RT-SIESTA: Real-time linear and non-linear response for optical and core spectroscopies <u>F. D. Vila</u>, Y. Takimoto, A. J. Lee, J. J. Kas, J.J. Rehr Department of Physics, University of Washington

Vanderbilt University, Nashville, Mar 10 2014

Why TDDFT?

Don't really need to convince you...

But why real time?

Can be more efficient than frequency space (large systems) Very versatile (pulses, transport, etc) More "physical/realistic" Easy access to NLO properties

Background Theory

Real-Time Time Dependent DFT

Direct numerical integration of the time-dependent Kohn-Sham equations in a time-dependent external electric field:

$$i\frac{\partial\Psi}{\partial t} = H(t)\Psi \quad \Psi(t) = T \exp\left(-i\int_0^t H(t')dt'\right)\Psi(0)$$
$$H = -\frac{1}{2}\nabla^2 + V_{ext}(\mathbf{r},t) + V_H[\rho](\mathbf{r},t) + V_{xc}[\rho](\mathbf{r},t)$$

Optical properties are determined from the total dipole moment:

$$\mathbf{p}(t) = \int \rho(\mathbf{r}, t) \, \mathbf{r} \, d^3 \mathbf{r}$$

$$\underbrace{\chi_{ij}^{(1)}(\omega) = \delta p_i(\omega) / E_j(\omega) = \alpha_{ij}(\omega)}_{\checkmark} \underbrace{\sigma(\omega) \sim \omega \operatorname{Im} \langle \alpha(\omega) \rangle}_{\checkmark}$$

Linear Response

Absorption

Yabana and Bertsch, Phys. Rev. B 54, 4484 (1996)

Numerical Real-Time Evolution

The ground state density ρ_0 , overlap matrix *S* and Hamiltonian matrix *H(t)* evaluated at each time-step using SIESTA:

$$i\frac{\partial c(t)}{\partial t} = S^{-1}H(t)c(t)$$

Orbital coefficients

Accurate and stable evolution using Crank-Nicolson propagator:

$$c(t + \Delta t) = \frac{1 - iS^{-1}H(\bar{t})\Delta t/2}{1 + iS^{-1}H(\bar{t})\Delta t/2}c(t) + \mathcal{O}(\Delta t^2)$$

Soler *et al.* J. Phys.: Condens. Matter 14, 2745 (2002) Tsolakidis *et al*. Phys. Rev. B 66, 235416 (2002)

Optical Absorption in CO

Delta Function (Unit Impulse at t=0)

-0.05

2

4

8

Time (fs)

6

10

12

14

16

Takimoto et al. J. Chem. Phys. 127, 154114 (2007)

constant field

Optical Absorption in CO

Takimoto et al. J. Chem. Phys. 127, 154114 (2007)

Optical Absorption in CO

Delta Function (Unit Impulse at t=0)

Takimoto et al. J. Chem. Phys. 127, 154114 (2007)

Linear response: Chromophores

NLO chromophore: YLD_156

Real-time (gas) absorption peak $\omega_0 = 1.72 \text{ eV}$ $(\lambda_0 = 721 \text{ nm})$

Expt. (CHCl₃) absorption peak $\omega_0 = 1.65 \text{ eV}$ $(\lambda_0 = 753 \text{ nm})$

Linear response: Organic solar cell components

Effect of Hexyl Chains in p3HT

Nonlinear optical properties

Real time Nonlinear Response

Nonlinear expansion

$$P = \chi^{(1)}E + \chi^{(2)}E^2 + \chi^{(3)}E^3 + \cdots$$

Must take into account response time:

$$p_{i}(t) = \mu_{i}^{0} + \int dt_{1} \chi_{ij}^{(1)}(t - t_{1}) E_{j}(t_{1}) + \int dt_{1} \int dt_{2} \chi_{ijk}^{(2)}(t - t_{1}, t - t_{2}) E_{j}(t_{1}) E_{k}(t_{2}) + \int dt_{1} \int dt_{2} \int dt_{3} \chi_{ijkl}^{(3)}(t - t_{1}, t - t_{2}, t - t_{3}) E_{j}(t_{1}) E_{k}(t_{2}) E_{l}(t_{3}) + \cdots$$

How do we invert to get nonlinear response function?

Static Nonlinear Polarizabilities: FFPT

For static response we use Finite Field Perturbation Theory (FFPT):

$$p_i = \mu_i^0 + \alpha_{ij}E_j + \beta_{ijk}E_jE_k + \gamma_{ijkl}E_jE_kE_l + \cdots$$

Then either finite-differences stencil or fitting to extract tensor components:

 $\beta_{ijj} = \left[-p_i(-2E_j) + 16p_i(-E_j) - 30p_i(0) + 16p_i(E_j) - p_i(2E_j)\right]/24E_j^2$

Dynamic Nonlinear Polarizabilities

Time dependent $E_j(t)$ as $F(t)E_j$, and define timedependent formula:

$$p_i(t) = \mu_i^0 + p_{ij}^{(1)}(t)E_j + p_{ijk}^{(2)}(t)E_jE_k + \cdots$$

where: $p^{(1)}$ linear response $p^{(2)}$ non-linear quadratic response

The quadratic response $\chi^{(2)}$ is related to $p^{(2)}$ by:

$$p_{ijk}^{(2)}(t) = \int dt_1 \int dt_2 \ \chi_{ijk}^{(2)}(t-t_1,t-t_2) F(t_1) F(t_2)$$

Dynamic Nonlinear Response with Quasi-monochromatic Field F $_{\delta}$

F_{δ} : Sine wave with sine or Gaussian envelope

Dynamic Nonlinear Response with Quasi-monochromatic Field F $_{\delta}$

F_{δ} : Sine wave with sine or Gaussian envelope

$$\chi_{ijk}^{(2)}(-2\omega_0;\omega_0,\omega_0) = \frac{2\pi p_{ijk}^{(-)}(2\omega_0)}{\int_{-\Delta}^{\Delta} d\omega' F(\omega_0 - \omega')F(\omega_0 + \omega')} \quad \text{SHG}$$
$$\chi_{ijk}^{(2)}(0;-\omega_0,\omega_0) = \frac{\pi p_{ijk}^{(2)}(0)}{\int_{-\Delta}^{\Delta} d\omega' F^*(\omega_0 + \omega')F(\omega_0 + \omega')} \quad \text{OR}$$

Second Harmonic Generation (SHG) in pNA

Solvent effects

"Local" Solvent Effect

Study of local contact with methanol (polar) or chloroform (non-polar)

 β_{HRS} 798.6 (au) ω = 1.17 eV

Onsager Solvation Model

Spherical cavity of radius a₀ in dielectric medium

Computational effort equivalent to vacuum calculation

Explicit vs Reaction Field Solvation

Current Developments

Improve scaling Add nuclear motion Steady state transport

Summary

(Fairly) Efficient implementation of RT-TDDFT paradigm Full spectrum in one calculation Easy nonlinear response Very versatile

Real-time core spectroscopy

Why Use a TD Approach for Core Spectra?

XS traditionally calculated with Fermi's Golden Rule (FGR) using wavefunctions or real-space Green's functions (RSGF)

Currently:

New experimental pulsed sources (XFEL, LCLS) and pump-probe experiments Increased interest in time-dependent (TD) response

Our approach:

Compute response using TD autocorrelation function

Goal:

TD x-ray response, including core hole (CH) dynamics

Real-Time X-Ray Spectroscopy (RTXS)

RTXS Equations

XAS Absorption (FGR, Δ SCF, FSR) $\mu(\omega) = \sum_{k} |\langle c|d|k \rangle|^{2} \delta_{\Gamma}(\omega + \varepsilon_{c} - \varepsilon_{k}) \theta(E - E_{F})$ $\int \mathbf{FT}$ $\mu(\omega) = \frac{1}{\pi} \operatorname{Re} \int_{0}^{\infty} dt \, e^{i\omega t} G_{c}(t) \langle \Psi(t) | \Psi(0) \rangle \theta(\omega + \varepsilon_{c} - E_{F})$

Core Hole Green's Function

$$G_c(t) = i \exp[i(\varepsilon_c + i\Gamma)t]$$

Autocorrelation Function

$$\langle \Psi(t) | \Psi(0) \rangle = \sum_{jj'} \langle c | d^{\dagger} | j \rangle U_{jj'}(t,0) \langle \tilde{j}' | d | c \rangle$$

$$\begin{split} \langle \psi(0) | \psi(t) \rangle & \left\{ \begin{aligned} | \psi(0) \rangle = d | c \rangle \\ | \psi(t) \rangle = U(t,0) | \psi(0) \rangle & \longrightarrow \quad U(t,0) = T \exp \left[-i \int_0^t dt \, H(t) \right] \\ \\ \hline \mathbf{Crank-Nicolson} \\ \bar{t} = t + \Delta/2 \qquad \mathbf{U}(t + \Delta, t) = \frac{\mathbf{1} - \mathbf{S}^{-1} \mathbf{H}(\bar{t}) \Delta/2}{\mathbf{1} + \mathbf{S}^{-1} \mathbf{H}(\bar{t}) \Delta/2} \\ \end{split}$$

Computational Details

Implemented on RT-SIESTA with: Real-time propagation **PAW** for dipole matrix elements (based on UW OCEAN) **SIESTA details: TZDP** basis Norm conserving PP 150 Ry grid cutoff **Experimental structures** TD: Simulation time ~1-5 fs with 0.01 fs steps **Broadening and E_c shift to match experiment Comparisons with: StoBe (GTO-based FGR, TST CH approximation) FEFF** (Real Space Multiple Scattering, FSR)

Autocorrelation Function and **C pDOS for CO**

Frequency Space

C Kα XES of C₆H₆

Expt: Skytt et al., Phys. Rev. A 52, 3572 (1995)

C Kα XES of Diamond (C₄₇H₆₀ cluster)

Expt: Ma et al., Phys. Rev. Lett. 69, 2598 (1992)

C K-Edge XAS of Diamond (C₄₇H₆₀ cluster)

Expt: Fister *et al.,* Phys. Rev. B 75, 174106 (2007)

Core Hole Density Relaxation and **XAS Effects in Diamond**

(Isosurface and Projection)

Current Developments

Other dynamical effects: Core hole formation and screening Photoelectron dynamics with valence relaxation

Summary

New, real-time autocorrelation method for x-ray response: Simulated XAS and XES in good agreement with other methods (FGR and RSGF) and experiment

Real-time core-hole spectral functions

Why core-hole?

Why real-time?

XPS satellites:

Signature of many-body corr. effects beyond GW/QP

Core XPS: Reflects CH spectral function – excitation spectra1

X-ray spectra → atomic and electronic structure XPS: DOS, chemical analysis XAS, RIXS, etc: DOS, atomic structure Dynamic theory ← → Time-resolved experiment

¹Guzzo et al., Phys. Rev. Lett. 107, 166401 (2011)

Real time approach (preliminary)

Core-hole Green's function: Cumulant form^{1,2}

$$g(t) = e^{-i\epsilon_c t + C(t)}$$

Cumulant from linear response to transient potential^{2,3}

$$\frac{dC(t)}{dt} = \int d^3r d^3r' v_c(\mathbf{r}) v_c(\mathbf{r}') \int d\omega \chi(\mathbf{r}, \mathbf{r}'; \omega) \frac{e^{i\omega t} - 1}{i\omega}$$

Response function from RT-TDDFT

$$\delta\rho(\mathbf{r},\omega) = \int d^3r' \chi(\mathbf{r},\mathbf{r}';\omega)v_c(\mathbf{r}') \Rightarrow$$
$$\frac{dC(t)}{dt} = \int d\omega\beta(\omega)\frac{e^{i\omega t}-1}{i\omega}; \quad \beta(\omega) = \int d^3r v_c(\mathbf{r})\delta\rho(\mathbf{r},\omega)$$

¹P. Nozières and C. T. de Dominicis, Phys. Rev. **178**, 1097 (1969). ²D. C. Langreth, Phys. Rev. B 1, 471–477 (1970) ³Rehr et al., Preprint

Real time vs freq. response

Comparison to loss function: Diamond

Comparison to loss function: Silicon

XPS vs CH spectral function: Sodium

XPS vs CH spectral function: Sodium

XPS vs CH spectral function: Ti (Rutile)

XPS vs CH spectral function: Ti (Rutile)

XPS vs CH spectral function: Ti (Rutile)

XPS vs CH spectral function: Ti (Metal)

XPS vs CH spectral function: Ti (Metal)

Current Developments

Use PAW potential Extrinsic effects

Summary

Cumulant expansion: Explains multiple plasmon satellites in XPS Core response is local Qualitative agreement with experiment

RT-SIESTA: very versatile implementation of RT-TDDFT

Applicable to wide range of systems

Linear and nonlinear optical response

Core spectroscopies

Core-hole response and spectral function

Acnowledgements

T. Ahmed A. Tsolakidis

- G. F. Bertsch
- K. Yabana
- **B. E. Eichinger**
- **B. H. Robinson**
- C. Luscombe
- A. Jen

