This document will describe the use of Ordered Logistic Regression (OLR), a statistical technique that can sometimes be used with an ordered (from low to high) dependent variable. The dependent variable used in this document will be the fear of crime, with values of:

1 = not at all fearful 2 = not very fearful 3 = somewhat fearful 4 = very fearful

Ordered logit model has the form:

$$\begin{split} \log \operatorname{it}(p_1) &\equiv \log \frac{p_1}{1 - p_1} = \alpha_1 + \beta' x\\ \log \operatorname{it}(p_1 + p_2) &\equiv \log \frac{p_1 + p_2}{1 - p_1 - p_2} = \alpha_2 + \beta' x\\ &\vdots\\ \log \operatorname{it}(p_1 + p_2 + \dots + p_k) &\equiv \log \frac{p_1 + p_2 + \dots + p_k}{1 - p_1 - p_2 - \dots - p_k} = \alpha_k + \beta' x\\ \operatorname{and} \ p_1 + p_2 + \dots + p_{k+1} = 1 \end{split}$$

This model is known as the proportional-odds model because the odds ratio of the event is independent of the category *j*. The odds ratio is assumed to be constant for all categories.

Source: http://www.indiana.edu/~statmath/stat/all/cat/2b1.html

Syntax and results using both SAS and Stata will be discussed.

OLR models cumulative probability. It simultaneously estimates multiple equations. The number of equations it estimates will the number of categories in the dependent variable minus one. So, for our example, three equations will be estimated. The equations are:

	Pooled Categories	compared to	Pooled Categories
Equation 1:	1		234
Equation 2:	12		34
Equation 3:	123		4

Each equation models the odds of being in the set of categories on the left versus the set of categories on the right.

OLR provides only one set of coefficients for each independent variable. Therefore, there is an assumption of parallel regression. That is, the coefficients for the variables in the equations would not vary significantly if they were estimated separately. The intercepts would be different, but the slopes would be essentially the same. (In Stata there is a way to test whether this assumption is being met. See "Testing the assumption of Parallel Regression" later in this document.)

The following syntax in Stata can be used to estimate an OLR model.

. ologit nfear_in female educ

And this is the output for that equation.

Iteration	0:	log	likelihood	=	-15065.131
Iteration	1:	log	likelihood	=	-14925.462
Iteration	2:	log	likelihood	=	-14925.243

¹Prepared by Karen Snedker, Patty Glynn, Chiachi Wang, University of Washington, 10/25/02

Ordered logit	estimates			Number	of obs	s =	12261
				LR chi	2(2)	=	279.78
				Prob >	chi2	=	0.0000
Log likelihoo	d = -14925.24	3		Pseudo	R2	=	0.0093
		 8+d Frr			 ۲۵۶۴	Conf	
IIIear_III	COEL.		z	P/ 2			Incervar]
female		.0336724	16.20	0.000	. 4794	4691	.6114624
educ	0180993	.0062164	-2.91	0.004	0302	2832	0059154
	+						
_cut1	-1.11355	.0924472		(Ancillary	parame	eters)	
cut2	.6022201	.092258					
_cut3	2.977691	.0984957					

The syntax used to estimate the same OLR equation in SAS follows.

proc logistic descending ; model nfear in = female educ ; run ;

And the results follow.

The LC	GISTIC Procedure	
Mode	l Information	
Data Set	SNEDKER	
Response Variable	nfear_in	fear
Number of Response Levels	4	
Number of Observations	12261	
Model	cumulative logit	
Optimization Technique	Fisher's scoring	

	Response	Prof:	ile
Ordered			Total
Value	nfear_	in	Frequency
1		4	641
2		3	3858
3		2	4793
4		1	2969

Probabilities modeled are cumulated over the lower Ordered Values.

Model Convergence Status Convergence criterion (GCONV=1E-8) satisfied. Score Test for the Proportional Odds Assumption

Chi-Square	DF	Pr > ChiSq
252.5987	4	<.0001

Model Fit Statistics

		Intercept
	Intercept	and
Criterion	Only	Covariates
	-	
AIC	30136.263	29860.486
SC	30158.505	29897.557
-2 Log L	30130.263	29850.486

The LOGISTIC Procedure Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	279.7770	2	<.0001
Score	277.1848	2	<.0001
Wald	277.6892	2	<.0001

Analysis of Maximum Likelihood Estimates

			Standard	Wald	
Parameter	DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept 4	1	-2.9777	0.0970	942.0679	<.0001
Intercept 3	1	-0.6023	0.0900	44.7414	<.0001
Intercept 2	1	1.1135	0.0905	151.4820	<.0001
female	1	0.5455	0.0337	262.6788	<.0001
educ	1	-0.0181	0.00612	8.7416	0.0031

	Odds Ratio	Estimates	
	Point	95% Wa	ld
Effect	Estimate	Confidence	Limits
female	1.725	1.615	1.843
educ	0.982	0.970	0.994

Association of Predicted Probabilities and Observed Responses

Percent	Concordant	50.3	Somers' D	0.131
Percent	Discordant	37.3	Gamma	0.149
Percent	Tied	12.4	Tau-a	0.090
Pairs		51624633	C	0.565

You may interpret the coefficients as you would interpret logistic regression coefficients - except in this case, there are three transitions estimated instead of one transition - as there would be with a dichotomous dependent variable. Being female increases the likelihood of being in a higher fear category, while being more highly educated reduces the likelihood of being in a higher fear category. A positive coefficient indicates an increased chance that a subject with a higher score on the independent variable will be observed in a higher category. A negative coefficient indicates that the chances that a subject with a higher score on the independent variable will be observed in a lower category. SAS reports the odds ratio estimates, but Stata does not. Odds ratios can easily be derived from the coefficients by taking the exponent of the coefficient. (For example, In Excel, =exp(coef))

Note that Stata reports "Ancillary parameters", and SAS reports Intercepts. The numbers are the same, but the signs are reversed. Consider that OLR restrains estimation of the coefficients so that they cannot vary between transitions. That is, the slope for education for Equation 1, must be the same as the slopes for Equations 2 and 3 (as described above under "OLR models cumulative probability"). Only the Intercepts are allowed to vary.

	Pooled Categories	compared to	Pooled Categories	
Equation 1:	1		234	
Equation 2:	12		3 4	
Equation 3:	123		4	

The Intercepts and Cut Points can be used to calculate predicted probabilities for a person with a given set of characteristics of being in a particular category. The formula used with SAS Intercepts and Stata cut points will be slightly different. Information about calculating the probabilities for the output Stata provides can be found at the following URL. <u>http://www.stata.com/support/fags/stat/ologit_con.html</u> "Example 20: Predicted Probability Computation" in the following URL provides information about calculating predicted probabilities with SAS. <u>http://www.indiana.edu/~statmath/stat/all/cat/2b1.html</u>

For information on testing the model for explanatory power of a model, please refer to: <u>http://www.ats.ucla.edu/stat/stata/library/logit_wgould.htm</u>

Testing the assumption of Parallel Regression (Drawn from <u>Regression Models for Categorical Dependent Variables</u> <u>Using Stata</u>, Long and Freese, 2001)

J. Scott Long and Jeremy Freese have created an add-in file for Stata which allows the easy testing of the assumption of Parallel Regression. For complete information on how to install this ado file, see: http://www.indiana.edu/~jsl650/spostinstall.htm#Heading03

Once you have installed these useful additions, estimate your Ordinal Logistic Regression model (for example):

. ologit nfear_in female educ

And then issue the command:

. brant, detail

You will get results like:

Estimated coefficients from j-1 binary regressions

	y>1	y>2	у>3
female	.62821863	.48924177	.55179906
educ	.04872347	04745798	15864904
_cons	.14818344	16496036	-1.1202262

Brant Test of Parallel Regression Assumption

Variable		chi2	p>chi2	df
All		256.77	0.000	4
female educ	 	10.44 250.30	0.005 0.000	2 2

A significant test statistic provides evidence that the parallel regression assumption has been violated.

First you will see the results of each binary regression that was estimated when the OLR coefficients were calculated. These represent the equations represented above under the heading "**OLR models cumulative probability**". The model "y>1" represents Equation 1, "y>2" is Equation 2, and "y>3" is Equation 4. (We proved this to ourselves by estimating logistic regression models for each of these.) For the Assumption of Parallel Regression to be true, the coefficients across these equations would not vary very much. But, in this example, they do vary. In fact, for education, the slope even changes directions. You are also provided with the results of a Chi-square test, which, in this case, shows that the parallel regression assumption has been violated. Note: This test is sensitive to the number of cases. Samples with larger numbers of cases are more likely to show a statistically significant test, and evidence that the parallel regression assumption has been violated.