
 1Prepared by Kyle Crowder, Western Washington University, and Patty Glynn, University of Washington. November 6, 2000, updated 10/28/02.

Page 1 of 8

AN INTRODUCTION TO SPSS FOR THE UNIX AND PC1

SPSS is a packaged statistical program, like SAS, that can be extremely useful to social scientists. This document is
designed as in introduction to SPSS, and will not substitute for the SPSS manuals. If using the UNIX, we assume that you are
somewhat familiar with the UNIX and editing files. With SPSS PC, the SPSS editor can be used.

In SPSS PC, pointing and clicking can be used for many commands. However, this document will focus on creating
syntax files. The point and click method can be used in combination with a syntax file. After pointing and clicking to tell SPSS
what you want to do, instead of clicking on OK, click on Paste. This will put the command into a syntax window.

If you are using a graphical interface on a UNIX, SPSS can be run in an interactive mode that is very similar to SPSS PC.
Or, you can create batch files and submit them. In interactive SPSS, periods are very important. Each command must end in a
period. Failure to put a period where it belongs, or putting one where it does not belong will result in an error. For SPSS in the
UNIX, putting a period in a place where one belongs for SPSS PC does not cause an error, but is not required. Periods indicate
that a command has ended in SPSS PC, but SPSS for the UNIX uses SPACING. The first column is reserved for the beginning of
commands. It will cause and error f the second line of a command begins in column 1. In the following, I will put periods where
they would be required for SPSS PC, and will reserve column 1 for the beginning of commands as SPSS for the UNIX requires. I
will also use file definitions that would be used for a PC. If using a UNIX, remember that file definitions are case specific (upper
and lower case make a difference).

SPSS PC, by default, provides very little information in the log file. Please see:
http://staff.washington.edu/glynn/config_spss.pdf for information about how to configure SPSS so that it will give you more
information.

I. CREATING AND RUNNING AN SPSS PROGRAM on the UNIX

Please see the document “Using SPSS on the UNIX” http://staff.washington.edu/glynn/unixspss.pdf for information about
running SPSS on the UNIX.

III. CREATING AN SPSS SYSTEMS FILE, READING AND DEFINING DATA

The first step toward data analysis is to read data. Data can come in different forms. In many cases, you will start out by
reading a raw data file. For example:

1 35 33 44 ARIZONA 45
3 44 33 55 MAINE -9
4 32 33 44 OREGON 23
5 34 44 33 GEORGIA 34
2 32 77 33 WASHINGTON -9

In the above example, each line, or row, represents a case. There are six variables for each case. SPSS reads raw data
with DATA LIST statement. The DATA LIST statement provides SPSS with information about the variables it is going to read.
Variable names can be up to eight characters long. The above data could be read as free-field or fixed-field. Data can be read as
free- field if there is at least one space (sometimes two) between each variable, and missing data are not represented with blanks.

The above data set could be read with the following free-field data list:

DATA LIST FREE FILE='c:\test\states.dat' RECORDS = 1 /
 ID V1 TO V3 * NAME (A10) V4 .

When SPSS encounters a space, it realizes that it has come to the end of a variable, and goes on to read the next in the
variable list. Unless SPSS is told otherwise, SPSS expects numbers. NAME is a character variable. You tell SPSS this with an
"A" in parentheses. The "10" specifies the longest string for the variable called "NAME". The (A10) tells SPSS to allow up to 10
spaces for the character variable.

The above data could also be read as fixed-field with the following data list statement, which assumes that the data are
stored on minidisk A in a file with the filename of TEST and the filetype of DATA.

DATA LIST FILE='c:\test\states.dat' FIXED RECORDS = 1 /
 ID 1-2 V1 9-10 V2 18-19 V3 27-28 NAME 33-45 (A) V4 46-47 .

Page 2 of 8

This tells SPSS that it will find the information about ID in columns 1 and 2, about V1 in columns 9-10, and so on. With
fixed-field input, missing data can be represented as blanks, and spaces can be embedded in character values.

Most older data sets are fixed-field without spaces between values, requiring less space to store the data.

Before current technology, data and programs were stored on cards with holes punched in them. Cards could only hold 80
columns of data. As a hold-over from that time, each row of data is sometimes referred to as a card. Another hold-over from that
time is that data are often stored with a width of just 80 columns. And, SPSS programs cannot have instructions beyond the 80th
column.

Large data sets often have more than one record of data for each case or observation. SPSS needs more information
when reading these data sets. The data list statement must specify the card number for each variable being read, and must tell
SPSS how many cards there are for each case. For example, the ICPSR data set, Demographic Characteristics of the Population
of the U.S., 1930-1950, which has information about population and migration for counties and states, is a fixed format file (each
variable is in the same location for each of the cases) and has 55 records for each case. Following is part of the data list statement
that reads that data set.

DATA LIST FILE='c:\DEM1940.DATA' FIXED RECORDS = 55
/1 M001 3-4 M002 5-8 M003 9-12
/2 M011 13-19 M012 20-26 M013 27-33 M014 34-40 M015 41-47
 M016 48-54 M017 55-61 M018 62-68 M019 69-75
/4 M029 13-19 M030 20-26 M031 27-33 M032 34-40 M033 41-47
 M034 48-54 M035 55-61 M036 62-68 M037 69-75

 /54 M479 13-19 M480 20-26 M481 27-33 M482 34-39 (2)
 M483 40-45 (2) M484 46-51 (2) M485 52-57 (2)
 M486 58-63 (2) M487 64-69 (2) M488 70-75 (2)
/55 .

In the above example, there are 55 records for each case, but variables are being read from some of the cards. The "RECORDS =
55" tells SPSS that there are 55 cards for each case. You must tell SPSS how many cards there are per case, or the data will not
be read properly.

Notice the "(2)" in the part of the data list statement that defines card 54. If there are not embedded decimals in the data,
and with many data sets there are not, you must tell SPSS how many digits should be to the right of the decimal. "M486 58-63
(2)" tells SPSS to read the variable M486 in columns 58 to 63 (of card 54) and that 2 digits should be to the right of the decimal.
So, the digits "123456" would be read as "1234.56".

SPSS uses asterisks for comments. A comment is a non-executable statement that you can use to document your
programs. Comments make your programs more readable, and will help you remember what your programs are doing, and why.

As mentioned above, variable names cannot be more than 8 characters long. It is hard to get a meaningful variable name
in 8 letters. However, SPSS allows you to assign labels of up to 40 characters. You do this with a VARIABLE LABEL statement.
For example, the following VARIABLE LABEL statement goes with the demographic data set mentioned above. Notice that the
labels are enclosed in single quotes. Regular quotes can also be used. An error will occur if there is an embedded single quote in
a variable label, and single quotes are used to enclose the label (example: ‘State’s Name’). In this case, double quotes must be
used (“State’s Name”), or the single quote inside the label must be removed.

VARIABLE LABEL
 M001 'M001=ICPR STATE CODE'

M002 'M002=UNIQUE ID' M003 'M003=SEQUENTIAL ID'
M004 'M004=STATE NAME' M005 'M005=COUNTY NAME'
M006 'M006=930-940 CNTY BOUNDARIES'
M007 'M007=940-950 CNTY BOUNDARIES'
M008 'M008=SPECIAL COUNTY INFORMATN'
M009 'M009=NEGATIVE ESTIMATE INDCTR'
M010 'M010=930 TTL MALES, ALL AGES'
M011 'M011=930 TTL MALES, <5' M012 'M012= 930 TTL MALES, 5-9'
M013 'M013=930 TTL MALES, 10-14' M014 'M014=930 TTL MALES, 15-19'
M015 'M015=930 TTL MALES, 20-24' M016 'M016=930 TTL MALES, 25-29'
M017 'M017=930 TTL MALES, 30-34' M018 'M018=930 TTL MALES, 35-44' .

IV. TRANSFORMING DATA

Page 3 of 8

Now that you know how to read raw data, you need to know what you can do with it. We will use the demographic data set
as an example.

In many data sets there are codes for missing data. For example, in the demographic data set described above, 999999 is
the missing value for many variables. It is very important that you tell SPSS that these values mean missing data. Missing data
are not used in computing means, sums, regressions, etc. Failing to define values as missing can result in wrong answers to the
questions you ask.

MISSING VALUES
M001 M002 M003 M011 M012 M013 M014 M015 M016 (999999) .

Suppose you want to know the percent of males that are 20 to 29 in each county. You could create that variable with the
following statements.

COMPUTE MALE2029=((M015+M016)/M010)*100 .
VARIABLE LABEL MALE2029 '% OF MALES THAT ARE AGED 20-29' .

SPSS also has a SUM function. The statement “COMPUTE MALE2029=(SUM(M015,M016)/M010)*100 . ” could also be
used. But, if there is missing data for M015 or M016, the results you get using a plus sign and the SUM function may not be the
same. With the SUM function, SPSS will give you a non-missing answer if any of the values in the parentheses have non-missing
values. However, using the plus sign, SPSS will give you a non-missing answer only if all of the variables added have non-missing
values. This can be a very important difference. In this case, we would want to use the plus sign. Otherwise, we would have
inaccurately low values for counties that were missing information for either M015 or M016.

SPSS has many useful functions available for both numbers and characters. Look in an SPSS manual for information
about others.

DO REPEAT loops can be very useful in creating new variables, as well as transforming old ones. The following
statements will calculate what percent of the population that each age group comprises, and assign the values to new variables
called P011 to P029.

COMPUTE TOTPOP = M010 .
DO REPEAT

A = M011 TO M029 /
B = P011 TO P029 .

COMPUTE B =(A / TOTPOP)*100 .
END REPEAT .

The DO REPEAT loop processes both list of variables (arrays). When it is working with M011, it will work with P011, when
it is working with M012, it will work with P012, etc. So, without typing in a cumbersome and lengthy set of COMPUTE statements,
the DO REPEAT commands above define the following variables: P011=(M011 / TOTPOP)*100, P012=(M012 / TOTPOP)*100,
and so on until P029=(M029 / TOTPOP)*100. When using a DO REPEAT with two lists of variables, the order of the
variables is critical. If the variables are not listed in the same order, the results will not be correct. If the variables in your
file are not in the order you want to process them in, you can list each variable. (For example: A = V1 V2 V3 V4). (If you do
not know the order of your variables, you can find out by using a “display labels” command.)

V. CREATING AND ACCESSING PERMANENT SPSS SYSTEM FILES

Reading raw data is time consuming for SPSS with big data sets, so it is often useful to create SPSS system files that you
can access later. By creating a permanent SPSS system file, you can avoid having to redefine variables and variable labels every
time you look at the data, thereby saving yourself time and computer resources. When you access the permanent SPSS system
file, it will know everything that you told SPSS when you created the file. If you gave the variables labels, it will know the labels. If
you transformed variables, or created new variables, those variables will be stored. If you told SPSS what values are missing, it
will remember what you told it.

To save an SPSS system file use a SAVE OUT statement. For example, you might save the DEM1940 file with the
following statement:

SAVE OUT= “C:\TEST\DEM1940.SAV” .
EXECUTE .

This command should follow all data transformations so that they are all saved in the new SPSS system file.

Page 4 of 8

After you have run the program that defines the variables from the raw data and saved an SPSS system file, you can
access the system file with a "GET" statement instead of redefining all of the variable locations, variable names, and labels from
the raw data. For example, you might have the following program called DEM1 to read the newly created system file and get
descriptive statistics on all the variables.

* DEM1 SPSSX.
* USE DATA CREATED BY DEM1940, AND PRINT MEANS, ETC, OF ALL VARIABLES.
GET FILE = "C:\TEST\DEM1940.SAV" .
DESC VAR = ALL .

VI. KEEP AND DROP STATEMENTS, AND "SELECT IF" STATEMENTS

Often you will want to work with only some of the variables, and some of the cases in a file. SPSS runs will take longer
than necessary, and will require more disk resources than necessary if there are more cases or variables than needed in your data
set. A KEEP or DROP subcommand can be used with the GET command to prune the number of variables used in the current
analysis. For example, suppose you were using the Demographic Characteristics data set, and were only interested in some of the
variables that pertained to 1940. You could use the following statement to keep the variables that identify each county, and that
pertain to 1940.

GET FILE = 'C:\TEST\DEM1940.SAV'
 / KEEP = M001 M002 M003 M004 M005 M006 M007 M008 M009 M096 to M112 .

Notice that the KEEP subcommand is indented at least one space and begins with a "/" so that SPSS knows that this is a
subcommand of the GET command on the previous line. Also notice that the list of variables after the equal sign contains the
variables "M096 to M112." This tells SPSS to keep all the variables in the file between M096 and M112.

The DROP subcommand uses the same syntax as the KEEP statement but tells SPSS to keep all the variables in the file
except those listed in the DROP subcommand. Both the KEEP and DROP subcommands can be used with the SAVE OUT
command as well. Note that a KEEP or DROP statement used with the GET FILE command only applies to the current analysis
and does not alter the structure of the SPSS system file you are working with unless you write over it with a new SAVE OUT
command.

To reduce the number of cases for the analysis, you can select a desired subset of cases by using a SELECT IF
statement. For example, suppose you were only interested in the counties in Georgia. You could select these counties with the
statement:

SELECT IF M001=44 .

Or, if you wanted only counties in the Georgia, Florida, Alabama, and Tennessee, you would have the statement:

SELECT IF M001=44 OR M001=43 OR M001=41 OR M001=54 .

VII. A SAMPLE SPSS PROGRAM

The following program accesses a raw data file, defines and labels the variables and designates their missing values,
selects out a subset of cases, and creates two new variables. The SORT command is used to re-order the cases in the file in a
way that will be useful in merging the saved system file in a later step. The SAVE OUT command saves an SPSS system s file
with only a limited number of variables as designated in the KEEP subcommand.

* DEM1940 SPSS. THIS PROGRAM CREATES AN SPSS FILE CALLED DEM1940.
* WHICH HAS SELECTED DEMOGRAPHIC INFORMATION ON GEORGIA.
* COUNTIES FOR 1940.
DATA LIST FILE = 'DEM1940 DATA B' FIXED RECORDS = 55
 / 1 M001 3-4 M002 5-8 M003 9-12

/ 11 M096 41-47 M097 48-54 M098 55-61 M099 62-68 M100 69-75
/ 12 M101 13-19 M102 20-26 M103 27-33 M104 34-40 M105 41-47
 M106 48-54 M107 55-61 M108 62-68 M109 69-75
/ 13 M110 13-19 M111 20-26 M112
/ 55 .

VARIABLE LABELS
M001 'M001=ICPR STATE CODE' M002 'M002=UNIQUE ID'
M096 'M096=940 TTL MALES, ALL AGES'

Page 5 of 8

M097 'M097=940 TTL MALES, <5' M098 'M098=940 TTL MALES, 5-9'
M099 'M099=940 TTL MALES, 10-14' M100 'M100=940 TTL MALES, 15-19'
M101 'M101=940 TTL MALES, 20-24' M102 'M102=940 TTL MALES, 25-29'
M103 'M103=940 TTL MALES, 30-34' M104 'M104=940 TTL MALES, 35-39'
M105 'M105=940 TTL MALES, 40-44' M106 'M106=940 TTL MALES, 45-49'
M107 'M107=940 TTL MALES, 50-54' M108 'M108=940 TTL MALES, 55-59' .

* CREATING VARIABLES FOR MERGING LATER .
COMPUTE STATEID=M001 .
COMPUTE COID=M002 .

* KEEP ONLY CASES IN GEORGIA .
SELECT IF (STATEID=44) .

* ACCOUNT FOR MISSING VALUES .
MISSING VALUES

M001 (99) M002 (9999) M003 (9999)
M008 (0) M009 (0)
M096 to M112 (9999999) .

* SORTING CASES BY NEW STATE AND COUNTY VARIABLES .
SORT CASES BY STATEID, COID .

DESC VARS= ALL .

SAVE OUT='C:\TEST\DEM1940.SAV'
/KEEP M001 M002 M003 M008 M009 M096 to M112 .

The following program would access the SPSS system file created in the above example.

* DEM19402 SPSS. THIS PROGRAM READS AN SPSS SYSTEM FILE CALLED DEM1940 .
* WHICH WAS CREATED BY THE PROGRAM DEM1940 SPSS.
* IT HAS INFO ON COUNTIES FOR 1940.
GET FILE='C:\TEST\DEM1940.SAV' .

VIII. MERGING SPSS SYSTEM FILES: ADDING MORE VARIABLES

In data analysis, it is common to pull together data from a variety of sources. It is possible to do this with SPSS by
merging two system files with a MATCH command. It is important to merge correctly. To do this, the cases in each file should
have unique identifying numbers and the two files must be sorted in the same order. If you are not sure that the cases in each file
are sorted by the variable used to do the merge, you must use the SORT command to re-sort the files (see example above).
Following is a simple example of merging two SPSS system files that are both already sorted by a common identifying variable
called "ID." This example merges scores from two exams. Each file has no more than one case per ID.

MATCH FILES FILE= ‘C:\TEST\EXAM1.SAV’ /
FILE= ‘C:\TEST\EXAM2.SAV’ / BY=ID / MAP .

EXECUTE .

The MATCH command tells SPSS to match the two files using the common variable "ID" and the MAP subcommand asks
for a record of the variables added from each file to the new matched file. After merging files, it is important to check your LISTING
file and output to make sure that it was done properly. Run descriptive statistics and correlations with variables from both files to
make sure the merge worked properly.

If one of the files had multiple cases per ID, and the other file had only one record per ID, the match files command would
like like:

MATCH FILES TABLE= ‘c:\test\one.spssfile'
 / FILE= ‘c:\test\many.spssfile'
 / BY ID / map .

IX. ADDING SPSS FILES: ADDING MORE CASES

Suppose you had an SPSS system file called INT500 SPSSFILE A with interviews from 500 people. You just completed

Page 6 of 8

creating an SPSS system file called INT200 SPSSFILE A for another 200 people, and you want to add those cases to your original
file. All of the people were asked the same questions, and both SPSS system files have the same variables. The following
program would put these two files together and save a system file, containing all 700 cases, on your B minidisk.

* INT700 SPSS. CREATE ONE FILE OUT OF INT500 AND INT200.
* NOTE, BECAUSE THE FILES ARE ON THE A DISK AND HAVE THE.
* FILETYPE OF SPSSFILE, THE FOLLOWING WILL WORK.
ADD FILES FILE= INT500 /

FILE= INT200 .
DESC VARS=ALL.
SAVE OUT='c:\test\INT700.sav' .
EXECUTE .

X. AN EXAMPLE OF AN SPSS PROGRAM WITH A VARIETY OF PROCEDURES

Following is an example of an SPSS program that merges two system files, saves the new system file keeping only a
subset of variables, selects a subset of cases from the new file, creates new variables, and runs some basic procedures. The
numbered lines are program items, and the non-numbered lines are information provided by SPSS. It was run an a UNIX – SPSS
for the PC does not number lines. File definition looks different than on a PC. And, periods are not where they would be for
SPSS-PC.

 1 0 * EXAMPLE1 SPSSX
 2 0 * EXAMPLE SPSS PROGRAM FOR INTRO. TO SPSS HANDOUT.
 3 0
 4 0 FILE HANDLE P1983 /NAME='PSID1983 SYS B'.
 5 0 FILE HANDLE P1984 /NAME='PSID1984 SYS B'.
 6 0
 7 0 * MERGING 1983 AND 1984 FILES BY COMMON VAIABLE ID.
 8 0 * BOTH FILES ALREADY SORTED BY ID VARIABLE.
 9 0 MATCH FILES FILE=P1983/FILE=P1984/BY=ID/MAP.
 10 0
0File PSID1983 SYS B1
 Created: 24-OCT-96 09:47:49 - 14 variables
0File PSID1984 SYS B1
 Created: 24-OCT-96 09:46:52 - 14 variables
0Map of BY variables
0Result Input1 Input2
 ------ ------ ------
 ID ID ID
0Map of the result file
0Result Input1 Input2 Result Input1 Input2 Result Input1 Input2
 ------ ------ ------ ------ ------ ------ ------ ------ ------
 ID ID ID FAMINC83 FAMINC83 NCHILD84 NCHILD84
 HDRACE83 HDRACE83 WRKING83 WRKING83 HOUSST84 HOUSST84
 AGE83 AGE83 WELFAR83 WELFAR83 PPERRM84 PPERRM84
 FEMALE83 FEMALE83 POVT83 POVT83 EDUC84 EDUC84
 MARR83 MARR83 REGION83 REGION83 FAMINC84 FAMINC84
 NCHILD83 NCHILD83 HDRACE84 HDRACE84 WRKING84 WRKING84
 HOUSST83 HOUSST83 AGE84 AGE84 WELFAR84 WELFAR84
 PPERRM83 PPERRM83 FEMALE84 FEMALE84 POVT84 POVT84
 EDUC83 EDUC83 MARR84 MARR84 REGION84 REGION84

 11 0 SAVE OUTFILE='PSID8384 SYS B'
 12 0 /DROP=PPERRM83 WRKING83 PPERRM84 WRKING84
 13 0
 14 0
 File contains 23 variables, 184 bytes per case before compression
 9,639 cases saved
0Preceding task required 1.98 seconds CPU time; 18.32 seconds elapsed.
 15 0 * ACCOUNTING FOR MISSING VALUES IN NEW FILE
 16 0 MISSING VALUES
 17 0 POVT83 (998,999) POVT84(998,999)
 18 0 EDUC83 (00,99) EDUC84 (00,99)
 19 0 HDRACE83 (0,9) HDRACE84 (0,9)
 20 0 REGION83 (9) REGION84 (9)
 21 0
 22 0
 23 0 * SELECTING ONLY THOSE LIVING IN THE WEST IN 1983 OR 84
 24 0 SELECT IF (REGION83=3 OR REGION83=5) OR
 25 0 (REGION84=3 OR REGION84=5)

Page 7 of 8

 26 0
 27 0
 28 0 * CREATING VALUE LABELS FOR RACE VARIABLES
 29 0 VALUE LABELS
 30 0 HDRACE83 HDRACE84 1 'WHITE'
 31 0 2 'BLACK'
 32 0 3 'AMER. IND/ALUET/ESKIMO'
 33 0 4 'ASIAN/PI'
 34 0 7 'OTHER'
 35 0
 36 0
 37 0 * COMPUTING AGE-SQUARED VARIABLE
 38 0 COMPUTE AGE83SQ=AGE83*AGE83
 39 0 COMPUTE AGE84SQ=AGE84*AGE84
 40 0 variable labels
 41 0 AGE83SQ '1983 AGE-SQUARED'
 42 0 AGE84SQ '1984 AGE-SQUARED'
 43 0
 44 0
 45 0 * ADJUSTING FAMILY INCOME TO 1983 CONSTANT DOLLARS
 46 0 COMPUTE ADJINC83=(FAMINC83*1.00000)/1000
 47 0 COMPUTE ADJINC84=(FAMINC84*.90639)/1000
 48 0 VARIABLE LABEL
 49 0 ADJINC83 'TOT. ADJUSTED FAMILY INCOME, 1983'
 50 0 ADJINC84 'TOT. ADJUSTED FAMILY INCOME, 1984'
 51 0
 52 0
 53 0 * COMPUTING A DUMMY VARIABLE INDICATING HOME OWNERSHIP
 54 0 COMPUTE OWNER83=0
 55 0 IF (HOUSST83=1)OWNER83=1
 56 0 IF MISSING(HOUSST83)OWNER83=9
 57 0 COMPUTE OWNER84=0
 58 0 IF (HOUSST84=1)OWNER84=1
 59 0 IF MISSING(HOUSST84)OWNER84=9
 60 0 VARIABLE LABEL
 61 0 OWNER83 'HOME OWNER, 1983'
 62 0 OWNER84 'HOME OWNER, 1984'
 63 0
 64 0
 65 0 * GETTING MEANS, SD'S, N'S, ETC. OF SOME VARIABLES
 66 0 DESC VARS=AGE83 AGE84 ADJINC83 ADJINC84
 67 0
 68 0
 69 0

-296 bytes of memory required for the DESCRIPTIVES procedure.
0Number of valid observations (listwise) = 3051.00
0 Valid
 Variable Mean Std Dev Minimum Maximum N Label

 AGE83 35.93 16.15 16.00 92.00 3393 AGE, TIME 1
 AGE84 36.11 16.08 16.00 90.00 3489 AGE, TIME 1
 ADJINC83 21.35 19.03 .00 199.66 3393 TOT. ADJUSTED FAMILY INCOME, 1983
 ADJINC84 20.66 19.78 -41.69 235.03 3489 TOT. ADJUSTED FAMILY INCOME, 1984

0Preceding task required .92 seconds CPU time; 5.92 seconds elapsed.

 70 0 FREQ VARS=HDRACE83
 71 0 * GETTING FREQUENCIES OF RACE, 1983
 72 0
0There are 1,076,536 bytes of memory available. The largest contiguous area has 675,192 bytes.
0Memory allows a total of 30,690 values accumulated across all variables.
 There may be up to 7,673 value labels for each variable.

Page 8 of 8

0HDRACE83 RACE OF HEAD, T1
0 Valid Cum
 Value Label Value Frequency Percent Percent Percent

 WHITE 1.00 1153 30.1 34.0 34.0
 BLACK 2.00 2140 55.9 63.1 97.1
 AMER. IND/ALUET/ESKI 3.00 94 2.5 2.8 99.8
 OTHER 7.00 6 .2 .2 100.0
 . 438 11.4 Missing
 ------- ------- -------
 Total 3831 100.0 100.0
0Valid cases 3393 Missing cases 438

0Preceding task required .24 seconds CPU time; 2.07 seconds elapsed.

 74 0 CORRELATIONS VARIABLES=FEMALE83 AGE83 EDUC83 ADJINC83
 75 0 POVT83 POVT84
 76 0 * REQUESTING A CORRELATION MATRIX
0PEARSON CORR problem requires 816 bytes of workspace.

 - - Correlation Coefficients - -

 FEMALE83 AGE83 EDUC83 ADJINC83 POVT83 POVT84

 FEMALE83 1.0000 .0493** -.0230 -.1078** .0568** .0478**
 AGE83 .0493** 1.0000 -.2820** -.1033** -.0090 -.0079
 EDUC83 -.0230 -.2820** 1.0000 .3864** -.3068** -.3111**
 ADJINC83 -.1078** -.1033** .3864** 1.0000 -.4142** -.4158**
 POVT83 .0568** -.0090 -.3068** -.4142** 1.0000 .9201**
 POVT84 .0478** -.0079 -.3111** -.4158** .9201** 1.0000
0* - Signif. LE .05 ** - Signif. LE .01 (2-tailed) " . " printed if a
coefficient cannot be computed

0Preceding task required .43 seconds CPU time; 2.98 seconds elapsed.

 77 0 FINISH
0 77 command lines read.
 0 errors detected.
 0 warnings issued.
 4 seconds CPU time.
 30 seconds elapsed time.
 End of job.

