Dynamic structure of supported Pt and Pt-Sn nanocatalysts: Real-time DFT/MD and X-ray Spectroscopy simulations

F. Vila, May 8th 2013

Previous Work

APRIL 7, 2011 VOLUME 115 NUMBER 13 pubs.ocs.org/JPG

THE JOURNAL OF PHYSICAL CHEMISTRY

NANOMATERIALS, INTERFACES, HARD MATTER

Experimental (XAS, STEM, TPR, and XPS) and Theoretical (DFT) Characterization of Supported Rhenium Catalysts

S. Bare, S. Kelly, F. D. Vila, D. Boldingh, E. Karapetrova, J. Kas, G. Mickelson, F. Modica, N. Yang, J. J. Rehr

J. Phys. Chem. C **115**, 5740, 2011

DFT/EXAFS model with three species was used to identify the dominant Re adsorption site on the alumina surface.

Re on γAl_2O_3

Pt_{10} on γ -Al₂O₃:

Negative Thermal Expansion and Disorder

PtSn Alloy Clusters on γ-Al₂O₃: Structure and Dynamic Disorder

Adsorbates and Reactivity on PtSn Clusters on γ-Al₂O₃

$Pt_{10} \text{ on } \gamma - Al_2O_3$: Negative Thermal Expansion and Disorder

Experimental Results

- Pt-Pt expansion going from He to H₂ atmosphere
- Pt-Pt negative thermal expansion
- High Pt-Pt disorder
- Increased intensity and redshift of XANES with increasing T

Kang *et al.* JACS 2006, *128*, 12068

Bond expansion in H₂ atmosphere

Study prototypical Pt₁₀ clusters on γ-Al₂O₃

DFT/MD

VASP PBE Functional 396 eV Cutoff 3 fs Step 3 ps Equilibration 5 ps Runs (3) 165 K & 573 K

XANES

FEFF8 Full Multiple Scattering 32 Configurations from MD 7 Å Clusters (~150 atoms) MD @ 165 K

MD @ 573K

Pt-Pt Pair Distribution Function

Negative Thermal Expansion

High Pt-Pt Disorder

Pt L₃ XANES

Increased intensity and redshift at high T

Increased intensity and redshift at high T

Summary

Dynamic structure in supported Pt nanoclusters: Real-time density functional theory and x-ray spectroscopy simulations

F. D. Vila, J. J. Rehr, J. Kas, R. G. Nuzzo, A. I. Frenkel Physical Review B **78**, 121404(R), 2008

Complex dynamics: multiple-time scales, librational motion, fluctuating bonding

Simulations explain: large structural disorder, Negative Thermal Expansion (NTE).

 Pt_{10} on γ - Al_2O_3

MD @ 573 K

PtSn Alloy Clusters on γ-Al₂O₃: Structure and Dynamic Structural Disorder

Motivation

- Alumina-supported Pt-based catalysts:
 - Used for: Reforming of light petroleum distillate
 - Modifiers (Sn, Re and Ir): profound effect on stability, reduce carbon deposition
- Knowledge of structure and dynamics: Understanding and improvement of catalytic activity

Theory in Operando Conditions: Study thermal and composition effects on the structure and reactivity of PtSn clusters on γ -Al₂O₃ under realistic conditions

Theoretical Probe: DFT/MD

Atomistic electronic and structural information

Initial structures: Randomly Sn-substituted Pt₂₀ cluster DFT/MD VASP PBE Functional 396 eV Cutoff 3 fs Steps 3 ps Equilibration 9 ps Runs (4/Temp) 298 and 598 K

Structure: Segregation and Disorder

Dynamical Properties: Molecular Dynamics

Cluster Internal Structure: Pt-Pt

Shorter R_{Pt-Pt} and NTE trend at higher Pt concentration

Cluster Internal Structure: Pt-Sn

Pt-Sn shell: Unaffected by temperature and concentration

Cluster Internal Structure: Sn-Sn

Sn-Sn shell: Structure develops at high Pt concentration

Cluster-Surface Interaction: Pt-O and Sn-O

Pt-O shell: More O per Pt in Sn-poor clusters Sn-O shell: Very similar except for O uptake shoulder **Cowley short-range order parameter**

Pt – Favors Pt NN in core and Sn NN near surface Sn – Always favors Pt NN

Inhomogeneous Structure: Pt-Pt Interaction

Pt-Pt RDF composed of different populations Mean Pt-Pt distance linearly modulated by # of Sn NN

Electronic Properties: Net Atomic Charge

Near surface: Both species more positive Far from surface: Clusters nearly neutral Pt mean net charge: Controlled by Sn

Dynamic Disorder

• Nanoscale physics:

- Differ from condensed matter
- Experience surface effects, inhomogeneous

Experimental probes:

- Yield only averaged properties
- Need better understanding of:
 - Dynamical segregation
 - Transient bonding

Dynamic Disorder: Fluxional Bonds

Fluxional Pt-Pt bonds (period > 6-8 ps) – Large DSD Complex R_{PtPt} distribution – Many inhomogeneous bonds

Dynamic Disorder: Anomalous Behavior

Traj. decomp. into Vibrational and Disorder components
Vibrational – Normal behavior (200-400 fs periods)
Disorder – Large, anomalous

Dynamic Disorder: Center of Mass Fluctuations

Librational (CM) motion mainly parallel (x,y) to support Sub-THz regime (2-4 ps periods)

Summary

- Sn atoms:
 - Modulate Pt-Pt interaction
 - Preferentially on cluster surface
 - Act as "barrier" between support and Pt
 - Differential charging of Pt and Sn atoms
- Three dynamic regimes:
 - Fast bond vibrations
 - Stochastic CM motion
 - Slow fluxional bonding
- Dynamic, anomalous disorder
- Need better models for DSD in XAFS?

Adsorbates and Reactivity on PtSn Alloy Clusters on γ -Al₂O₃

Reactivity: Static Thermal Sampling (STS)

- MD reactivity sampling:
 - Computationally demanding
 - Difficult to capture relevant events
- Need efficient alternative: STS
 - Extract snapshots from MD
 - "Drop" adsorbate on cluster
 - Optimize adsorbate interaction while keeping cluster fixed

Reactivity: R_{H-H} and R_{Molecule-Metal} Distribution

Two H₂ interactions: Weak and strong Strong interaction: Shorter R_{Molecule-Metal} distance

Reactivity: H₂ Dissociation Probability

On $Pt_{10}Sn_{10}$: Low probability (<1%) at both 298 and 573K On $Pt_{15}Sn_5$: 5% at 298K and 10% at 598K

Adsorbate Dynamics: CO Internal Motion

Adsorbate Dynamics: CO Internal Motion

Adsorbate Dynamics: CO Surface Motion

Summary

• STS reveals:

- Different cluster-H₂ interaction types
- Preferential H₂ dissociation on Pt-rich clusters

Adsorbate dynamics:

- DFT/MD gives good frequencies
- Little coupling with internal motion
- Big coupling with cluster surface

Conclusions

- DFT/MD provides deep understanding of supported nanoparticles
- Simulations under realistic conditions are now possible

sampling

• "The devil is in the details"

Dynamic structure of supported Pt and Pt-Sn nanocatalysts: Real-time DFT/MD and X-ray Spectroscopy simulations

F. Vila, May 8th 2013

Acknowledgements: Simon Bare and Shelly Kelly A. Frenkel The Rehr Group at the UW Supported by: NSF Grant PHY-0835543 **UOP LLC, a Honeywell Company** With computer support from NERSC

