telnet client (or you reset the NetBurner device). If the

connection is broken by the Telnet client, the application will then loop back to the accept() function call

and wait for another incoming connection.

Once application initialization is compete and we are running inside the while loop, the application will

block on the accept() function call.

The IPtoString() function is used to convert a numerical IP address of type IPADDR to an ASCII string so

it can be sent to the client as a sign-on message.

NetBurner Programmers Guide

 Page 49

11.1.2 Running the NetBurner TCP Server Application

1. (If you have not already done so) Connect a serial cable from your host computer's serial port to your

NetBurner board's debug serial port.

2. Start MTTTY and connect

3. Compile and download your application to your NetBurner board.

4. Verify that you can see the debug messages for the TCP Server. Note the IP address:

NetBurner Programmers Guide

 Page 50

5. Run the telnet program on your host computer. This can be done from the Windows Start menu by

selecting Start �Run or by opening a DOS window and simply typing “telnet <ip_addr>”, where

<ip_adder> is replaced by the IP address of your NetBurner device; when finished press the "Enter"

key. For example, “telnet 10.1.1.117”. Note: You do not need to specify the port number,

since the telnet default port number is 23. If you use a different port number, then specify it in the

telnet command after the IP address, for example: “telnet 10.1.1.117 4332”. You should see

the following screen on a successful connection:

The MTTTY window should confirm the connection:

NetBurner Programmers Guide

 Page 51

6. Now type some characters in the Telnet window. You should see those characters displayed in the

MTTTY window as shown below:

2 Writing a Windows TCP Server

Writing a TCP server on the a Windows platform involves a few more steps. As with the NetBurner TCP

Server, the windows TCP server application will create a thread that listens for incoming connections on a

specific port number. The basic steps are as follows:

1. Create a socket structure variable with socket()

2. Initialize the socket structure

3. Bind the socket to a listen address with bind()

4. Listen for incoming connections with listen()

5. Accept an incoming connection with accept()

NetBurner Programmers Guide

 Page 52

11.1.3 Windows TCP Server Application Source Code

This example program allows you to specify the listen port. Any client connecting to your server will need

to know this port number in order to make a connection.

/** 1
TCP/IP Server Application 2
 3
DESCRIPTION 4
This Win32 console application is a TCP/IP server that will listen 5
for connections on the specified port number. The application 6
is written for Winsock 1.1 compliance. 7
 8
 9
COMMAND LINE PARAMETERS 10
 11
Usage: tcpsrvWin <port> <echo> 12
 port = port number to monitor for incoming connections 13
 echo = yes to echo request to client, no is default 14
 15
 16
COMPILILATION INSTRUCTIONS 17
 Compile as Windows console application with MS Visual C++ 5. 18
 Include WS2_32.lib in linker configuration 19
 20
 21
REVISION HISTORY 22
1/12/2003 Initial Release 23
 24
 25
***/ 26
 27
#include <winsock.h> 28
#include <stdio.h> 29
#include <stdlib.h> 30
#include <time.h> 31
#include <memory.h> 32
 33
#define RX_BUFSIZE (10000) 34
 35
//----- functions ----- 36
void ProcessCmdLine(int argc, char **argv); 37
DWORD WINAPI ProcessClient(LPVOID lpParam); 38
 39
 40
//----- global vars ----- 41
WORD dListenPort; 42
char szIPAddress[80]; 43
BOOL bEcho = FALSE; 44
DWORD dwStartTick, dwEndTick; 45
DWORD dwTotalBytesRead; 46
 47
char RxBuf[RX_BUFSIZE]; 48
 49
 50
/*--- 51
 FUNCTION: ProcessCmdLine 52
 53
 DESCRIPTION: 54
 Process command line arguments 55
 56
 RETURNS: Nothing 57
 --*/ 58
void ProcessCmdLine(int argc, char **argv) 59
{ 60
 if (argc < 2) 61
 { 62

NetBurner Programmers Guide

 Page 53

 printf("Usage: TCPServer <port> <echo>\n"); 63
 exit(1); 64
 } 65
 66
 dListenPort = (WORD) atoi(argv[1]); 67
 68
 if (argc > 2) 69
 { 70
 if (strcmp(argv[2], "echo") == 0) 71
 bEcho = TRUE; 72
 } 73
} 74
 75
 76
 77
/*--- 78
 FUNCTION: ProcessClient 79
 80
 DESCRIPTION: 81
 This function is called as a thread to handle client connections. 82
 83
 PARAMETERS 84
 lpParam is a pointer to the client socket handle. 85
 86
 RETURNS: 32-bit thread exit code 87
 --*/ 88
DWORD WINAPI ProcessClient(LPVOID lpParam) 89
{ 90
 SOCKET s = (SOCKET)lpParam; 91
 int SampleCtr = 0; 92
 93
 dwTotalBytesRead = 0; 94
 while (1) 95
 { 96
 int bytes_read = recv(s, RxBuf, RX_BUFSIZE, 0); 97
 RxBuf[bytes_read] = '\0'; 98
 printf("Received %d bytes: %s\n", bytes_read, RxBuf); 99
 dwTotalBytesRead += bytes_read; 100
 101
 if ((bytes_read > 0) && bEcho) 102
 { 103
 if (send(s, RxBuf, strlen(RxBuf), 0) == SOCKET_ERROR) 104
 { 105
 printf("Error sending echo data: %d\n", WSAGetLastError()); 106
 } 107
 } 108
 else if (bytes_read == 0) 109
 { 110
 closesocket(s); 111
 exit(0); 112
 } 113
 else if (bytes_read == SOCKET_ERROR) 114
 { 115
 printf("recv() error in ProcessClient(): %d\n", WSAGetLastError()); 116
 break; 117
 } 118
 } 119
 return 0; 120
} 121
 122
 123
 124
 125
 126
/*--- 127
 FUNCTION: main 128
 129
 DESCRIPTION: 130
 Main routine to start network services and listen for connections. 131
 132
 RETURNS: integer exit code 133

NetBurner Programmers Guide

 Page 54

 --*/ 134
int main(int argc, char **argv) 135
{ 136
 SOCKET sListen, sClient; 137
 WSADATA WSAData; 138
 struct sockaddr_in sinListen, sinClient; 139
 140
 141
 ProcessCmdLine(argc, argv); 142
 143
 if (WSAStartup(MAKEWORD(1,1), &WSAData) != 0) 144
 { 145
 printf("Error loading Winsock\n"); 146
 return 1; 147
 } 148
 149
 // Create socket to listen on 150
 sListen = socket(AF_INET, SOCK_STREAM, 0); 151
 if (sListen == SOCKET_ERROR) 152
 { 153
 printf("Error creating sListen socket: %d\n", WSAGetLastError()); 154
 return 1; 155
 } 156
 157
 // Setup listen address structure 158
 sinListen.sin_addr.s_addr = htonl(INADDR_ANY); 159
 sinListen.sin_family = AF_INET; 160
 sinListen.sin_port = htons(dListenPort); 161
 162
 // Bind socket to listen address 163
 if (bind(sListen, (struct sockaddr *) &sinListen, sizeof(sinListen)) == SOCKET_ERROR) 164
 { 165
 printf("bind() error for sListen: %d\n", WSAGetLastError()); 166
 return 1; 167
 } 168
 169
 // Listen to interface and port 170
 if (listen(sListen, 5) == SOCKET_ERROR) 171
 { 172
 printf("listen() error for sListen: %d\n", WSAGetLastError()); 173
 return 1; 174
 } 175
 176
 printf("Listening on port: %d....\n", dListenPort); 177
 while (1) 178
 { 179
 int len = sizeof(sinClient); 180
 sClient = accept(sListen, (struct sockaddr *) &sinClient, &len); 181
 if (sClient == INVALID_SOCKET) 182
 { 183
 printf("accept() error: %d\n", WSAGetLastError()); 184
 break; 185
 } 186
 187
 printf("Accepted connection from: %s:%d\n", 188
 inet_ntoa(sinClient.sin_addr), ntohs(sinClient.sin_port)); 189
 190
 191
 192
 /* 193
 HANDLE CreateThread(194
 LPSECURITY_ATTRIBUTES lpThreadAttributes, // pointer to thread security 195
attributes 196
 DWORD dwStackSize, // initial thread stack size, in 197
bytes 198
 LPTHREAD_START_ROUTINE lpStartAddress, // pointer to thread function 199
 LPVOID lpParameter, // argument for new thread 200
 DWORD dwCreationFlags, // creation flags 201
 LPDWORD lpThreadId // pointer to returned thread 202
identifier 203
); 204

NetBurner Programmers Guide

 Page 55

 */ 205
 HANDLE hThread; 206
 DWORD dwThreadId; 207
 hThread = CreateThread(NULL, 0, ProcessClient, (LPVOID)sClient, 0, &dwThreadId); 208
 if (hThread == NULL) 209
 { 210
 printf("Error creating Client thread: %d\n", GetLastError()); 211
 break; 212
 } 213
 214
 } 215
 216
 closesocket(sListen); 217
 WSACleanup(); 218
 return 0; 219
} 220

Line 59: The void ProcessCmdLine(int argc, char **argv) function is called at the beginning of main() to

do what you would expect: process any command line parameters. Specifically, you will pass the listening

port number. Whether or not to echo the data sent from the client is optional.

Line 89: The DWORD WINAPI ProcessClient(LPVOID lpParam) function is run as a separate thread

spawned for the incoming connection. The recv() function is used to obtain the data and number of

characters. The data and amount is then displayed to the console window with a printf().

If data has been read and the echo option enabled, the data is sent back to the client. If the number of bytes

read is zero, or an error has occurred, the socket is closed.

Line 137: Declaration of the listen and client sockets. The client socket will be passed to the thread when it

is created.

Line 138: Before you can call any winsock functions, you must load a winsock library. The call to initialize

winsock is WSAStartup(); when this function returns, the WSADATA structure contains the information

about the version of winsock that was loaded. The MAKEWORD(1,1) macro specifies winsock version

1.1; you could specify (2,2) for version 2.2.

Line 139: Winsock applications specify IP addresses and ports using the SOCKADDR_IN structure. This

line declares structures for the listen and client sockets.

Line 151: Create the listen socket. AF_INET specifies the Internet Protocol. The socket type is set to

SOCK_STREAM; for UDP you would use SOCK_DGRAM. The last parameter specifies protocol, and a

value of 0 tells the system to pick one based on the other two parameters.

Lines 159-161: Assign values to socket address structure. The functions htonl() and htons() stand for “host

to network long” and “host to network short”, and convert the byte order of long and short variables from

the host platform (little endian for a typical pc running Windows) to standard network byte order (big

endian). The INADDR_ANY parameter specifies that any incoming IP address will be accepted, the

AF_INET specifies the Internet Protocol family, and the dListenPort parameter contains the value of the

port the server will listen to.

Line 164: The bind() function associates the listen socket with the listen port number.

Line 171: The listen() function puts the socket into “listen mode” so it will accept incoming connections.

The second parameter, 5, is the number of connections that can be queued (to handle simultaneous

incoming connection requests).

NetBurner Programmers Guide

 Page 56

Line 181: The accept() call accepts an incoming connection. Any pending connections will be serviced

first. The second parameter is a pointer to an address structure that will contain the connection information

such as IP address and port number. In this case, we pass a pointer to sinClient. The third parameter is a

pointer to a variable that will contain the length of the address structure. The accept() function returns a

socket descriptor that corresponds to the new client connection, which can then be used for communication

with the client.

Line 208: This example creates a thread to handle an incoming client connection. The CreateThread() API

call takes the following parameters:

• ProcessClient: A pointer to the thread function to execute

• (LPVOID)sClient: When creating a thread it is possible to pass a parameter to the function as

a pointer. In this case, we are passing the client socket, sClient, as pointer. It is later cast back

to a socket in line 91.

• &dwThreadId: A pointer to a variable that will hold the thread ID once it is created.

When CreateThread() is called successfully, the thread will start and the client connection will be

processed. When the client connection is terminated, the thread will return and be deleted. The program

will then return to the top of the while loop and block at the accept() call.

11.1.4 Running the Windows TCP Server Application

The application was built as a Win32 console application. To run it, open a command prompt and type

“tcpsrvWin <port>”, where <port> is the listening port number (e.g. 2000). The port number is a 16-bit

value, and numbers less than 1024 are reserved.

3 Writing a NetBurner TCP Client

While a TCP Server waits for incoming connections, a TCP Client handles the opposite end – it initiates a

connection. In order to initiate a connection, the TCP Client must know the destination IP address and port

number of the server to which is wishes to make a connection. Writing a TCP Client application on the

NetBurner platform only requires one function call to connect():

int connect(IPADDR dest_ipaddr, WORD localport, WORD destport, DWORD timeout);

where:

• dest_ipaddr is the destination IP address (the TCP server in this example)

• localport is the local port number of the TCP Client. Remember, 4 items are needed for a

connection, and the TCP Client needs to tell the Server what port number it is using.

• destport is the destination port number – the one the server is listening on.

• timeout allows the connect() call to exit if a connection is not made within a specified amount of

time. A timeout value of 0 will wait forever.

This example program will combine a number of features covered to this point:

• The application will create a web page interface with input fields for a message to send to the

server, the server IP address and the server port number.

• HTML forms will be used to submit user data

• Flash memory non-volatile storage will be used to remember the server IP address and port

number.

NetBurner Programmers Guide

 Page 57

• The web page interface will invoke the connect() function to create an outgoing connection to a

TCP Server and send the message.

Call listen() function.

Returns file descriptor

Call accept() function.

Will block until accepting

incoming connection, then

return the connection's file

descriptor

Send and Receive data using

read() and write()

Call close() to close the

connection

Call connect() function

to connect to server. Returns

connection's file descriptor

Send and Receive data using

read() and write()

Call close() to close the

connection

Server Client

A screen shot of the web interface is shown below:

NetBurner Programmers Guide

 Page 58

11.1.5 NetBurner TCP Client Application Source Code

The TCP Client example code is organized in the following code modules:

File Description

main.cpp Application initialization, DHCP and check of flash memory stored parameters.

clientweb.cpp Handles the dynamic content for the web server interface.

index.htm HTML code for the web server interface.

11.1.6 Main.cpp

Since all of the action occurs through the web server interface, main.cpp is very simple. It initializes the

system, does a check for DHCP and calls CheckNVSettings() to initialize/load the non-volatile parameters

stored in flash memory. CheckNVSettings() resides in the clientweb.cpp module. All of these features

have been covered in previous examples.

/** 1
NetBurner TCP Client Example 2
**/ 3
#include "predef.h" 4
#include <stdio.h> 5

NetBurner Programmers Guide

 Page 59

#include <startnet.h> 6
#include <autoupdate.h> 7
#include <startnet.h> 8
#include <dhcpclient.h> 9
#include "clientweb.h" 10
 11
 12
//----- Function Prototypes ----- 13
extern "C" 14
{ 15
 void UserMain(void * pd); 16
} 17
 18
 19
/*--- 20
 Check Ethernet IP address and use DHCP if necessary 21
 --*/ 22
void CheckDHCP() 23
{ 24
 if (EthernetIP == 0) 25
 { 26
 iprintf("IP address is 0.0.0.0, we are trying DHCP...\n"); 27
 if (GetDHCPAddress() != DHCP_OK) 28
 { 29
 iprintf("DHCP failed to initialize, system has IP address of 30
 Zero\r\n"); 31
 } 32
 else 33
 { 34
 iprintf("DHCP assigned the IP address of :"); 35
 ShowIP(EthernetIP); 36
 iprintf("\n"); 37
 } 38
 } 39
} 40
 41
 42
 43
/*--- 44
 User Main 45
 --*/ 46
void UserMain(void * pd) 47
{ 48
 InitializeStack(); // Initialize the TCP/IP Stack 49
 CheckDHCP(); 50
 StartHTTP(); // Start the Web Server 51
 EnableAutoUpdate(); // Enable network code updates 52
 OSChangePrio(MAIN_PRIO); // Set this task priority 53
 54
 RegisterPost(); // Register HTML Post function 55
 CheckNVSettings(); // Check flash memory storage 56
 57
 iprintf("My IP Address is: "); ShowIP(EthernetIP); 58
 iprintf("\r\n"); 59
 while (1) 60
 { 61
 ; 62
 } 63
} 64

NetBurner Programmers Guide

 Page 60

11.1.7 ClientWeb.h

This is the header file for clientweb.cpp, and contains the declarations for functions called by main.cpp.

#ifndef _NB_CLIENTWEB_H 1
#define _NB_CLIENTWEB_H 2
 3
 4
//----- Function Prototypes ----- 5
void RegisterPost(); 6
void CheckNVSettings(); 7
 8
#endif 9

11.1.8 ClientWeb.cpp

This code module handles the dynamic content and web server interface. When the web page is displayed,

current values for the port numbers and IP addresses must be displayed. The user must be able to change

these values, and also be able to send a message with the submit button.

/** 1
NetBurner TCP Client Example 2
This module handles the TCP Client dynamic web page functions 3
**/ 4
 5
#include "predef.h" 6
#include <stdio.h> 7
#include <stdlib.h> 8
#include <ctype.h> 9
#include <startnet.h> 10
#include <serial.h> 11
#include <iosys.h> 12
#include <utils.h> 13
#include <ip.h> 14
#include <tcp.h> 15
#include <autoupdate.h> 16
#include <string.h> 17
#include "clientweb.h" 18
 19
 20
#define APP_VERSION "Version 1.0 1/22/2003" 21
#define DEST_PORT (3334) // default dest port 22
#define DEST_IPADDR "10.1.1.102" // default dest ip addr 23
#define TX_BUFSIZE (4096) // transmit buffer size 24
#define POST_BUFSIZE (4096) // form post buffer size 25
#define VERIFY_KEY (0x18256050) // NV Settings key code 26
 27
//----- function prototypes ----- 28
extern "C" 29
{ 30
 void WebDestPort(int sock, PCSTR url); 31
 void WebDestIp(int sock, PCSTR url); 32
} 33
 34
 35
//----- Global Vars ----- 36
char TxBuffer[TX_BUFSIZE]; 37
char gPostBuf[POST_BUFSIZE]; 38
 39
#define MAX_IPADDR_LEN (20) 40
struct NV_SettingsStruct // non-volatile storage structure 41
{ 42

NetBurner Programmers Guide

 Page 61

 DWORD VerifyKey; 43
 WORD nDestPort; 44
 char szDestIpAddr[MAX_IPADDR_LEN]; 45
}; 46
NV_SettingsStruct NV_Settings; 47
 48
 49
 50
 51
 52
/*--- 53
 Sends a message to the specified destination host. 54
 --*/ 55
void SendMsg(char *msg) 56
{ 57
 char buf[80]; 58
 59
 int fd = connect(AsciiToIp(NV_Settings.szDestIpAddr), 0, 60
 NV_Settings.nDestPort, TICKS_PER_SECOND * 5); 61
 if (fd < 0) 62
 { 63
 printf("Error connecting to: %s:%d\n", NV_Settings.szDestIpAddr, 64
 NV_Settings.nDestPort); 65
 66
 // Add error HTML page 67
 } 68
 else 69
 { 70
 int n = write(fd, msg, strlen(msg)); 71
 printf("Wrote %d bytes: %s\n", n, TxBuffer); 72
 close(fd); 73
 } 74
} 75
 76
 77
/*--- 78
 Fill in current value of destination port number 79
 --*/ 80
void WebDestPort(int sock, PCSTR url) 81
{ 82
 char buf[80]; 83
 84
 sprintf(buf, "VALUE=\"%d\" ", NV_Settings.nDestPort); 85
 writestring(sock, buf); 86
} 87
 88
/*--- 89
 Fill in current value of destination IP address 90
 --*/ 91
void WebDestIp(int sock, PCSTR url) 92
{ 93
 char buf[80]; 94
 95
 sprintf(buf, "VALUE=\"%s\" ", NV_Settings.szDestIpAddr); 96
 writestring(sock, buf); 97
} 98
 99
 100
 101
/*--- 102
 Check NV Settings. Assign default values if VerifyKey is not 103
 valid. 104
 --*/ 105
void CheckNVSettings() 106
{ 107
 NV_SettingsStruct *pData = (NV_SettingsStruct *)GetUserParameters(); 108
 NV_Settings.VerifyKey = pData->VerifyKey; 109
 110
 if (NV_Settings.VerifyKey != VERIFY_KEY) 111
 { 112
 NV_Settings.VerifyKey = VERIFY_KEY; 113

NetBurner Programmers Guide

 Page 62

 NV_Settings.nDestPort = DEST_PORT; 114
 strncpy(NV_Settings.szDestIpAddr, DEST_IPADDR, MAX_IPADDR_LEN); 115
 116
 SaveUserParameters(&NV_Settings, sizeof(NV_Settings)); 117
 } 118
 else 119
 { 120
 NV_Settings.nDestPort = pData->nDestPort; 121
 strncpy(NV_Settings.szDestIpAddr, pData->szDestIpAddr, MAX_IPADDR_LEN); 122
 } 123
} 124
 125
 126
/*--- 127
 Handle HTTP Post 128
 129
 WARNING WARNING WARNING CAUTION CAUTION CAUTION 130
 The User data space is 8K in size. The object we are storing is 131
 less than 200 bytes long, thus it is probably ok to make an automatic 132
 variable out of it. It would NOT BE OK to make an 8K automatic 133
 variable. The choices for doing this with an 8K object... 134
 135
 First choice: make a global variable, this way the linker will 136
 allocate space for it. All errors will be at link time not run time. 137
 138
 Second choice: Increase the HTTP stack size in constants.h and 139
 recompile the whole system directory. 140
 141
 Third choice: use malloc and free. The only problem is what do 142
 you do if malloc fails? 143
 --*/ 144
int MyDoPost(int sock, char * url, char * pData, char * rxBuffer) 145
{ 146
 int max_chars = 40; 147
 char *buf = gPostBuf; // post buffer is global 148
 149
 iprintf(pData); // print all data sent from app 150
 151
 if (ExtractPostData("SendMessage", pData, buf, max_chars) > 0) 152
 { 153
 iprintf("Parsed Send Message Submit\r\n"); 154
 if (ExtractPostData("tfMessage", pData, buf, max_chars) > 0) 155

 { 156
 iprintf("Sending Message: %s\r\n", buf); 157
 SendMsg(buf); 158
 } 159
 } 160
 161
 if (ExtractPostData("SubmitNewSettings", pData, buf, max_chars) > 0) 162
 { 163
 // Handle Destination Port Number 164
 if (ExtractPostData("tfDestPort", pData, buf, max_chars) == -1) 165
 iprintf("Error reading post data: tfDestPort\r\n"); 166
 else 167
 NV_Settings.nDestPort = (WORD)atoi(buf); 168
 169
 170
 // Handle Destination IP Address 171
 if (ExtractPostData("tfDestIpAddr", pData, buf, max_chars) == -1) 172
 iprintf("Error reading post data: tfDestIpAddr\r\n"); 173
 else 174
 { 175
 iprintf("Changing DestIpAddr to: %s\r\n", buf); 176
 strncpy(NV_Settings.szDestIpAddr, buf, MAX_IPADDR_LEN); 177
 } 178
 179
 180
 // Now to store it in flash. 181
 // WARNING: If new settings are added, remember to add them to 182
 // NV Settings default initialization! 183
 if (ExtractPostData("SubmitNewSettings", pData, buf, max_chars) > 0) 184

NetBurner Programmers Guide

 Page 63

 { 185
 NV_Settings.VerifyKey = VERIFY_KEY; 186
 if (SaveUserParameters(&NV_Settings, sizeof(NV_Settings)) != 0) 187
 { 188
 iprintf("New Settings Saved\r\n"); 189
 } 190
 else 191
 iprintf("ERROR: Could not save new settings\r\n"); 192
 } 193
 } 194
 195
 // We have to respond to the post with a new HTML page. In 196
 // this case we will redirect so the browser will go to 197
 // that URL for the response. 198
 RedirectResponse(sock, "index.htm"); 199
 200
 return 0; 201
} 202
 203
 204
/*--- 205
 Function to allow external code to set new handler. 206
 --*/ 207
void RegisterPost() 208
{ 209
 SetNewPostHandler(MyDoPost); 210
} 211

11.1.9 Index.htm

<HTML> 1
<HEAD> 2
<TITLE>NetBurner TCP Client Example Program</TITLE> 3
</HEAD> 4
<BODY BGCOLOR="#ffffff"> 5
 6
<FORM ACTION="bogus.htm" METHOD=POST> 7
NetBurner TCP Client Example Program

 8
 9
<TABLE> 10
 <TR> 11
 <TD>Enter Message to send: </TD> 12
 <TD><INPUT NAME="tfMessage" TYPE="text" SIZE="30"></TD> 13
 </TR> 14
 15
 <TR> 16
 <TD><INPUT NAME="SendMessage" TYPE="submit" VALUE="Send Message"></TD> 17
 </TR> 18

 19
 20
 <TR> 21
 <TD>Destination Port: </TD> 22
 <TD><INPUT NAME="tfDestPortNum" <!--FUNCTIONCALL WebDestPort --> TYPE="text" 23
SIZE="6"></TD> 24
 </TR> 25
 26
 <TR> 27
 <TD>Destination IP: </TD> 28
 <TD><INPUT NAME="tfDestIpAddr" <!--FUNCTIONCALL WebDestIp --> TYPE="text" SIZE="15"> 29
</TD> 30
 </TR> 31
</TABLE> 32
 33
<INPUT NAME="SubmitNewSettings" TYPE="submit" VALUE="Submit New Settings"> 34
 35
</FORM> 36
</BODY> 37
</HTML>38

NetBurner Programmers Guide

 Page 64

4 NetBurner TCP Client Application Operation

The application boots and executes the initialization functions in main.cpp. From that point forward any

information sent will occur through the web server interface. When a user connects to the device using a

web server, the information retrieved is defined by the index.htm file.

Examining index.htm, we can see that the WebDestPort and WebDestIp functions are used to supply the

current information into the web page text fields. Looking at the functions - WebDestPort() and

WebDestIp() in clientweb.cpp, we can see the current settings are stored as:

NV_Settings.szDestIpAddr and NV_Settings.szDestPort.

The message to send is entered as a text field as defined by lines 12 and 13 of index.htm. The message is

not stored in the NetBurner device, it is just a temporary string displayed in the web browser. To send a

message a user clicks on the Send Message submit button as defined on line 17. This is a special HTML

command that sends a POST message to the web server containing message to send. This is where the

MyDoPost() function in clientweb.cpp comes into play. It intercepts the post and takes the appropriate

action. In the case of sending a message, on lines 152-160 it extracts the message data and calls the

SendMsg() function. SendMsg() in clientweb.cpp makes a connect() call using the passed message and

stored values of destination port number and IP address. Once the connection is made, SendMsg() calls

write() to send the message followed by close() to terminate the connection.

The second submit button on the form is named “Submit new settings”. This is a POST operation like the

Send Message described above. MyDoPost() uses the ExtractPostData() to determine which submit button

was selected, then takes appropriate action. In lines 162-193 of clientweb.cpp, the values for the destination

port and IP address are extracted, then written to flash memory.

For additional information on TCP, please refer to your User Manual. From Windows: Start � Programs

� Netburner NNDK � NNKD Users Manual.

NetBurner Programmers Guide

 Page 65

12 UDP - User Datagram Protocol

UDP is a datagram-oriented protocol that does not guarantee delivery. TCP is a stream-oriented protocol

with guaranteed delivery. With TCP, you do not have control over what data will be sent with each IP

datagram, but with UDP datagram will produce one IP datagram. The advantage with UDP is that each

datagram can contain one standard piece of data, such as a measurement or command. With TCP, you

would have to implement a protocol to identify the beginning, end and type of each piece of data and parse

the data stream.

Connectionless: The devices do not establish a connection or establish a data stream. Data is sent as

individual datagrams.

Unreliable: No acknowledgements, retransmissions or flow control

12.1 Writing a NetBurner UDP Client/Server Application

The NetBurner UDP API is a C++ Class. To create a UDP Server on the NetBurner platform we need to:

1. Create an OS_FIFO to hold incoming packets

2. Register the UDP FIFO with RegisterUDPFifo(port, &fifo) so it listens to a specific port number

3. Call a UDP constructor such as: UDPPacket upkt(&fifo, timeout);, which will block until a packet

is received, then accept and store the packet.

To send a UDP datagram on the NetBurner platform we need to:

1. Declare an instance of a UDP packet

2. Specify the source and destination port numbers, and add data to the packet using the class

member functions.

3. Send to a specified IP address using the Send() member function.

Looking at the above description and the flow chart below, you will notice an important difference from

TCP communication; since there is not a connection between the client and sever, you cannot simply send

and receive data using read() and write() functions. You will need to create a UDP packet for each

transmission, specifying the port numbers and destination IP address.

NetBurner Programmers Guide

 Page 66

Create OS_FIFO initialize

with RegisterUDPFifo()

Call UDP constructor, which

will block until a packet is

received

Process incoming data with

Validate() and

GetDataBuffer() member

functions

Send data by creating instance

of UDP class, initializing and

using Send() member

functions to transmit

Server Client

12.1.1 NetBurner UDP Application Source Code

/*--- 1
 Description: NetBurner UCP Send/Receive Example Program 2
 Filename: main.cpp 3
 4
 This example program will allow you to send and receive UDP packets to 5
 another device or host computer. To run the example, connect a serial 6
 port to the debug serial port on your NetBurner device and run a dumb 7
 terminal program such as MTTTY. 8
 9
 You will be prompted for the port number to send/receive data and the 10
 destination IP address of the other device or host. Note that the 11
 application uses the same port number to send and receive data, but 12
you can change this to any other port number you wish. 13
 14
 The application will create a thread to receive packets and display 15
 them on the debug port, while the main task will take any data you 16
 type in to the MTTTY dumb terminal and send it as a UDP packet to the 17
 destination IP address. 18
 ---*/ 19
 20
#include "predef.h" 21
#include <stdio.h> 22
#include <ctype.h> 23

NetBurner Programmers Guide

 Page 67

#include <startnet.h> 24
#include <ucos.h> 25
#include <udp.h> 26
#include <autoupdate.h> 27
#include <dhcpclient.h> 28
 29
 30
//----- Global Vars ----- 31
// Allocate task stack for UDP listen task 32
DWORD UdpTestStk[USER_TASK_STK_SIZE]; 33
 34
extern "C" { 35
void UserMain(void * pd); 36
} 37
 38
 39
/*--- 40
 Check Ethernet IP address and use DHCP if necessary 41
 --*/ 42
void CheckDHCP() 43
{ 44
 if (EthernetIP == 0) 45
 { 46
 iprintf("IP address is 0.0.0.0, we are trying DHCP...\n"); 47
 if (GetDHCPAddress() != DHCP_OK) 48
 { 49
 iprintf("DHCP failed to initialize, system has IP address of 50
 Zero\r\n"); 51
 } 52
 else 53
 { 54
 iprintf("DHCP assigned the IP address of :"); 55
 ShowIP(EthernetIP); 56
 iprintf("\n"); 57
 } 58
 } 59
} 60
 61
 62
/*--- 63
 UDP Server task will wait for incoming packets on the 64
 designated port number, which is passed as a OSTaskCreate() 65
 void * parameter. 66
 ---*/ 67
void UdpReaderMain(void * pd) 68
{ 69
 int port = (int)pd; // cast void * param as int port number 70
 iprintf("Listening on port: %d\r\n", port); 71
 72
 // Create a FIFO for the UDP packet and initialize it 73
 OS_FIFO fifo; 74
 OSFifoInit(&fifo); 75
 76
 // Register to listen for UDP packets on port number 'port' 77
 RegisterUDPFifo(port, &fifo); 78
 79
 while (1) 80
 { 81
 // Construct a UDP packet object using the previously 82
 // declared FIFO. The UDP constructor will only return 83
 // when a packet has been received. The second parameter 84
 // is a timeout value (timeticks). A value of 0 will 85
 // wait forever. The TICKS_PER_SECOND definition can 86
 // be used for code readability. 87
 UDPPacket upkt(&fifo, 0 * TICKS_PER_SECOND); 88
 89
 // Did we get a valid packet, or just time out? 90
 if (upkt.Validate()) 91
 { 92
 WORD len = upkt.GetDataSize(); 93
 iprintf("Received UDP packet with %d bytes from: ", (int)len); 94

NetBurner Programmers Guide

 Page 68

 ShowIP(upkt.GetSourceAddress()); // show ip address 95
 iprintf("\r\n"); 96
 97
 ShowData(upkt.GetDataBuffer(), len); // hex dump function 98
 iprintf("\r\n"); 99
 } 100
 } 101
} 102
 103
 104
/*--- 105
 User Main 106
 --*/ 107
void UserMain(void * pd) 108
{ 109
 int portnum; 110
 IPADDR ipaddr; 111
 char buffer[80]; 112
 113
 InitializeStack(); // Initialize the TCP/IP Stack 114
 CheckDHCP(); 115
 EnableAutoUpdate(); // Enable network code updates 116
 OSChangePrio(MAIN_PRIO); // Set this task priority 117
 118
 iprintf("Starting NetBurner UDP Example \r\n"); 119
 iprintf("Enter the port number: "); 120
 scanf("%d", &portnum); 121
 122
 iprintf("\r\nEnter the destination IP Address: "); 123
 buffer[0] = 0; 124
 while(buffer[0] == 0) 125
 { 126
 gets(buffer); 127
 } 128
 ipaddr = AsciiToIp(buffer); 129
 130
 iprintf("Listening/Sending on Port %d, Sending to IP address: ", portnum); 131
 ShowIP(ipaddr); 132
 iprintf("\r\n"); 133
 134
 // Create UDP listen task 135
 OSTaskCreate(UdpReaderMain, 136
 (void *)portnum, 137
 &UdpTestStk[USER_TASK_STK_SIZE] , 138
 UdpTestStk, 139
 MAIN_PRIO - 1); // higher priority than send task 140
 141
 142
 // Main while loop will take any user input and send it as a 143
 // UDP datagram. 144
 while(1) 145
 { 146
 gets(buffer); 147
 iprintf("Sent \"%s\" to ", buffer); 148
 ShowIP(ipaddr); 149
 iprintf(":%d\r\n", portnum); 150
 { 151
 UDPPacket pkt; 152
 pkt.SetSourcePort(portnum); 153
 pkt.SetDestinationPort(portnum); 154
 pkt.AddData(buffer); 155
 pkt.AddDataByte(0); 156
 pkt.Send(ipaddr); 157
 } 158
 iprintf("\r\n"); 159
 }} 160

NetBurner Programmers Guide

 Page 69

12.1.2 Running the Application

1. (If you have not already done so) Connect a serial cable from your host computer's serial port to

your NetBurner board's debug serial port.

2. Start MTTTY (from Windows: Start �Programs � Netburner NNDK � Mttty Serial Terminal)

3. Compile and download the application to your NetBurner board.

4. Verify that you see the debug messages for the UDP Client/Server. Note the IP address.

5. Answer the prompts asking for the listening port number and destination IP address and port

number of the host PC you will communicate with.

6. Run the UDP Windows Client/Server program on your host computer by opening a command

prompt, going to the UDPWin directory, and typing “UDPWin <listen port> <destination

ip_addr> <destination port>”, where the destination IP address and port number are the

values associated with the NetBurner device you wish to communicate with. For example,

“UDPWin 2500 10.1.1.10 2501”. The destination IP address and port number are used for the

client function of the application. You only need the listen port number for the server

functionality.

7. If everything is working properly, anything you type in the MTTTY window will be sent as UDP

datagrams to the host PC, and vice versa.

For additional information, please refer to your User Manual (from Windows: Start � Programs �

Netburner NNDK � NNDK Users Manual).

12.2 Writing a Windows UDP Client/Server Application

While Windows does support a UDP class, it is more difficult to use than the NetBurner class. This

example will use the sendto() and receivefrom() functions to send and receive UDP datagrams.

NetBurner Programmers Guide

 Page 70

Open a socket

(socket)

Server Client

Open a socket

(socket)

Close connection

(close)

Send and receive data

(sendto and receivefrom)

Name the socket

(bind)

Close connection

(close)

Send and receive data

(sendto and recrivefrom)

12.2.1 Windows UDP Application Source Code

/** 1
UDP Windows Application 2
File Name: UDPWin.cpp 3
 4
DESCRIPTION 5
This Win32 console application will send and receive UDP packets 6
 7
 8
COMMAND LINE PARAMETERS 9
 10
Usage: UDPWin <listen port> <dest ip> <dest port> 11
 12
where 13

listen port = port number to monitor for incoming datagrams 14
dest ip = destination IP address 15
dest port = destination port number 16

NetBurner Programmers Guide

 Page 71

 17
 18
COMPILILATION INSTRUCTIONS 19
 Compile as Windows console application with MS Visual C++ 5.0 20
 Include WS2_32.lib in linker configuration 21
 22
 23
REVISION HISTORY 24
2/3/2003 Initial Release 25
 26
***/ 27
 28
#include <winsock.h> 29
#include <stdio.h> 30
#include <stdlib.h> 31
 32
#define RX_BUFSIZE (10000) 33
 34
//----- functions ----- 35
void ProcessCmdLine(int argc, char **argv); 36
DWORD WINAPI ReceiveUDP(LPVOID lpParam); 37
 38
 39
//----- global vars ----- 40
WORD dListenPort, dDestPort; 41
char szDestIPAddr[80]; 42
char RxBuf[RX_BUFSIZE]; 43
 44
 45
/*--- 46
 FUNCTION: ProcessCmdLine 47
 48
 DESCRIPTION: 49
 Process command line arguments 50
 51
 RETURNS: Nothing 52
 --*/ 53
void ProcessCmdLine(int argc, char **argv) 54
{ 55
 if (argc < 4) 56
 { 57
 printf("Usage: UDPWin <listen port> <dest ip> <dest port>\n"); 58
 exit(1); 59
 } 60
 61
 dListenPort = (WORD) atoi(argv[1]); 62
 strncpy(szDestIPAddr, argv[2], 80); 63
 dDestPort = (WORD) atoi(argv[3]); 64
} 65
 66
 67
 68
/*--- 69
 FUNCTION: ProcessClient 70
 71
 DESCRIPTION: 72
 This function is called as a thread to handle client connections. 73
 74
 PARAMETERS 75
 lpParam is a pointer to the client socket handle. 76
 77
 RETURNS: 32-bit thread exit code 78
 --*/ 79
DWORD WINAPI ReceiveUDP(LPVOID lpParam) 80
{ 81
 SOCKET s = (SOCKET)lpParam; 82
 struct sockaddr_in sinFrom; 83
 84
 while (1) 85
 { 86
 printf("Listening on port: %d....\n", dListenPort); 87

NetBurner Programmers Guide

 Page 72

 88
 /* 89
 The recvfrom() API function has the following parameters: 90
 91
 recvfrom(SOCKET s, // socket to receive from 92
 char *buf, // point to buffer to store rec'd data 93
 size_t len, // length of buffer or # of bytes to read 94
 int flags, // flags (normally use 0) 95
 struct sockaddr *from, // client data returned 96
 int *fromlen // size of client data struct 97
) 98
 */ 99
 int len = sizeof(sinFrom); 100
 int bytes = recvfrom(s, RxBuf, RX_BUFSIZE, 0, 101
 (struct sockaddr *)&sinFrom, &len); 102
 if (bytes == SOCKET_ERROR) 103
 { 104
 printf("recvfrom() error: %d\n", WSAGetLastError()); 105
 break; 106
 } 107
 108
 printf("Received packet from: %s:%d\n", 109
 inet_ntoa(sinFrom.sin_addr), ntohs(sinFrom.sin_port)); 110
 printf("Bytes read: %d: \"", bytes); 111
 for (int i=0; i < bytes; i++) 112
 printf("%c", RxBuf[i]); 113
 printf("\"\n"); 114
 115
 } 116
 return 0; 117
} 118
 119
 120
 121
 122
/*--- 123
 FUNCTION: main 124
 125
 DESCRIPTION: 126
 Main routine to start network services and listen for connections. 127
 128
 RETURNS: integer exit code 129
 --*/ 130
int main(int argc, char **argv) 131
{ 132
 SOCKET sListen, sSend; 133
 WSADATA WSAData; 134
 struct sockaddr_in sinListen, sinSend; 135
 136
 ProcessCmdLine(argc, argv); 137
 138
 if (WSAStartup(MAKEWORD(1,1), &WSAData) != 0) 139
 { 140
 printf("Error loading Winsock\n"); 141
 return 1; 142
 } 143
 144
 // Create socket to listen for UDP datagrams 145
 sListen = socket(AF_INET, SOCK_DGRAM, 0); 146
 if (sListen == SOCKET_ERROR) 147
 { 148
 printf("Error creating sListen socket: %d\n", WSAGetLastError()); 149
 return 1; 150
 } 151
 152
 // Setup listen address structure 153
 sinListen.sin_addr.s_addr = htonl(INADDR_ANY); 154
 sinListen.sin_family = AF_INET; 155
 sinListen.sin_port = htons(dListenPort); 156
 157
 // Bind socket to listen address 158

NetBurner Programmers Guide

 Page 73

 if (bind(sListen, (struct sockaddr *) &sinListen, 159
 sizeof(sinListen)) == SOCKET_ERROR) 160
 { 161
 printf("bind() error for sListen: %d\n", WSAGetLastError()); 162
 return 1; 163
 } 164
 165
 /* 166
 Create and start thread to receive UDP packets. 167
 168
 HANDLE CreateThread(169
 LPSECURITY_ATTRIBUTES lpThreadAttributes, // ptr to attributes 170
 DWORD dwStackSize, // initial thread stack size, in bytes 171
 LPTHREAD_START_ROUTINE lpStartAddress, // pointer to thread function 172
 LPVOID lpParameter, // argument for new thread 173
 DWORD dwCreationFlags, // creation flags 174
 LPDWORD lpThreadId // pointer to returned thread identifier 175
); 176
 */ 177
 DWORD dwThreadId; 178
 HANDLE hThread; 179
 hThread = CreateThread(NULL, 0, ReceiveUDP, (LPVOID) sListen, 0, &dwThreadId); 180
 181
 // Create socket to send UDP datagrams 182
 sSend = socket(AF_INET, SOCK_DGRAM, 0); 183
 if (sSend == INVALID_SOCKET) 184
 { 185
 printf("Error creating sSend socket: %d\n", WSAGetLastError()); 186
 return 1; 187
 } 188
 189
 // name the socket 190
 sinSend.sin_family = AF_INET; 191
 sinSend.sin_addr.s_addr = inet_addr(szDestIPAddr); 192
 sinSend.sin_port = htons(dDestPort); 193
 194
 printf("Enter data to send to %s:%d\n", szDestIPAddr, dListenPort); 195
 196
 while (1) 197
 { 198
 /* 199
 The sendto function is used to write outgoing data on a socket. 200
 For message-oriented sockets, care must be taken not to exceed 201
 the maximum packet size of the underlying subnets. You can get 202
 the size information from the getsockopt() API call. See the 203
 microsoft documentation for more information. 204
 205
 The sendto() API function has the following parameters: 206
 207
 int sendto(208
 SOCKET s, 209
 const char* buf, // buffer containing the data to be transmitted 210
 int len, // length of data in buf 211
 int flags,// indicator specifying the way in which the call is made 212
 const struct sockaddr* to, // optional ptr to dest address structure 213
 int tolen // size of address structure in bytes 214
); 215
 */ 216
 char TxBuf[512]; 217
 gets(TxBuf); 218
 if (TxBuf[0] == '\0') 219
 break; 220
 else 221
 { 222
 int len = sizeof(sinSend); 223
 sendto(sSend, TxBuf, strlen(TxBuf), 0, 224
 (struct sockaddr *)&sinSend, len); 225
 if (sSend == INVALID_SOCKET) 226
 { 227
 printf("sendto() error: %d\n", WSAGetLastError()); 228
 break; 229

NetBurner Programmers Guide

 Page 74

 } 230
 231
 printf("Sent packet to: %s:%d\n", 232
 inet_ntoa(sinSend.sin_addr), ntohs(sinSend.sin_port)); 233
 } 234
 } 235
 236
 closesocket(sListen); 237
 closesocket(sSend); 238
 WSACleanup(); 239
 return 0; 240
} 241

Starting in main(), the ProcessCmdLine(int argc, char **argv) function is called at the beginning of

main() to do what you would expect: process any command line parameters. Specifically, you will pass the

listening port number, destination port number and destination IP address.

Before you can call any winsock functions, you must load a winsock library. The call to initialize winsock

is WSAStartup(); when this function returns, the WSADATA structure contains the information about the

version of winsock that was loaded. The MAKEWORD(1,1) macro specifies winsock version 1.1; you

could specify (2,2) for version 2.2.

The listen socket, sListen, is then created with:

sListen = socket(AF_INET, SOCK_DGRAM, 0);

AF_INET specifies the Internet Protocol. The socket type is set to SOCK_DGRAM; for TCP you would

use SOCK_STREAM. The last parameter specifies protocol, and a value of 0 tells the system to pick one

based on the other two parameters.

Winsock applications specify IP addresses and ports using the SOCKADDR_IN structure, which is

declared as sinListen in our program. The functions htonl() and htons() stand for “host to network long”

and “host to network short”, and convert the byte order of long and short variables from the host platform

(little endian for a typical pc running Windows) to standard network byte order (big endian). The

INADDR_ANY parameter specifies that any incoming IP address will be accepted, the AF_INET specifies

the Internet Protocol family, and the dListenPort parameter contains the value of the port the server will

listen to.

The bind() function associates the listen socket with the listen port number.

A separate thread is created to handle an incoming datagrams. The CreateThread() API call takes the

following parameters:

• ReceiveUDP: A pointer to the thread function to execute

• (LPVOID)sListen: When creating a thread it is possible to pass a parameter to the function as

a pointer. In this case we are passing the listening socket, sListen, as pointer. It is later cast

back to a socket in the ReceiveUDP() thread.

• &dwThreadId: A pointer to a variable that will hold the thread ID once it is created.

When CreateThread() is called successfully, the thread will start and begin listening for incoming

datagrams. Each time a datagram arrives the sender information and data will be displayed.

Now that the application can receive incoming datagrams, we need to have a method of sending outgoing

datagrams. An outgoing socket is created with the line:

sSend = socket(AF_INET, SOCK_DGRAM, 0);

NetBurner Programmers Guide

 Page 75

As with sListen, the sSend socket needs a SOCKADDR_IN structure. The sinSend is declared and

initialized to allow datagrams to be sent to the host destination IP address and destination port number

specified on the command line.

The application then enters a while(1) loop that waits for user input strings and sends those strings using

the sendto() function.

12.2.2 Running the Windows UDP Application

The application was built as a Win32 console application. To run it, open a command prompt and type:

“UDPWin <listen port> <dest IP> <dest port>” (and then press the "Enter" Key)

where <listen port> is the local port number to listen for incoming datagrams, <dest IP> and <dest port>

are the IP address and port number of the host or device you wish to send datagrams to. For example,

UDPWin 2500 10.1.1.15 2501

will listen on port 2500, and send any data you type into the console to the host or device at 10.1.1.15:2501.

12.3 Writing a Windows JAVA UDP Client/Server Application

This example is a UDP Client/Server written in Java that can be run on any host computer running the Java

Virtual Machine (JVM). This includes Windows, Unix, Linux, etc. Note: The NetBurner platform does not

run the JVM.

To create a UDP Server on the NetBurner platform:

1. Create a DatagramSocket

2. Create a DatagramPacket

3. Use the receive() member function to block for incoming packets and store the packet.

To send a UDP datagram on the NetBurner platform:

1. Create a DatagramPacket

2. Use the send() member function to send the packet

12.3.1 Windows Java UDP Application Source Code

/*** 1
 This is a UDP example Java application to send and receive UDP datagrams. 2
 It will listen on a port for incoming UDP packets, and allow the user to 3
 send strings as UDP datagrams to another host. 4
 5
 This application can run on Windows, Unix or Linux hosts with the Java 6
 Virtual Machine installed. It is not designed to run on the NetBurner 7
 platform. 8
 9
 Revision 1.0, May 31, 2003 10
 11

NetBurner Programmers Guide

 Page 76

***/ 12
 13
import java.net.*; 14
import java.io.*; 15
 16
/*-- 17
 UDP Server Class 18
 This class will: 19
 1. Parse command line parameters for the local port number, 20
 destination ip address, and destination port number. 21
 22
 2. Obtain the local host name and ip address, then display all 23
 parameters to the console. 24
 25
 3. Declare an instance of the client UDP class, which will 26
 handle local host user input and allow the user to send 27
 strings. 28
 29
 4. Start the UDP server thread that will loop forever listening 30
 for incoming UDP packets on the designated port. All 31
 incoming messages will be displayed to the console window 32
 along with the sender's ip address and port number. 33
--*/ 34
public class udpserv { 35
 protected DatagramSocket dgSocket; // declare socket 36
 37
 // Constructor 38
 public udpserv (int port) throws IOException { 39
 dgSocket = new DatagramSocket(port); // allocate socket 40
 } 41
 42
 // execute() loop to wait for incoming datagram packets 43
 public void execute()throws IOException { 44
 while (true) 45
 { 46
 byte buffer[] = new byte[65536]; 47
 DatagramPacket dgPacket = new DatagramPacket(buffer, buffer.length); 48
 dgSocket.receive(dgPacket); 49
 50
 System.out.print("Rec'd From: " + dgPacket.getAddress()); 51
 System.out.print(":" + dgPacket.getPort()); 52
 System.out.print(", " + dgPacket.getLength() + " bytes: \""); 53
 String msg = new String(buffer, 0, dgPacket.getLength()); 54
 System.out.println(msg + "\"\n"); 55
 } 56
 } 57
 58
 59
 public static void main(String args[]) throws IOException { 60
 int ListenPort, DestPort; 61
 String DestIP; 62
 63
 if (args.length != 3) 64
 throw new RuntimeException("Syntax: udpserv <listen port> <dest IP> <dest 65
port>"); 66
 ListenPort = Integer.parseInt(args[0]); 67
 DestIP = args[1]; 68
 DestPort = Integer.parseInt(args[2]); 69
 70
 // Display command line parameters 71
 System.out.println("Listen Port: " + ListenPort); 72
 System.out.println("Dest IP : " + DestIP); 73
 System.out.println("Dest Port : " + DestPort); 74
 75
 InetAddress LocalHost = InetAddress.getLocalHost(); 76
 System.out.println("Local Host Name: " + LocalHost.getHostName()); 77
 System.out.println("Local Host IP Addr: " + LocalHost.getHostAddress()); 78
 79
 // Create instance of udpserv class 80
 udpserv serverUDP = new udpserv(ListenPort); 81
 System.out.println("Starting UDP echo server, listening on port " + ListenPort); 82

NetBurner Programmers Guide

 Page 77

 83
 84
 // Convert destination IP string to InetAddress type 85
 InetAddress DestAddr = InetAddress.getByName(DestIP); 86
 87
 // Start thread to accept user input strings and send them 88
 // as UDP datagrams. This is the client side of this example 89
 clientUDPThread ct = new clientUDPThread(DestAddr, DestPort); 90
 ct.start(); 91
 92
 // Start server execution to receive UDP datagrams 93
 serverUDP.execute(); 94
 } 95
} 96
 97
 98
 99
/*--- 100
 UDP Client Class 101
 This class simply waits for user input from the console, creates 102
 a UDP datagram with the input data, and sends the datagram to 103
 the designated destination host. 104
 ---*/ 105
class clientUDPThread extends Thread { 106
 107
 int DestPort; 108
 InetAddress DestAddr; 109
 protected DatagramSocket dgSocket; // declare socket 110
 111
 public clientUDPThread(InetAddress DestinationAddr, int DestinationPort) throws 112
IOException 113
 { 114
 dgSocket = new DatagramSocket(DestPort); // allocate socket 115
 DestAddr = DestinationAddr; 116
 DestPort = DestinationPort; 117
 } 118
 119
 public String GetUserInput() 120
 { 121
 String s = ""; 122
 123
 try { 124
 while (true) { 125
 char c = (char)System.in.read(); 126
 if (c == '\r') { 127
 c = (char)System.in.read(); 128
 if (c == '\n') { 129
 break; 130
 } else { 131
 continue; 132
 } 133
 } else if (c == '\n') { 134
 break; 135
 } else { 136
 s += c; // store char 137
 } 138
 } // while 139
 140
 } 141
 catch (Exception e) { 142
 System.err.println("Exception: " + e.toString()); 143
 } 144
 return s; 145
 } 146
 147
 148
 public void run() 149
 { 150
 while (true) 151
 { 152
 String msg = GetUserInput(); 153

NetBurner Programmers Guide

 Page 78

 byte[] buffer = msg.getBytes(); 154
 System.out.println("Sending Message: \"" + msg + "\""); 155
 DatagramPacket packet = new DatagramPacket(buffer, 156
 buffer.length, DestAddr, DestPort); 157
 try { 158
 dgSocket.send(packet); 159
 } catch (Exception e) { 160
 System.err.println("Exception: " + e.toString()); 161
 } 162
 } 163
 } 164
 165

NetBurner Programmers Guide

 Page 79

12.3.2 Running the Windows Java UDP Application

To run the application you will need to have the Java SDK installed. If you need to obtain the software package, go

to http://www.javasoft.com and download it free of charge. Once installed, verify you have the correct path by

opening a DOS window and typing “java” at the prompt and press the "Enter" key. If your path is correct, you will

see the Java usage information message. If your path is incorrect, you will see an error message indicating the

command is not recognized. Follow the Java installation documents to perform a correct installation.

To compile the application, open a command prompt and go to the directory containing the source code. The default

directory is java\JavaWin. To compile the example, type “javac udpserv.java”. The compilation will produce a file

called udpserv.class.

To run the application, now type:

 “java udpserv <listen port> <dest IP> <dest port>”

 where <listen port> is the local port number to listen for incoming datagrams, <dest IP> and <dest port> are the IP

address and port number of the host or device you wish to send datagrams to. For example,

“udpserv 2500 10.1.1.15 2501”

will listen on port 2500, and send any data you type into the console to the host or device at 10.1.1.15:2501.

As a quick test you can run two instances of the application on your host pc. In the following example you will need

to replace the IP address with the correct IP address for your host computer.

1. Open two command windows

2. In the first window, type “java udpserv 3000 10.1.1.100 4000”

3. In the second window, type “java udpserv 4000 10.1.1.100 3000”.

4. Now anything you type in one window will appear in the other. Note that user input will only be sent once

the enter key is pressed.

For additional information on UDP, please refer to your User Manual. From Windows: Start � Programs �

Netburner NNDK � NNKD Users Manual.

NetBurner Programmers Guide

 Page 80

13 uC/OS Real-Time Operating System

13.1 Overview

The uC/OS Operating system is a full featured pre-emptive multitasking Real-Time Operating System (RTOS). You

can easily create tasks, semaphores, mail boxes and queues just to name a few features. As part of the NetBurner

development package, the RTOS is pre-configured, integrated and running a default user task named UserMain()

that can be used as your main program task.

The RTOS provides 63 priority levels numbered from 1 to 63. The lower the number, the higher the priority. Some

of these tasks are reserved by the system, such as the idle task at level 63. You can specify a priority when the task is

created, and change the priority later if you wish. A priority level can only be used by one task at a time. Be sure to

check the return values when creating a task or changing a task priority to verify that the operation was successful.

The uC/OS system files are located in the \nburn\system directory. They are:

ucos.c uC/OS function source code

ucosmain.c uC/OS helper, debug and start-up functions. Also has the stack

definition for the idle task.

ucosmcfc.c ColdFire specific uC/OS functions. Specifically, this code module

contains the OSTaskCreate() function, initializes the Task Control

Blocks, and contains the stack checking code.

ucosmfca.s Contains the assembler functions for the ColdFire port of uC/OS,

including functions for task switching and the timer. Note that the file

extension of “.s” designates an assembly language file.

main.c Contains the main() function that does some system initialization and

creates UserMain().

13.2 Pre-emptive Operation and Blocking

In a pre-emptive RTOS, the highest priority task ready to run will always run. This is an extremely important point,

so I will mention it again: the highest priority task ready to run will always run. This is different than a Windows or

Unix system that employs a round-robin approach in which each task will run based on its time slice. If you create a

high priority task that can always run, then no lower priority tasks will ever run. Lower priority tasks can only run

when a higher priority task blocks on a resource or time delay.

uC/OS functions that can cause a task to block:
OSTimeDly()
OSSemPend()
OSMBoxPend()
OSQPend()

I/O system calls that can cause a task to block
select()
read() // including all variants with timeouts
write() // unitl at least one char can be written
gets()

NetBurner Programmers Guide

 Page 81

getchar()
fgets()

Network calls can cause a task to block:
 Accept()
 Creation of a UDP packet when initialized with received data

Functions that can be used to enable a task to be “ready to run”:
OSMBoxPost()
OSQPost()
OSSemPost()
OSTimeTick()

Lets say you have two tasks: A and B. Task A has priority 50 and Task B has priority 51. Since Task A is of higher

priority, it will always run (and Task B will never run) unless it calls a blocking function. Task B will then run for as

long as Task A blocks; this could be 1 second due to a call to OSTimeDly(TICKS_PER_SECOND), until a shared

resource is available due to a call to OSSemPend(), or until data is available from a network connection due to a

select() call. It both tasks were in a blocking state, then the idle task (63) would run.

13.3 Default Configuration and Resources

The number and types of system tasks that will be running depends on which options and features you are using in

your specific application. For example, if your application called StartHTTP() to enable web services, then a system

task will be created that handles web server requests. The following is a list of system tasks. The default values are

specified in \nburn\include\constants.h. The table below shows the information for the SB72 platform.

Name Default

Priority

Description

Ethernet Driver 38 Handles packets sent to the Ethernet hardware

IP Protocol 39 Handles the IP layer of the TCP/IP protocol stack

TCP Protocol 40 Handles the TCP layer of the TCP/IP protocol stack.

PPP Protocol 44 Handles the PPP layer of the TCP/IP protocol stack

HTTP Protocol 45 Handles the HTTP application for the web server.

Main Priority 50 This is a macro used for the default UserMain() priority.

Idle 63 What does the RTOS do when it has nothing important to do? It runs

the Idle Task, which just loops and does nothing.

13.4 Creating Tasks

Whether you use the AppWizard in the IDE to create a new application, or start with one of the example programs,

you will notice that the point at which you take control of the device is at the function called UserMain(). The

UserMain() task is a uC/OS task created by the system for you to use in your application. Normally, the first few

lines will consist of system initialization functions such as the functions described in the Template example.

To create additional tasks, you use the OSTaskCreate() function. The following is an example program that

allocates the task stack, implements a new task function, and launches the new task.

NetBurner Programmers Guide

 Page 82

/**
 Multiple task example
 This program creates 2 tasks and send prints messages from each.

 ***/
#include "predef.h"
#include <stdio.h>
#include <ctype.h>
#include <startnet.h>
#include <autoupdate.h>
#include <ucos.h>
#include <dhcpclient.h>

//----- function prototypes -----
extern "C"
{
 void UserMain(void *pd);
}

DWORD MyTaskStack[USER_TASK_STK_SIZE];

/*---
 MyTask
 --*/
void MyTask(void *pdata)
{
 WORD data = *(WORD *) pdata; // cast passed parameter

 iprintf("Data passed to MyTask(): %d\r\n", data);

 while (1)
 {
 iprintf(" Message from MyTask()\r\n");
 OSTimeDly(TICKS_PER_SECOND); // this is a blocking call
 }
}

/*---
 UserMain
 --*/
void UserMain(void *pd)
{
 InitializeStack();
 OSChangePrio(MAIN_PRIO);

 if (EthernetIP == 0)
 {
 iprintf("Attempting DHCP\r\n");
 if (GetDHCPAddress() != DHCP_OK)
 iprintf("*** DHCP Failed\r\n");
 else
 iprintf("DHCP IP Address: ");
 }
 else
 iprintf("Static IP Address: ");
 ShowIP(EthernetIP);iprintf("\r\n");

 EnableAutoUpdate();

 // This example passes data to the task, but this is optional

NetBurner Programmers Guide

 Page 83

 WORD MyTaskData = 1234;

 /* Create and launch the task. Note that we selected a priority of
 MAIN_PRIO+1, which means the new task is of lower priority than UserMain.
 The implication is that if UserMain does not block, MyTask will never
 run.
 */
 if (OSTaskCreate(MyTask,
 (void *) &MyTaskData,
 (void *) &MyTaskStack[USER_TASK_STK_SIZE],
 (void *) MyTaskStack,
 MAIN_PRIO + 1) != OS_NO_ERR)
 {
 iprintf("*** Error creating task\r\n");
 }

 while (1)
 {
 OSTimeDly(TICKS_PER_SECOND * 2);
 iprintf("Message from UserMain()\r\n");
 }
}

13.5 Interrupts

To obtain specific information on interrupts used in your specific NetBurner device, please reference the Platform

Documents that came with the development kit. Some common values and their functions are shown below:

Name Interrupt

Level

Description

Serial ports

(UARTS)

3 Interrupts when a character is received or transmitted.

Note: The NetBurner monitor operates in polled mode. To enable

interrupts your application must close the serial ports with

SerialClose(), then open them with OpenSerial().

Ethernet 4 Ethernet receive and transmit.

System Timer 5 This is the RTOS system timer. By default it generates an interrupt 20

times per second. If necessary, this rate can be changed in

\nburn\include\constants.h with: #define TICKS_PER_SECOND.

This value should stay within the range of 10 to 200. For high

resolution timing, we recommend using a different timer.

NetBurner Programmers Guide

 Page 84

14 Protecting Shared Data Structures

14.1.1 Overview

The following RTOS mechanisms can be used to protect shared data resources. They are listed in a decreasing order

of severity as regarding system latency (all pend and post functions are at the same level).

OSSemPend()

OSSemPost()

Protects an area of memory or resource. A task calls OSSemPend,

which will block until the resource is available. OSSemPost releases

the resource.

OSMboxPend()

OSMboxPost()

Same as semaphore, except a pointer variable is passed as the

“message”. A task or ISR can post a message, but only a task can

pend on a message. Both the posting task and pending task must

agree on what the pointer points to.

OSQPend()

OSQPost()

A Queue is basically an array of mailboxes. It is used to post one or

more messages. When you initialize a Queue, you must specify the

maximum number of messages. The first message posted to the

queue will be the first message extracted from the queue (FIFO).

OSFifoPend()

OSFifoPost()

OSFifoPostFirst()

OSFifoPendNoWait()

A FIFO is similar to a queue, but is specifically designed to pass

pointers to OS_FIFO structures. The first parameter of the structure

must be a (void *) element, which is used by the operating system to

create a linked list of FIFOs. When initializing a FIFO, you do not

specify the maximum number of entries as with a queue. Instead,

your application has the ability (and responsibility) to allocate

memory (static or dynamic) in which to store the structures. This can

be done statically by declaring global variables, or dynamically by

allocating memory from the heap. As with a queue, the first message

posted to the FIFO will be the first message extracted from the

queue.

OSCritEnter

OSCritExit

OSCritObj

This is a counted critical section that restricts access to resources to

one task at a time, sometimes called a “mutex”. For example, you

have a linked list that is maintained by 3 separate tasks. If one task is

manipulating the list, you could first call OSCirtEnter for that object

(the list). If any other task tries to manipulate the list, it will block at

the OSCritEnter until the task that previously called OSCritEnter,

calls OSCritExit. Note that the number of enter calls must match

number of exit calls.

OSCritObj is a C++ implementation that uses scoping to

automatically call the enter and exit functions. See example below.

OSLock()

OSUnlock()

OSLockObj

Disables other tasks, but not interrupts. Increments for each OSLock,

decrements for each OSUnlock. The C++ object OSLockObj was

created to assist in making sure that an unlock is called for each lock.

When an OSLockObj is created, the constructor calls OSLock().

When the object goes out of scope, OSUnlock() is automatically

called by the destructor.

USER_ENTER_CRITICAL

USER_EXIT_CRITICAL

Macro that disables other tasks and interrupts. Increments count on

enter, decrements on exit.

NetBurner Programmers Guide

 Page 85

How do you decide which type of mechanism to use? Some guidelines are:

• If you need some type of signal, but do not need to pass any data, use a Semaphore. A semaphore is a

single 32-bit integer that increments and decrements for each pend or post.

• If you want to pass a single 32-bit number, you can use a Mailbox or Queue. Most applications use the 32-

bit number as the data, but it could also be a pointer to a structure or object. A queue is like an array of

mailboxes. You declare the number of queue entrys a compile time.

• If you want to pass a structure or object, then use a FIFO. You may be wondering how a FIFO differs from

a Queue. The difference is that a Queue has a predefined number of entries. The FIFO implementation uses

a linked list, so the only limit to the number of entries is available memory. Using a FIFO is not as simple

as any of the other mechanisms, because your application must implement some type of memory

management to allocate and deallocate the FIFO objects. This is usually done by managing a predeclared

array of objects, or through dynamic memory allocation. We encourage all embedded designers to avoid

dynamic memory allocation if at all possible, since in any embedded system memory fragmentation could

eventually occur and the call to allocate a new object could fail. If you create an array of objects at compile

time you will always be guaranteed the maximum number can exist.

14.1.2 Semaphore Example

A semaphore is a protected variable that is used to control access to shared system resources (such as memory or

serial ports), to signal the occurrence of events and task synchronization. A task can request a semaphore and wait

until the resource or event takes place (called pending). A task can also post to a semaphore to indicate it no longer

needs a resource, or to signal an event has taken place.

To create a semaphore you declare one of type OS_SEM and initialize with OSSemInit():

OS_SEM MySemaphore;
OSSemInit(&MySemaphore, 0); // set initial value to 0

Your application tasks can now use the post and pend functions on the semaphore:

 OSSemPost(&MySemaphore); // post to a semaphore
 OSSemPend(&MySemaphore, 0); // pend on a semaphore

The second parameter in the OSSemPend() function specifies the number of time ticks to wait. A value of 0 waits

forever. A good way to express a wait value is to use the TICKS_PER_SECOND definition provided by the RTOS:

OSSemPend(&MySemaphore, TICKS_PER_SECOND * 5) to wait 5 seconds.

/**
 Semaphore Example Program
 This program will create 2 tasks and a semaphore. The UserMain task will
 block for a semaphore posted from MyTask.

 The output for this example is displayed through the serial debug port, which
 can be viewed with the MTTTY program.

***/
#include <predef.h>
#include <stdio.h>
#include <ctype.h>
#include <startnet.h>
#include <autoupdate.h>
#include <ucos.h>
#include <serial.h>
#include <dhcpclient.h>

NetBurner Programmers Guide

 Page 86

//----- function prototypes -----
extern "C"
{
 void UserMain(void *pd);
}

//----- Global Variables
const char * AppName = "Semaphore Example";
DWORD MyTaskStack[USER_TASK_STK_SIZE];
OS_SEM MySemaphore;

/*---
 MyTask
 This task will post to a semaphore every 3 seconds
 ---*/
void MyTask(void *pdata)
{
 while (1)
 {
 OSTimeDly(TICKS_PER_SECOND * 3);
 iprintf(" MyTask: Posted to Semaphore\r\n");
 OSSemPost(&MySemaphore);
 }
}

/*---
 UserMain
 ---*/
void UserMain(void *pd)
{
 InitializeStack();
 if (EthernetIP == 0)
 {
 iprintf("Attempting DHCP\r\n");
 GetDHCPAddress();
 iprintf("DHCP IP Address: ");
 }
 else
 iprintf("Static IP Address: ");
 ShowIP(EthernetIP);iprintf("\r\n");

 OSChangePrio(MAIN_PRIO);
 EnableAutoUpdate();

 OSSemInit(&MySemaphore, 0);

 if (OSTaskCreate(MyTask,
 NULL,
 (void *) &MyTaskStack[USER_TASK_STK_SIZE],
 (void *) MyTaskStack,
 MAIN_PRIO + 1) != OS_NO_ERR)
 {
 iprintf("*** Error creating task\r\n");
 }

 // The while loop will pend on MySemaphore and display a message
 // when a post is detected.
 while (1)
 {
 iprintf(">>> UserMain: Pending on Semaphore from MyTask\r\n");
 OSSemPend(&MySemaphore, 0);

NetBurner Programmers Guide

 Page 87

 iprintf("<<< UserMain: Semaphore was posted from MyTask!\r\n\r\n");
 }
}

14.1.3 Mailbox Example

A mailbox is similar to a semaphore, except a pointer variable is passed as the “message”. A task or ISR can post a

message, but only a task can pend on a message. Both the posting task and pending task must agree on what the

pointer points to.

/**
 Multiple task user input example.
 This program illustrates how to create a task and use a mailbox to accept
 user input from a serial port.

 1. UserMain task will wait pend on a mailbox for user input
 2. UserInput task will block waiting for a user to type in data from the
 serial port
 3. This example also illustrates how to terminate a task

 ***/
#include "predef.h"
#include <stdio.h>
#include <ctype.h>
#include <startnet.h>
#include <autoupdate.h>
#include <ucos.h>
#include <serial.h>
#include <string.h>
#include <dhcpclient.h>

//----- function prototypes -----
extern "C"
{
 void UserMain(void *pd);
}

//----- global vars -----
DWORD UserInputTaskStack[USER_TASK_STK_SIZE];
OS_MBOX UserInputMbox;
BOOL bExitUserInputTask;

/*---
 UserInputTask
 Once created, this task will loop forever
 --*/
void UserInputTask(void *pdata)
{
 char strInput[100];

 while (!bExitUserInputTask)
 {
 iprintf("User Input:");
 fgets(strInput, 80, stdin);

NetBurner Programmers Guide

 Page 88

 // remove \r\n if present
 int len = strlen(strInput);
 iprintf("Received %d bytes\r\n", len);
 if (len >= 2)
 {
 for (int i=0; i < 2; i++)
 {
 if ((strInput[len-i] == '\r') || (strInput[len-i] == '\n'))
 strInput[len-i] = '\0';
 }
 }

 OSMboxPost(&UserInputMbox, (void *) strInput);
 }

 // Not much to do in this example once the task exits
 iprintf("*** UserInputTask() terminated. Please reset program ***\r\n");
}

/*---
 UserMain
 --*/
void UserMain(void *pd)
{
 InitializeStack();
 if (EthernetIP == 0)
 {
 iprintf("Attempting DHCP\r\n");
 if (GetDHCPAddress() != DHCP_OK)
 iprintf("*** DHCP Failed\r\n");
 else
 iprintf("DHCP IP Address: ");
 }
 else
 iprintf("Static IP Address: ");
 ShowIP(EthernetIP);iprintf("\r\n");

 OSChangePrio(MAIN_PRIO);
 EnableAutoUpdate();

 iprintf("Starting program\r\n");

 OSMboxInit(&UserInputMbox, NULL);

 bExitUserInputTask = FALSE;
 if (OSTaskCreate(UserInputTask,
 NULL,
 (void *) &UserInputTaskStack[USER_TASK_STK_SIZE],
 (void *) UserInputTaskStack,
 MAIN_PRIO + 1) != OS_NO_ERR)
 {
 iprintf("*** Error creating task\r\n");
 }

 while (1)
 {
 BYTE err;

 // Wait forever for user input
 void *pmsg = OSMboxPend(&UserInputMbox, 0, &err);
 iprintf("\r\nUserMain Received: \"%s\"\r\n\r\n", (const char *) pmsg);

NetBurner Programmers Guide

 Page 89

 // If user input was "exit", then send exit signal to UserInputTask()
 if (strcmp((const char *)pmsg, "exit") == 0)
 bExitUserInputTask = TRUE;
 }
}

14.1.4 FIFO Example

A FIFO is similar to a queue, but is specifically designed to pass pointers to OS_FIFO structures. The first parameter

of the structure must be a (void *) element, which is used by the operating system to create a linked list of FIFOs.

When initializing a FIFO, you do not specify the maximum number of entries as with a queue. Instead, your

application has the ability (and responsibility) to allocate memory (static or dynamic) in which to store the

structures. This can be done statically by declaring global variables, or dynamically by allocating memory from the

heap. As with a queue, the first message posted to the FIFO will be the first message extracted from the queue.

/**
 FIFO Example Program

 This program creates two tasks and a FIFO. Messages are sent from one task
 to another using the FIFO. A timeout value for the pend function is used to
 illustrate the timeout feature of the FIFO.

 ***/
#include "predef.h"
#include <stdio.h>
#include <ctype.h>
#include <startnet.h>
#include <autoupdate.h>
#include <ucos.h>
#include <serial.h>
#include <dhcpclient.h>

#define NUM_POSTS (5)

//----- function prototypes -----
extern "C"
{
 void UserMain(void *pd);
}

//----- structs -----
typedef struct // Pointers to this structure will be passed in the FIFO
{
 void * pUsedByFifo; // Don't modify this value, and keep it first
 int x; // Any other members come after the pointer
} MyStructure;

//----- global vars -----
DWORD FifoPostTaskStack[USER_TASK_STK_SIZE];
OS_FIFO MyFIFO;
MyStructure StructArray[5];

NetBurner Programmers Guide

 Page 90

/*---
 FIFO Post Task
 --*/
void FifoPostTask(void *pdata)
{
 while (1)
 {
 iprintf("\r\n");
 for (int i = 0; i < NUM_POSTS; i++)
 {
 StructArray[i].x = i;
 OSFifoPost(&MyFIFO, (OS_FIFO_EL *) &StructArray[i]); // Put a message in
the Fifo.
 iprintf(" Posted FIFO value %d\r\n", i);
 }
 iprintf("\r\n");

 OSTimeDly(TICKS_PER_SECOND * 9);
 }
}

/*---
 UserMain
 --*/
void UserMain(void *pd)
{
 DWORD FifoCnt = 0;

 InitializeStack();
 if (EthernetIP == 0)
 {
 iprintf("Attempting DHCP\r\n");
 if (GetDHCPAddress() != DHCP_OK)
 iprintf("*** DHCP Failed\r\n");
 else
 iprintf("DHCP IP Address: ");
 }
 else
 iprintf("Static IP Address: ");
 ShowIP(EthernetIP);iprintf("\r\n");

 OSChangePrio(MAIN_PRIO);
 EnableAutoUpdate();

 OSFifoInit(&MyFIFO);

 if (OSTaskCreate(FifoPostTask,
 NULL,
 (void *) &FifoPostTaskStack[USER_TASK_STK_SIZE],
 (void *) FifoPostTaskStack,
 MAIN_PRIO - 1) != OS_NO_ERR)
 {
 iprintf("*** Error creating task\r\n");
 }

 while (1)
 {
 iprintf(">>> Calling OSFifoPend()...\r\n");
 MyStructure *pData = (MyStructure *) OSFifoPend(&MyFIFO, TICKS_PER_SECOND
* 5);
 if (pData == NULL)
 {

NetBurner Programmers Guide

 Page 91

 // Because of the OSTimeDly() in the post task, we will timeout
 // once per sequence on purpose.
 iprintf(" Timeout in OSFifoPend()\r\n");
 }
 else
 {
 iprintf(" FIFO Read #%d, value: %d\r\n", FifoCnt++, pData->x);
 }
 }
}

14.1.5 OSCritObject Example

OSCritEnter(), OSCritExit() and an OSCritObj are enably an application to use counted critical
sections that restrict access to resources to one task at a time (also called a “mutex”). For example, you have a linked

list that is maintained by 3 separate tasks. If one task is manipulating the list, you could first call OSCritEnter()

for that object (the list). If any other task tries to manipulate the list, it will block at the OSCritEnter() call in

that task until the task that previously called OSCritEnter(), calls OSCritExit(). Since this is a counting

critical section implementation, the number of enter calls must match number of exit calls for each task.

OSCritObj is a C++ implementation that uses scoping to automatically call the enter and exit functions so you do

not need to manually match each enter with an ext.

In comparison with OsLock, OsCritEnter does not restrict task swapping unless two tasks want to access the same

resource. If you used OsLock, then ALL task swapping would be prevented.

{ // opening scope operator

 // Now create an OSCriticalSectionObj object. When the object gets
 // created, the constructor will be called, which will call
 // OSCritEnter

 OSCriticalSectionObj oscs(TCP_critical_section);

 // your source code goes here . . .

} // destructor gets call when object goes out of scope, which call
 OSCritExit

NetBurner Programmers Guide

 Page 92

15 File Descriptors

15.1 Overview

The NetBurner development package integrates the uC/OS operating system, TCP/IP stack and other system

peripherals with a file I/O system and file descriptors. A file descriptor is a handle to a network socket, serial port

or other system peripheral. May of the API functions pass a file descriptor to your application functions, such as the

web server MyGet function example in this guide.

There are a maximum of 64 file descriptors:

• 0 – 3 for stdin, stdout and stderr

• 3 – 4 for the first two UART serial ports

• 5 – 37 for TCP (32 in total)

• 38 – 63 for expansion

The expansion file descriptor positions can be used for many things, including additional serial ports, such as an

external UART, or TCP ports.

15.2 Creating Custom I/O Drivers Using File Descriptors

The header file in \nburn\include\iointernal.h defines the programming interface functions to create a custom file

descriptor. The header file content for tools release 1.98 is shown below, but be sure to check the header file for

your particular tools installation for the latest function definitions.

void SetDataAvail(int fd);
void ClrDataAvail(int fd);

void SetWriteAvail(int fd);
void ClrWriteAvail(int fd);

void SetHaveError(int fd);
void ClrHaveError(int fd);

struct IoExpandStruct
{
 int (* read) (int fd, char *buf, int nbytes);
 int (* write) (int fd, const char *buf, int nbytes);
 int (* close) (int fd);
 void *extra;
};

int GetExtraFD(void *extra_data, struct IoExpandStruct *pFuncs);
void *GetExtraData(int fd);
void FreeExtraFd(int fd);

// The TCP state call back, fd = socket has new data, fd< 0 means error
typedef void (tcp_read_notify_handler)(int tcp_fd);

// When data comes in or the TCP connection enters an error state,
// register a callback to handle the event
void RegisterTCPReadNotify(int tcp_fd, tcp_read_notify_handler *newhandler);

NetBurner Programmers Guide

 Page 93

The Set and Clr functions are used to update the state of your fd device for file I/O functions such as select(), read()

and write(). The IoExpandStruct is used to declare function pointers for the read, write and close functions that will

be implemented in your application, as well as an “extra” void pointer that you can use for whatever you wish.

GetExtraFD() is the function that will return a fd for the object passed as the IoExpandStruct. The extra_data void

pointer is optional, and can be used to pass data into your fd. You can read the extra_data value at any time with the

GetExtraData() function. FreeExtraFd() will release the fd back to the pool of available fds.

The tcp_read_notify_handler and RegisterTCPReadNotify are callback functions. These functions will get called by

the system if you define them for the corresponding TCP event.

15.3 Using File Descriptors to Pend on Multiple Events

Once you have created a file descriptor you can use the select() function call just as you would for network or serial

file descriptors. In fact, you can pend on a mixture of them all at the same time.

15.4 Example: Circular Buffer Implementation Using File Descriptors

The following example uses file descriptors to implement a circular buffer.

/**
 The NetBurner sytem software has support for creating your own
 custom I/O device as a "file descriptor". It is encapsulated in
 the nburn\include\iointernal.h header file.

 This is a trivial example of creating a circular buffer file
 descriptor. It will create a 256 byte circular buffer that
 you can write() to and read() from. The 256 byte size makes the
 circular buffer wrap around easy - just use bytes and the
 rollover math is simple

 In any real world example of a new I/O dvice the device would
 probably be interrupt driven. For interrupts, you should
 use USER_ENTER_CRITICAL and USER_EXIT_CRITICAL to protect the
 internal data structures.

 The 6 fd status functions are interrupt safe:
 void SetDataAvail(int fd);
 void ClrDataAvail(int fd);

 void SetWriteAvail(int fd);
 void ClrWriteAvail(int fd);

 void SetHaveError(int fd);
 void ClrHaveError(int fd);
 **/
#include "predef.h"
#include <stdio.h>
#include <ctype.h>
#include <startnet.h>
#include <autoupdate.h>
#include <dhcpclient.h>
#include <smarttrap.h>
#include <taskmon.h>

NetBurner Programmers Guide

 Page 94

#include <iointernal.h>

const char * AppName = "ExtraFD Example";

static IoExpandStruct cb_ioexpand;

extern "C"
{
 void UserMain(void *pd);
}

// A circular buffer object, referred to as a "cbo"
struct CircularBufferObject
{
 OS_CRIT critical_section; // Critical section to make it task safe.
 BYTE get_pointer; // Where we get chars in the buffer
 BYTE put_pointer; // Where we put chars in the buffer
 char data_buffer[256]; // Data storage space
};

/*---
 Function to read from the circular buffer
 ---*/
int cbo_read(int fd, char *buf, int nbytes)
{
 // Get the cbo object associated with this fd
 CircularBufferObject * pCbo = (CircularBufferObject *) GetExtraData(fd);

 int number_read = 0;

 // Set up the critical section so we have exclusive access
 OSCritEnter(&pCbo->critical_section, 0);

 // If both get and put pointers point at each other, there is nothing in
 // the buffer, otherwise we can read the data.
 if (pCbo->get_pointer != pCbo->put_pointer)
 {
 // Read as long as data is availible and we have not read the max allowed
 while ((pCbo->get_pointer != pCbo->put_pointer) && (number_read < nbytes))
 {
 *buf++ = pCbo->data_buffer[pCbo->get_pointer++];
 number_read++;
 }

 if (pCbo->get_pointer == pCbo->put_pointer)
 {
 // We have read everything. Now update the status so fd functions like
 // select() will work properly
 ClrDataAvail(fd);
 }
 }// We had some data to read

 if (number_read > 0)
 {
 // We have read something so there should now be space in the write buffer
 // update status for select() function
 SetWriteAvail(fd);
 }

NetBurner Programmers Guide

 Page 95

 OSCritLeave(&pCbo->critical_section);

 return number_read;
}

/*---
 Function to write to the circular buffer
 ---*/
int cbo_write(int fd, const char *buf, int nbytes)
{
 // Get the cbo object associated with this fd
 CircularBufferObject * pCbo = (CircularBufferObject *) GetExtraData(fd);

 int number_written = 0;

 // Enter the critical section
 OSCritEnter(&pCbo->critical_section, 0);

 if ((BYTE) (pCbo->put_pointer + 1) != pCbo->get_pointer)
 {
 // We can write data while there is space and we have bytes to write
 while (((BYTE) (pCbo->put_pointer + 1) != pCbo->get_pointer) &&
 (number_written < nbytes))
 {
 pCbo->data_buffer[pCbo->put_pointer++] = *buf++;
 number_written++;
 }

 if ((BYTE) (pCbo->put_pointer + 1) == pCbo->get_pointer)
 {
 // Buffer is full, so mark the fd as full
 ClrWriteAvail(fd);
 }

 if (number_written)
 {
 // We wrote something so we have data ready to be read
 SetDataAvail(fd);
 }
 }

 OSCritLeave(&pCbo->critical_section);
 return number_written;
}

/*---
 Function to close a fd
 ---*/
int cbo_close(int fd)
{
 // Normally you would have to clean up your I/O device before closing it.
 // Here we just close the fd.
 FreeExtraFd(fd);
 return 0;
}

/*---
 Function to open the circular buffer, which returns the file
 descriptor that will be associated with the circular buffer object
 passed as the function parameter.

NetBurner Programmers Guide

 Page 96

 ---*/
int OpenCircularBuffer(CircularBufferObject *pCbo)
{
 // First initialize my circular buffer
 pCbo->get_pointer = 0;
 pCbo->put_pointer = 0;
 OSCritInit(&pCbo->critical_section);

 // Set up the I/O expand function to point at the cbo functions
 cb_ioexpand.read = cbo_read;
 cb_ioexpand.write = cbo_write;
 cb_ioexpand.close = cbo_close;

 // Get the fd for the cbo
 int fde = GetExtraFD((void *) pCbo, &cb_ioexpand);

 // Now set up the file descriptor state for our fd
 ClrDataAvail(fde); // no data to be read
 SetWriteAvail(fde); // space available for writes
 ClrHaveError(fde); // no errors yet

 return fde;
}

/*---
 UserMain
 ---*/
void UserMain(void *pd)
{
 InitializeStack();
 if (EthernetIP == 0)
 {
 GetDHCPAddress();
 }
 OSChangePrio(MAIN_PRIO);
 EnableAutoUpdate();
 EnableSmartTraps();
 EnableTaskMonitor();

 // Create the circular buffer objects. In this example we will create 2
 static struct CircularBufferObject cb1, cb2;

 // Open the buffers
 int fdcb1 = OpenCircularBuffer(&cb1);
 int fdcb2 = OpenCircularBuffer(&cb2);

 iprintf("Application started\r\n");
 while (1)
 {
 // Write to the circular buffers
 writestring(fdcb1, "Testing circular buffer #1");
 writestring(fdcb2, "Testing circular buffer #2");

 OSTimeDly(TICKS_PER_SECOND); // Delay so loop runs slow

 // Read the data out of buffer 1
 while (dataavail(fdcb1))
 {
 char buf[2];
 int rv = read(fdcb1, buf, 1);
 if (rv == 1)
 {

NetBurner Programmers Guide

 Page 97

 iprintf("[%c]", buf[0]);
 }
 }
 iprintf("\r\n");

 // Read the data out of buffer 2
 while (dataavail(fdcb2))
 {
 char buf[2];
 int rv = read(fdcb2, buf, 1);
 if (rv == 1)
 {
 iprintf("(%c)", buf[0]);
 }
 }
 iprintf("\r\n");
 }
}

NetBurner Programmers Guide

 Page 98

16 Multiple Network Interfaces

The NetBurner network devices can have multiple interfaces, both in software as multi-home, and in hardware, such

as a WiFi or second Ethernet port. Multi-home means that you can enable your NetBurner device to have more than

one IP address. For example, you could be 10.1.1.1, and 192.168.1.1.

16.1 Multiple Hardware Interfaces (Ethernet, WiFi, PPP)

You can have up to 3 network interfaces on a single NetBurner device. For example, you can have a primary

Ethernet interface, and also a WiFi interface. If you are designing your own hardware, you can also add an

additional Ethernet interface, for a total of 2 or 3. Unlike Multi-home, these additional hardware interfaces will have

their own MAC address, and can use DHCP simultaneously. To add interfaces we will use the netinterface API as

previoiusly discussed in the Change IP section of this document.

In this example we will add a WiFi interface, which is accomplished with the following API call from

\nburn\include\wifi.h:

int AddWiFiInterface(BOOL adhoc = FALSE);

In this case, the SSID and WEP key would be configured in IPSetup.

You can also set up the WiFi parameters and start the interface separately. See the include file and NNDK Users

Guide for more information.

16.1.1 WiFi Interface Example

The following example adds a WiFi interface to a NetBurner module with an existing Ethernet interface.

#include "predef.h"
#include <stdio.h>
#include <ctype.h>
#include <startnet.h>
#include <autoupdate.h>
#include <dhcpclient.h>
#include <wifi.h>
#include <netinterface.h>
#include <taskmon.h>

extern "C"
{
 void UserMain(void *pd);
}

void ShowArp();

const char *AppName = "wifi_infrastructure";
int nwifi_if;

void DisplayMenu()
{
 iprintf("--- Main Menu ---\r\n");
 iprintf("A - Show ARP Cache\r\n");

NetBurner Programmers Guide

 Page 99

 iprintf("C - Show Counters\r\n");
 iprintf("I - Show WiFi ID\r\n");
 iprintf("W - Show WiFi networks availible\r\n");
 iprintf("P <IP Address> - Ping\r\n");
 iprintf("? - Display Menu\r\n");
}

/*---
 This function pings the address given in buffer
 --*/
void ProcessPing(char *buffer)
{
 IPADDR addr_to_ping;
 char *cp = buffer;

 // Trim leading white space
 while ((*cp) && (isspace(*cp)))
 {
 cp++;
 }

 // Get the address or use the default
 if (cp[0])
 {
 addr_to_ping = AsciiToIp(cp);
 }
 else
 {
 addr_to_ping = EthernetIpGate;
 }

 iprintf("\nPinging :");
 ShowIP(addr_to_ping);
 iprintf("\n");

 int rv = PingViaInterface(addr_to_ping, 1/*Id */, 1 /*Seq */, 100/*Max Ticks*/,
nwifi_if);
 if (rv == -1)
 {
 iprintf(" Failed! \n");
 }
 else
 {
 iprintf(" Response Took %d ticks\n", rv);
 }
}

/*---
 Handle commands with a trivially simple command dispatcher
 --*/
void ProcessCommand(char *buffer)
{
 switch (toupper(buffer[0]))
 {
 case 'A':
 ShowArp(); break;
 case 'C':
 ShowCounters(); break;

 case 'I':
 char SSID_Test[40];
 if (GetCurrentSSID(SSID_Test, 40) > 0)
 {

NetBurner Programmers Guide

 Page 100

 iprintf("Current SSID=[%s]\r\n", SSID_Test);
 }
 else
 {
 iprintf("Failed to read SSID \r\n");
 }

 if (WiFiConnected())
 {
 iprintf("Currently connected\r\n");
 }
 else
 {
 iprintf("Not currently connected\r\n");
 }
 break;
 case 'W':
 WiFiShowScanForAP();
 break;
 case 'P':
 ProcessPing(buffer + 1);
 break;
 case '?':
 DisplayMenu(); break;

 default:
 break;
 } //Switch
}

void UserMain(void *pd)
{
 InitializeStack();
 if (EthernetIP == 0)
 {
 GetDHCPAddress();
 }

 nwifi_if = AddWiFiInterface();
 if (InterfaceIP(nwifi_if) == 0)
 {
 GetDHCPAddress(nwifi_if);
 }
 OSChangePrio(MAIN_PRIO);
 EnableAutoUpdate();
 StartHTTP();
 EnableTaskMonitor();

 iprintf("Application started\n");
 DisplayMenu();
 while (1)
 {
 char buffer[255];
 buffer[0] = 0;

 // Remove blank lines from \r\n conversions and ignore whitespace
 while (buffer[0] == 0)
 {
 gets(buffer);
 }

 ProcessCommand(buffer);
 }

NetBurner Programmers Guide

 Page 101

16.2 Multi-Home

Multi-home means that your device can respond to more then one IP address. However, your device has only one

MAC address, so there are some limitations, such as the fact DHCP can only be used on one of your interfaces since

a separate MAC address is required for each DHCP client.

To add Multi-Home functionality to your application:

1. Uncomment the “#define MULTIHOME” in \nburn\include\predef.h. Multi-home is disabled by default at

a system level so that non-multi-home applications do not incur the overhead of the Multi-home

functionality.

2. Add the following includes in your application:

 #include <multihome.h>

 #include <netinterface.h>

3. Use the API function:

 int AddInterface(IPADDR addr, IPADDR mask, IPADDR gateway, int root_if = 0);

to add additional interfaces. You must specify the first 3 parameters.

4. Select “Rebuild All” from the DevCpp build menu so the system library is rebuilt. Rebuild All only needs

to be called when you make a change to a system file. Any changes to your project only require a project

build.

16.2.1 Multi-Home Example Program

/**
 Multihome application example.

 This program will demonstrate how to implement both a DHCP address
 and static IP addres using the Multihome functionality of the
 NetBurner TCP/IP Stack. The NetBurner device will try to obtain
 a dynamic IP address from a DHCP Server for the first Network
 Interface, and set a static IP address for the second Network Interface.
 The end result is that the NetBurner device will respond to either
 IP address. The example will print debug information out the debug
 serial port, and display the IP address information on a web page
 that can be accessed from either IP address.

 To enable multihome capability, you must uncomment the MULTIHOME
 definition in the include file \nburn\include\predef.h, and rebuild
 the system files. If using the IDE, select Build->Rebuild All, If
 using the command line, go to \nburn\system and run "make clean".

**/
#include "predef.h"
#include <stdio.h>
#include <ctype.h>
#include <startnet.h>
#include <autoupdate.h>
#include <dhcpclient.h>
#include <tcp.h>
#include <taskmon.h>

NetBurner Programmers Guide

 Page 102

#include <multihome.h>
#include <netinterface.h>

// Check for Multihome options and display compiler warnings if not enabled
#ifndef MULTIHOME
#error This example requires that MULTIHOME be uncommented
#error in the header file nburn\include\predef.h, and that the
#error system files be rebuilt.
#endif

// App name for IPSetup
const char * AppName = "Multihome Example";

extern "C"
{
 void UserMain(void *pd);
 void WebDisplayIpSettings(int sock, PCSTR url);
}

// Global variables
InterfaceBlock *DhcpIb, *StaticIb;

// External function
void ShowIPOnFd(int fd, IPADDR ia);

/*---
 Display IP setting on web page
 ---*/
void WebDisplayIpSettings(int sock, PCSTR url)
{
 // Show header message indicating source and destination
 writestring(sock, "Received request from ");
 ShowIPOnFd(sock, GetSocketRemoteAddr(sock));
 writestring(sock, " on IP address: ");
 ShowIPOnFd(sock, GetSocketLocalAddr(sock));
 writestring(sock, "\r\n

");

 // Show both IP address for multihome
 writestring(sock, "Valid IP Address for this device:
\r\n");
 ShowIPOnFd(sock, DhcpIb->netIP);
 writestring(sock, "
\r\n");
 ShowIPOnFd(sock, StaticIb->netIP);
 writestring(sock, "
\r\n");
}

/*---
 UserMain
 ---*/
void UserMain(void *pd)
{
 InitializeStack(); // Init TCP/IP Stack

 /* Get a DHCP address if the stored IP Address in flash memory is
 set to 0.0.0.0 (set via IPSetup or serial interface).
 You may want to add a check for the return value from this function
 See the function definition in \nburn\include\dhcpclient.h
 */
 GetDHCPAddressIfNecessary();

 OSChangePrio(MAIN_PRIO); // Change priority

NetBurner Programmers Guide

 Page 103

 EnableAutoUpdate(); // Enable the ability to update code over the network
 StartHTTP(); // Start the web serrver
 EnableTaskMonitor(); // Enable the Task scan utility

 // Add the multihome interface at fixed ip address
 AddInterface(AsciiToIp("10.1.1.240"), AsciiToIp("255.255.255.0"), 0);

 int DhcpInterface = GetFirstInterface(); // Get first interface identifier
 DhcpIb = GetInterFaceBlock(DhcpInterface); // Get interface data
 iprintf("DHCP IP Address: "); ShowIP(DhcpIb->netIP); iprintf("\r\n");

 int StaticInterface = GetnextInterface(DhcpInterface); // Get next interface

 identifier
 StaticIb = GetInterFaceBlock(StaticInterface); // Get interface data
 iprintf("Static IP Address: "); ShowIP(StaticIb->netIP); iprintf("\r\n");

 while (1)
 {
 OSTimeDly(TICKS_PER_SECOND * 5);
 }
}

NetBurner Programmers Guide

 Page 104

17 Using the ColdFire Processor On-Chip SRAM on the NetBurner
Platform

17.1 Introduction

In addition to the SDRAM on NetBurner modules, the ColdFire processor on your NetBurner device may have on-

chip SRAM available for your application to use. For example, the 5272 has 4k, the 5282 has 64k and the 5270 has

64k bytes SRAM. The primary reason to use the on-chip SRAM is that it has single-cycle access time.

IMPORTANT: The NetBurner system uses the first 400 bytes of the SRAM for the application vector table.

Your application must not write to that space.

Since the SRAM is used by the NetBurner system, it is already initialized and ready to use.

17.2 How to Use The SRAM in Your Application

To use the SRAM in your application, you need a mechanism to locate your variables in the SRAM memory map

space, below the 0x400 bytes used by the vector table. There are two methods to accomplish this task:

1. Modify the \nburn\<platform>\lib\sys.ld file to add a SRAM tag. This is how the sim structure is

implemented in the \nburn\<platform>\system\simXXXX.h header file, where <platform> is your

NetBurner platform name (e.g. MOD5282), and XXXX is the ColdFire processor number (e.g.

(sim5282.h). The downside of this method is that you will need to modify the sys.ld file any time you

install a new tools revision, since the tool installation will overwrite sys.ld.

2. You can create a pointer to a structure and access your variables with a simple dereference.

The process is similar no matter which option you choose:

1. Open the NetBurner platform help document located at \nburn\docs\platform\<platform>.chm, where the

last <platform> is your NetBurner platform type. For example: . \nburn\docs\platform\MOD5282.chm.

Find the memory map section under Hardware Documentation, and make note of the SRAM location. At

the time this document was written, the SRAM memory map location for the Mod5282 was: 0x02000000

to 0x027FFFFF. Be certain to verify the address for your application.

2. Determine the start of usable SRAM space – remember, the first 0x400 bytes are used for vectors. In the

above example, the starting SRAM address would be 0x02000000 + 0x400.

3. All variables must be accessed through a structure. You can create a structure like the following:

typedef struct
{
 int i;
 long l;
 char str[100];
} sram_struct __attribute__((packed));

The next step depends on which method you choose to locate the structure in SRAM: sys.ld or the pointer to a

structure method.

17.3 OPTION 1: MODIFYING THE SYS.LD LINKER SCRIPT

NetBurner Programmers Guide

 Page 105

The linker script is located at: \nburn\<platform>\system\sys.ld. An example script for the Mod5282 is shown below

(Note: the sram_base may be included in future tools releases, so verify it is not there before adding a new one):

vector_base =0x20000000;
sim = 0x40000000;
flash_mirror = 0x44000000;
gConfigRec = 0xffc04000;
UserParamBase = 0xffc06000;
_RESET_ADDR = 0xffc00008;

You can add the sram_base to this script as follows:

vector_base = 0x20000000;
sim = 0x40000000;
flash_mirror = 0x44000000;
gConfigRec = 0xffc04000;
UserParamBase = 0xffc06000;
_RESET_ADDR = 0xffc00008;
sram_base = 0x0x20000400;

You may notice that the sram_base is 0x400 larger than the vector_base value.

In your application, you declare the structure as shown in the previous section and add an extern directive:

typedef struct
{

 int i;
 long l;
 char str[100];

} sram_struct __attribute__((packed));

extern sram_struct sram;

Now you can access the variables with the following syntax:

sram.i = 1
strcpy(sram.str, “Hello World”);

It is the Programmer’s responsibility to ensure the structure fits within the available physical SRAM space.

17.4 OPTION 2: CREATING A POINTER TO A STRUCTURE

In your application, you declare the structure as shown in the previous section, then declare a pointer to the SRAM

base address plus 0x400.

/*---
 SRAM Pointer Example
 --*/
#include "predef.h"
#include <stdio.h>
#include <ctype.h>
#include <startnet.h>
#include <autoupdate.h>
#include <dhcpclient.h>
#include <string.h>

NetBurner Programmers Guide

 Page 106

// Instruct the C++ compiler not to mangle the function name
extern "C"
{
 void UserMain(void * pd);
}

// Name for development tools to identify this application
const char * AppName="SRAMPointer";

#define SRAM_BASE (0x20000400) // SDRAM Base Address

typedef struct
{
 int i __attribute__ ((packed));
 long l __attribute__ ((packed));
 char str[100] __attribute__ ((packed));
} sram_struct ;

sram_struct *pSram = (sram_struct *)SRAM_BASE; // Set pointer address

// Main task
void UserMain(void * pd)
{
 InitializeStack();
 if (EthernetIP==0)GetDHCPAddress();
 OSChangePrio(MAIN_PRIO);
 EnableAutoUpdate();

 iprintf("Application started\r\n");

 // It is the Programmer's responsibility to ensure the structure fits
 // within the available physical SRAM space. pSram->i = 1234;
 strcpy(pSram->str, "Hello World");

 iprintf("pSram->str: %s\r\n", pSram->str);
 iprintf("pSram->i: %d\r\n", pSram->i);

 while (1)
 {
 OSTimeDly(TICKS_PER_SECOND);
 }
}

NetBurner Programmers Guide

 Page 107

18 Time Functions

Embedded systems have a number of options to set and access time. Your NetBurner kit will enable you to set the

time manually, through a real-time clock (if available), and using a network connection and the Network Time

Protocol (NTP).

18.1 Standard C Time Functions

The following standard C time structures and functions are supported by the development tools and libraries. To use

these functions you will need to include both time.h and nbtime.h in your application.

The tm structure is used to store time and date information:

typedef struct tm {
 int tm_hour; // hour (0 - 23)
 int tm_isdst; // daylight saving time enabled/disabled
 int tm_mday; // day of month (1 - 31)
 int tm_min; // minutes (0 - 59)
 int tm_mon; // month (0 - 11 : 0 = January)
 int tm_sec; // seconds (0 - 59)
 int tm_wday; // Day of week (0 - 6 : 0 = Sunday)
 int tm_yday; // Day of year (0 - 365)
 int tm_year; // Year less 1900
}

The time_t variable type is a DWORD value.

The time functions in nbtime.h are:

time_t time(time_t *time) Get current calendar time as single number of type time_t

set_time(time_t time) Sets the system time to values in time_t structure

The functions in time.h are:

char *asctime(const struct tm *time) Convert tm structure to string

ctime() Convert time_t value to string

difftime() Return difference between two times

gmtime() Convert time_t value to tm structure as UTC time

localtime() Convert time_t value to tm structure as local time

mktime() Convert tm structure to time_t value

strftime() Flexible calendar time formatter

NetBurner Programmers Guide

 Page 108

19 The Template Program – Command Line Mode

You have two options for code development using the NetBurner Tools. The first is the IDE discussed earlier. The

second is using the make utility from a command prompt. Typical reasons for choosing the command prompt mode

are that some developers simple prefer this method, or you may have a favorite editor/IDE that you prefer over the

NetBurner IDE. Most editors can invoke an external compiler to build the project.

This section will detail how to write, compile, and download a program using the command line tools. The details of

the make utility “makefile” will also be covered. Traditionally called the “Hello World” program, our “Template

Program” will specify a minimal code base from which you can write your future applications. The objective of this

template program is to print the characters “Hello World” out the debug port of your NetBurner device. In addition,

this template program will enable network services so that it can be downloaded over a network connection instead

of through a serial port or a BDM (Background Debug Mode) port.

Before

starting to

write

your

applicatio

n, you

must

create a

project

directory.

You

project directory can be located anywhere on your hard drive. For this example:

1. Create a directory with a path of c:\netburner

2. Create a subdirectory with the path of c:\netburner\template

Now, lets look at the template program. First, you will need to create a file (using your editor of choice) called

"main.cpp” in the c:\netburner\template directory. Simply copy and paste the code below (in section 5.1), and save

this file (as main.cpp) in the c:\netburner\template directory.

 Using C++ File Extensions

Throughout this manual, we will always use the .cpp extension to indicate the source files are

C++. This is done to take advantage of the benefits of the C++ compiler as well as support those

programmers using C++. Note: You do not need to know any C++ to use the NetBurner

Development Kit, and the majority of examples in this guide do not use C++.

The Debug Monitor

The NetBurner device contains a flash memory boot sector loaded with a boot program called

the “Debug Monitor”. This program is designed to be very small and takes up less than 16

Kbytes of memory space. Note: The Debug Monitor is not designed to provide full TCP network

communications, although it does support the TFTP protocol.

The full TCP/IP Stack functionality is compiled as part of your application. If you download an

application that immediately crashes when it boots, full network services will not be available. In

this case, the NetBurner Debug Monitor comes to the rescue. Once in the Debug Monitor (at the

NB> prompt), you can download a working application through the serial debug port. See the

section on serial downloads using the Debug Monitor for more information.

NetBurner Programmers Guide

 Page 109

19.1 Template Program Source Code

/*--- 1
 Description: The Template Program 2
 Filename: main.cpp 3
 ---*/ 4

#include "predef.h" 5
#include <stdio.h> 6
#include <startnet.h> 7
#include <autoupdate.h> 8

 9
extern "C" { 10
void UserMain(void * pd); 11
} 12

 13
void UserMain(void * pd) 14
{ 15

InitializeStack(); 16
EnableAutoupdate(); 17
OSChangePrio(MAIN_PRIO); 18
 19
while (1) 20
{ 21
 iprintf("Hello World\n"); 22
 OSTimeDly(TICKS_PER_SECOND * 1); 23
} 24

} 25

The above program is a fully functional network application in just a few lines of code! The only

application specific code is on lines 20 and 21; the remainder of the program is what we will refer to as the

“Template Program”. Although the purpose of our application is to print “Hello World” out the debug

serial port, adding the network support will allow fast code development using the NetBurner “make load”

build command, and also allow network configuration using the NetBurner IPSetup utility (i.e. IPSetup

tool). For additional information on "make load" and AutoUpdate, please refer to your NNDK User

Manual. From Windows: Start � Programs � Netburner NNDK � NNDK Users Manual.

Lines 5 – 9 specify the include files:

• predef.h defines constants for debugging (covered in the Debugging chapter) and version info

• stdio.h defines standard input and output functions

• startnet.h defines the function calls necessary to start the TCP/IP Stack and HTTP

• autoupdate.h defines the functions necessary to download firmware updates over a network

connection

Line 10 tells the C++ compiler to declare the UserMain() function as a “C” type function call. Note: This

is done to allow straight C programming as opposed to C++.

Line 14 declares the UserMain() function. The parameter passed to UserMain() is a void pointer to some

type of data. This is a feature of the uC/OS RTOS. Note: This example does not use the passed parameter.

Line 16 initializes the TCP/IP stack.

Line 17 enables the code development AutoUpdate feature using “make load”

Line 18 sets the task priority to the defined value of MAIN_PRIO, which defaults to 50. More information

on the RTOS will be covered in the RTOS section of your NNDK User Manual .(From Windows: Start �

Programs � Netburner NNDK � NNDK Users Manual.)

NetBurner Programmers Guide

 Page 110

Lines 20 - 24 create an infinite loop that prints the message “Hello World” to stdout (which defaults to the

debug port of your NetBurner device) once per second.

Line 21 is a while loop that loops forever. Note: Your application should never return from UserMain();

that would mean your application has lost control of the system.

19.2 Compiling and Running the Application - Overview

Now that we have the application source code file, we need to compile it into a code image and download it

to your NetBurner device. There are four methods to download your applications:

1. Through the serial port

2. Through a network connection using AutoUpdate (preferred method)

3. Through a network connection using TFTP

4. Through a network connection using FTP

In this example, we will use the AutoUpdate method. In order to run your application on your NetBurner

device you will need to do the following:

1. Create a “makefile”, which is used to compile and link your source code

2. Download your code to your NetBurner device

3. Burn this code into the Flash memory

4. Reboot your NetBurner device

Thankfully, this is a very simple process that can be accomplished with a single build command. The first

step is to create a makefile, which is used to tell the compiler how to compile the source code. Once we

create the first makefile, it can be used as a template for your future projects. For additional information,

please refer to your User Manual. From Windows: Start � Programs � Netburner NNDK � NNDK

Users Manual.

19.3 Creating a makefile

Below is the makefile for the template example application. The file name is “makefile” with no extension.

Simply copy and paste the code below (using your editor of choice), and save this file (as makefile) in the

c:\netburner\template directory. Note: The makefile should always be located in the same directory as your

application source code. The makefile below will work for applications with or without HTML support as

described in the comments. Note: A comment in C++ is signified by the ‘#’ character at the beginning of a

line.

#Build NAME.x and save it as $(NBROOT)/bin/NAME.x 1
NAME = template 2
CXXSRCS := main.cpp 3
 4
#Uncomment and modify these lines if you have C or S files. 5
#CSRCS := foo.c 6
#ASRCS := foo.s 7
#CREATEDTARGS := htmldata.cpp 8
 9
#Include the file that does all of the automagic work! 10
include $(NBROOT)/make/main.mak 11
 12
#htmldata.cpp : $(wildcard html/*.*) 13
#comphtml html -ohtmldata.cpp 14

NetBurner Programmers Guide

 Page 111

Once you have created a single makefile, you can copy it to the project directories of any applications you

create in the future. Note: If you application does not use HTML, the only lines you will need to change

will be the name of the application (line 2) and the list of source code files (line 3). If your application uses

the Web Server and HTML, simply uncomment lines 8, 13 and 14 - you do not need to modify these lines.

Line 2 specifies the name of the application image file that will be built. Ours is called “template”. Note:

there is not a semicolon after the ‘=’ here.

Line 3 specifies the C++ source code files that need to be compiled. We only have one file in this example.

If your project has more than one source code file, you would just add them to this line separated by spaces.

Lines 6 and 7 specify C and S (assembly language) source files.

Line 8 is used for applications that use HTML and the web server. You do not need to change the file

name.

Line 11 calls additional make files that are part of your NetBurner tool set.

Lines 13 and 14 are used to process code used by the Web Server such as HTML. Note: Do not

uncomment these lines unless you have a directory named “html” under your project directory.

19.4 Compiling the Application

At this point you should have a directory called c:\netburner\template that contains two files: “main.cpp”

and “makefile”. First, we will run “make” to verify the application compiles correctly. Once all errors have

been corrected, we will download this application to your NetBurner device. To compile the source code

and create the application image:

1. If you have not done so already, open a command prompt and move to the c:\netburner\template

directory (cd c:\netburner\template). If you did not select the automatic variable configuration

during the installation process, you must run c:\nburn\setenv.bat manually. A simple method to

determine if your system is configured correctly is to type “set” at the command prompt (then

press the "Enter" key). Look for an environment variable called “NBROOT”. If NBROOT is

defined, then you should be ready to go. If NBROOT is not defined, just type "setenv" at the

command prompt (in the c:\nburn directory) and press the "Enter" key. Now, if you type “set” at

the command prompt (and press the "Enter" key), you will see that NBROOT is defined (i.e.

NBROOT=/nburn).

2. At the command prompt (in the c:\netburner\template directory), type “make” and press the

"Enter" key. This will invoke the compiler to compile and link your code, and build the code

image. If you have any coding or syntax errors, correct them now and continue to run make until

your code compiles correctly.

When your code compiles correctly, two files are created: template.s19 and template_APP.s19. The

template.s19 file is memory mapped to run from RAM, while template_APP.s19 is memory mapped to run

from Flash memory. Note: All compiled images will be located in the c:\nburn\bin directory. This guide

will focus on Flash downloads. Please refer to the section on Downloading to RAM in your User Manual

for more information on downloading applications to RAM. (From Windows: Start � Programs �

NetBurner NNDK � NNDK Users Manual.)

19.5 Template Program Setup

Before running our program, lets make sure your hardware is set up correctly. To run the Template

program, you will need your hardware to be set up as shown below:

NetBurner Programmers Guide

 Page 112

The Ethernet connection should be between your host computer and your NetBurner device’s RJ-45

connector. The RS-232 connection should be made between your host computer's Serial port and the Debug

Serial port of your NetBurner device. The Serial port connection on the NetBurner device will vary with

each hardware platform, but it should be a DB9 connector on the processor board itself, or on a separate

Adapter board or Carrier board supplied with your kit. Please refer to your Quick Start Guide for additional

details on how to "make" and download files to your NetBurner device.

19.5.1 Testing the RS-232 Debug Connection

You can determine if you are properly connected to the debug port with the following test:

1. Start the dumb terminal program MTTTY, which is included in your NetBurner tools. (From

Windows: Start � Programs � NetBurner NNDK � Mttty Serial Terminal. From the command

line type: C:\Nburn\pcbin\mttty and then press the "Enter" key.) Set the baud rate to 115,200 and

make sure to click on the “Connect” button in the MTTTY window.

2. Power on or reset your NetBurner device. The MTTTY screen should display a sign-on message

similar to “Waiting to boot……….”. If you see this message, then you are connected correctly.

For additional information, please refer to your User Manual. From Windows: Start � Programs �

NetBurner NNDK � NNDK Users Manual.

Host

Computer

NetBurner

Hardware

Ethernet

RS-232

NetBurner Programmers Guide

 Page 113

20 Software Licensing

The Software included in this development kit is licensed to run only on NetBurner provided hardware. If

your application involves manufacturing your own hardware, please contact NetBurner Sales for details on

a royalty-free software license. The following sections describe the agreements presented during

installation of the development kit.

20.1 NetBurner License Agreement

Notice to Developer: This is a contract. By installing the NetBurner Tools you accept all the terms and

conditions of the “NetBurner Tools Software” and “NetBurner Embedded Software” Agreements. If you do

not agree with the terms and conditions of these agreements, return this development kit and all

components to NetBurner.

1. All embedded software and source code provided in this Network development kit is subject to one of

four possible licenses:

• The NetBurner Tools License (most restrictive)

• The NetBurner Embedded Software License

• The GNU Public License

• The Newlib License (least restrictive)

2. The GNU development executables provided in the nburn\GCC-M68k directory branch are subject to

the GNU public license. This license can be found in nburn\docs\GNULicense.txt file.

3. The runtime libraries and include files provided in the nburn\GCC-M68k directory branch are subject

to the Newlib license. This license can be found in nburn\docs\NetlibLicense.txt file.

4. The compcode application provided in the nburn\pctools\compcode directory is subject to the GNU

public license. This license can be found in the nburn\docs\GNULicense.txt file.

5. The other programs in the \nburn\pctools directory are subject to the NetBurner Tools License

provided below.

6. All other provided source code and libraries are subject to the NetBurner Embedded Software License

provided below.

20.2 The NetBurner Tools Software License

Copyright © 1998 - 2004 NetBurner, Inc., All Rights Reserved.

Permission is hereby granted to purchasers of the NetBurner Network Development Kit to use these

programs on one computer, and only to support the development of embedded applications that will run on

NetBurner provided hardware. No other rights to use this program or its derivatives, in part or in whole,

are granted. It may be possible to license this or other NetBurner software for use on non-NetBurner

hardware. Please contact sales@netburner.com for more information.

NetBurner makes no representation or warranties with respect to the performance of this computer

program, and specifically disclaims any responsibility for any damages, special or consequential, connected

with the use of this program.

NetBurner Programmers Guide

 Page 114

20.3 The NetBurner Embedded Software License

Copyright © 1998 - 2004 NetBurner, All Rights Reserved

Permission is hereby granted to purchasers of NetBurner hardware to use or modify this computer program

for any use as long as the resultant program is only executed on NetBurner provided hardware. No other

rights to use this program or its derivatives, in part or in whole, are granted. It may be possible to license

this or other NetBurner software for use on non-NetBurner hardware. Please contact sales@netnurner.com

for more information.

NetBurner makes no representation or warranties with respect to the performance of this computer

program, and specifically disclaims any responsibility for any damages, special or consequential, connected

with the use of this program.

21 NetBurner Contact Information

Mailing Address:

NetBurner, Inc.

5405 Morehouse Drive

Suite 350

San Diego, CA 92121

858.558.0293 phone

858.558.8549 fax

E-Mail:

sales@netburner.com

support@netburner.com

Main Web Site:

http://www.netburner.com

Support and Product Registration Web Site:

http://support.netburner.com

22 NetBurner Support Information

Each NetBurner Network Development kit includes 90 days of email support. To access support resources

and to register your product, please go to http://support.netburner.com, or you can send an E-Mail to

support@netburner.com. Note: You must register your product before you can request support. You will

need to include the software release number (on your NetBurner Tools CD), the hardware Ethernet address

and the hardware revision number of your NetBurner board. The NetBurner web site is a good source for

answers to frequently asked questions and design examples. Annual support and software maintenance

agreements can also be purchased on the NetBurner web site at http://www.netburner.com.

