Advances in electronic structure, vibrations and disorder in FEFF

F. D. Vila

Goals, philosophy and useful literature **Multiple scattering theory in FEFF Key approximations in FEFF FEFF structure and parallel implementation Recent advances: RPA** Core-hole Many-pole Self-Energy Augmenting FEFF with DFT **Ab Initio Debye-Waller factors** Importance of structure and disorder

The FEFF project

Ab initio theory of XAS and related spectra

No adjustable parameters

Accuracy ~ experiment

Quantitative interpretation

Inverse problem: What's in a spectrum?

Atomic structure, chemistry, ...

Full spectrum: Expt. Vs Theory

The devil is in the details

Basic recommended literature: Theoretical MS

Reviews of Modern Physics

JULY 2000

VOLUME 72 + NUMBER 3

Published by THE AMERICAN PHYSICAL SOCIETY

through the AMERICAN INSTITUTE OF PHYSICS

THEORETICAL APPROACHES TO X-RAY ABSORPTION FINE STRUCTURE MEMDER SUBSCRIPTION COPY Library or Other Institutions Use Prohibited Until 2005

Quantitative theory:

Theory behind FEFF8 Good general summary

J. J. Rehr & R.C. Albers Rev. Mod. Phys. 72, 621 (2000)

Basic recommended literature: Advanced methods

Available online at www.sciencedirect.com

C. R. Physique 10 (2009) 548-559

http://france.elsevier.com/direct/COMREN/

Theoretical spectroscopy / Spectroscopie théorique

Ab initio theory and calculations of X-ray spectra

John J. Rehr*, Joshua J. Kas, Micah P. Prange, Adam P. Sorini, Yoshinari Takimoto, Fernando Vila

Department of Physics, University of Washington, Seattle, WA 98195-1560, USA

Available online 5 December 2008

PERSPECTIVE

www.rsc.org/pccp | Physical Chemistry Chemical Physics

Parameter-free calculations of X-ray spectra with FEFF9

John J. Rehr, $*^a$ Joshua J. Kas, ^{*a*} Fernando D. Vila, ^{*a*} Micah P. Prange^{*bc*} and Kevin Jorissen^{*a*}

Received 15th December 2009, Accepted 27th April 2010 First published as an Advance Article on the web 6th May 2010 DOI: 10.1039/b926434e The FEFF Project website: URL: feffproject.org

The FEFF Users Guide: URL: feffproject.org/feffproject-feff-documentation.html

Developers contact: URL: feffproject.org/feffproject-contact.html

FEFF development philosophy

"Workhorse": Does a good job most of the time

Main advantages: Real-space Fully relativistic Easy to use Built for spectroscopy Fairly robust

Not always the right tool: Spherical potentials Quasi-particle theory There are more advanced theories

FEFF development philosophy (cont'd)

Under active development: Currently FEFF9.x

Successful: 20+ years of use 1,000s of users/references

Synergy with experimental science: Meant to be used by experimentalists When new methods appear, we try to model them

Theory and Practice Behind FEFF

FEFF in the hierarchy of spectroscopy methods

Atomic models:

e.g. de Groot. Atomic cross-sections, multiplet theory with fitted parameters, model Hamiltonians **DFT (Density Functional Theory):** WIEN₂k, ABINIT, VASP, CASTEP ..., Accurate for ground-state properties, less reliable for excited states, "Final State Rule" with core-hole **Quasi-particle Green's Function Theory:** FEFF. Appropriate for excited states; efficient; missing some many-body physics **BSE (Bethe-Salpeter Equation):** Exc!ting, OCEAN, AI2NBSE. Most accurate but demanding. Less established, less user friendly. Still missing some physics **QC** methods: MRCI, MRCC, CASPT2, QMC, etc, highly accurate but completely intractable

FEFF quantitative XANES theory in one picture

FEFF: Many-body to effective single particle

XAS absorption coefficient

Many-body Fermi's **Golden Rule**

$$\mu(\boldsymbol{\omega}) \propto \sum_{F} |\langle I | \Delta | F \rangle|^2 \, \delta \left(E_F - E_I - \boldsymbol{\omega} \right)$$

Effective Single particle Fermi's Golden Rule

$$H = -(1/2)\nabla^2 + V$$

 $H' = H + V_{ch} + \Sigma(E)$

$$\mu(\boldsymbol{\omega}) \propto \sum_{i,f} |\langle i|d|f \rangle|^2 \,\delta\left(E_f - E_i - \boldsymbol{\omega}\right)$$
$$(\nabla^2 + V)$$

FEFF: From sum-over-states to Green's function

Effective Single particle Fermi's Golden Rule

$$\mu(\boldsymbol{\omega}) \propto \sum_{ij} \left\langle i \left| d^{\dagger} \right| f \right\rangle \left\langle f \left| d \right| i \right\rangle \delta(E_f - E_i - \boldsymbol{\omega})$$

$$\rho(r, r', E) = \sum_{f} |f\rangle \langle f| \,\delta\left(E_{f} - E\right)$$
$$\operatorname{Im}\left[G(r, r', E)\right] = -\frac{1}{\pi}\rho(r, r', E)$$
$$G = \left[E - H + i\Gamma\right]^{-1}$$

Substitute sum over final states with Green's function

$$\mu(\boldsymbol{\omega}) \propto \operatorname{Im}\sum_{i} \left\langle i \left| d^{\dagger} G(\boldsymbol{\omega} + E_{i}) d \right| i \right\rangle \boldsymbol{\theta}_{\Gamma}(\boldsymbol{\omega} + E_{i} - E_{Fermi})$$

FEFF: Local basis and matrix elements

$$\mu(\omega) \propto \operatorname{Im} \sum_{i} \langle i \left| d^{\dagger} G(\omega + E_{i}) d \right| i \rangle \theta_{\Gamma}(\omega + E_{i} - E_{Fermi})$$
Insert complete set of states
$$1 = \sum_{L} |i, L\rangle \langle i, L|$$
Matrix elements
$$\mu(\omega) \propto \operatorname{Im} \sum_{iLL'} \langle i \left| d^{\dagger} \right| i, L \rangle G_{LL'}(\omega + E_{i}) \langle i, L' \left| d \right| i \rangle \theta_{\Gamma}(\omega + E_{i} + E_{Fermi})$$
Green's Function
matrix

Getting G: Multiple Scattering

Getting G: Multiple Scattering

$$G = G^{0} + \sum_{i} G^{0} t_{i} G^{0} + \sum_{i \neq j} G^{0} t_{i} G^{0} t_{j} G^{0} + \dots$$

Central atom contrib.

$$G_c = G_0 + G_0 t_c G_0$$

EXAFS

$$G = G_c + G_c \sum_{i \neq c} t_i G_c + G_c \sum_{i \neq c} \sum_{j \neq c} t_i G_0 t_j G_c + \cdots$$

Graphically: Path expansion

Getting G: <u>Full</u> Multiple Scattering

$$G = G^{0} + \sum_{i} G^{0} t_{i} G^{0} + \sum_{i \neq j} G^{0} t_{i} G^{0} t_{j} G^{0} + \dots$$
$$= t^{i}_{LL'} \delta_{ij}$$
$$G = G^{0} + G^{0} T G^{0} + G^{0} T G^{0} T G^{0} + \dots$$

$$G = \left[1 - G^0 T\right]^{-1} G^0$$

Total scatt. matrix

$$T_{LL'}^{ij} = t_{LL'}^i \delta_{ij}$$

Sum and invert

Self-consistent Densities and Potentials

$$\rho(r) = -\frac{1}{\pi} \int_{-\infty}^{E_{Fermi}} \operatorname{Im}[G(r,r;E)] dE$$

Spherical overlapped muffin-tin potentials: Easier solution of the problem

Local Density Approximation: LDA approximation to self-energy

Quasi-particle approximation: Electron propagates in medium Approximate electron-hole interaction

Core-hole treatment: Screened core-hole

The overlapped muffin-tin potential

FEFF Density of States

FEFF electron density

Beyond DFT: Quasi-particle Self-Energy Effects

Quasi-particle (QP) effects:

$$G = [E - H - \Sigma]^{-1}$$

BN 89 atom cluster

Ground state potential: Usually insufficient Need QP effects

		Input: Nuclear coordinates/charges		
			Potentials	Density
Jreff File Tools Specify the Material		Ma	trix Elements + Screening	Scattering Phase Shifts Self Energy
Atoms Edit View Copper	Run Calculation	optional		
EXAFS 20.0 EDGE L2 RPATH 5.5 LDOS -30 20 0.1	run on: O		Multiple Scattering	MS Path Expansion
potentials phase shifts fms paths path expansion cross-section general Standard Options Advanced Options SCF UNFREEZEF EXCHANGE Hedin Lundqvist V	 ✓ potentials ✓ Idos ✓ phase shifts ✓ fms ✓ path list ✓ path vexpansion ✓ cross-section 		Spectrum Construction Debye-Wall	on er optional
So2 1.0	Save & Run	Debye-Waller Interface		
Print Level 0 V	Help Settings		S02 Convolutio	
GUI "hides" most of this Good to know anyway			Final Outpu	
			Full Spectrum Abs and Optical Con	sorption

SCF

FEFF: Flow Diagram

Feff structure: Modules

rdinp	Read Input
dmdw	Standalone vib. properties
atomic	Solve atomic overlap problem
pot	Self-consistent scattering pot. solver
ldos	Calculate local projected DOS
screen	Screen potential (if requested)
crpa	RPA core-hole (if requested)
opconsat	Full spectrum setup (if requested)
xsph	Calculate phase shifts, mat. elements
	and cross sections
fms	Do full multiple scattering
mkgtr	Trace Green's function
path	Do path expansion (EXAFS)
genfmt	Calculate scattering amplitudes
ff2x	Build the XANES/EXAFS spectrum
sfconv	Spectral function convol. (if requested)
compton	Compute Compton spectra (if requested)
eels	Compute EELS spectra (if requested)

Parallel (MPI) FEFF

PHYSICAL REVIEW B, VOLUME 65, 104107

Parallel calculation of electron multiple scattering using Lanczos algorithms

A. L. Ankudinov,¹ C. E. Bouldin,² J. J. Rehr,¹ J. Sims,² and H. Hung²

¹Department of Physics, University of Washington, Seattle, Washington 98195 ²National Institute of Standards and Technology, Gaithersburg, Maryland 20899

MPI: "Natural parallelization" Each proc. does a few energies

Needed for state-of-the-art XANES simulations

Recent Advances: RPA Core-hole

Core-hole issues: RPA Screened Core-hole

Linear response:
$$W = \epsilon^{-1} V_{core-hole}$$

 $\epsilon^{-1} = (1 - K\chi_0)^{-1}$

$$K = \frac{1}{v} + f_{xc}$$

Comparison of the corehole in H₂O

Recent Advances: Many-Pole Self-Energy

Self-energy issues: Many-pole model

Based* on GW approx.:

 $\Sigma = iGW$

W: Screened Coulomb interaction

$$W = \varepsilon^{-1} V$$

Dielectric function: Key ingredient Usually external source FEFF OPCONS: Qualitative approximation

*B.I. Lundqvist Phys. Kondens Materie, 6, pp. 206, (1967)

Self-energy issues: Many-pole model

Many-pole (full) much better than Hedin-Lundqvist (dashed) vs better theory (dot-dashed)

Kas et al., PRB 76, 195116 (2007)

ZnO: Zn K edge XANES

Expt: Ney et al., PRL 100, 157201 (2008)

Cu XANES: Comparison in absolute units

Kas et al., NIMA, doi:10.1016/j.nima.2010.01.024

Recent Advances: FEFF + DFT

Augmenting FEFF with DFT

Structures: Find possible structures Data for *ab initio* DW factors Find dynamical properties

Potentials: Check full potential effects Feed full potentials to FEFF (very, very beta)

Energies: Check accuracy of Fermi level Check accuracy of LDOS Find/check chemical shifts

Ab Initio Debye-Waller factors

DW factors:

Crucial for EXAFS Very little effect in XANES region Can be included anyway in single-scattering approx. Both *ab initio* and model forms

Quick intro to Ab Initio DW factors

Multiple Scattering Path XAFS DW Factor

Average commonly expressed in terms of the cumulant expansion

$$\left\langle e^{i2kT} \right\rangle \equiv e^{2ikR_0} e^{-w(T)}$$

 $W(T) = -\sum_{n=1}^{\infty} \frac{(2ik)^n}{n!} \sigma^{(n)}(T)$

1:1-D

W(T)

in Lev

First cumulants $\begin{cases}
\sigma^{(1)} = \langle r - R_0 \rangle \\
\sigma^{(2)} = \langle (r - \bar{r})^2 \rangle \equiv \sigma^2 (T) \\
\sigma^{(3)} = \langle (r - \bar{r})^3 \rangle
\end{cases}$ XAFS DW Factor for path R:

$$\sigma_R^2(T) = \frac{\hbar}{2\mu_R} \int_0^\infty \frac{1}{\omega} \coth\left(\frac{\beta\hbar\omega}{2}\right) \rho_R(\omega) \, d\omega$$

VDOS expressed as imaginary part of the phonon propagator

 $\rho_{R}(\boldsymbol{\omega}) = -\frac{2\boldsymbol{\omega}}{\pi} \operatorname{Im} \left\langle 0 \left| \frac{1}{\boldsymbol{\omega}^{2} - \mathbf{D} + i\boldsymbol{\varepsilon}} \right| 0 \right\rangle$

Seed state: Displacement along path

Dynamical Matrix: Calculated using ab initio methods (abinit, Gaussian, VASP, etc)

DEBYE Temp Debye_Temp [DW_Opt [dymFile DMDW_Order DMDW_Type DMDW_Route]]

DEBYE 500.0 1073.0 5 feff.dym 6 0 1

DMDW_Type - Type of DW calculation, the possible values are:

0 - Parallel σ^2 (default)

DMDW_Route - Which paths to use in the dmdw module. These paths do not affect the path selection in the XAS calculations, they are used for the generation of an input for the independent dmdw module. The possible values are:

0 - Skip dmdw module (default)
1 - All SS paths from absorber
2 - Same as 1 + all DS paths from absorber
3 - Same as 2 + all TS paths from absorber
11 - All SS paths
12 - Same as 1 + all DS paths
13 - Same as 2 + all TS paths

Computing a dym file

Ab initio codes: Gaussian VASP Siesta NWChem Abinit Quantum Espresso Orca (almost)

Talk to me if you are interested

Typical DMDW output

Path Indices:	1	2
pDOS Poles:		
Freq. (THz)		Weight
7.609		0.00055
14.776		0.00077
24.890		0.00587
31.463		0.00623
33.972		0.70221
34.762		0.28436

pDOS Einstein freq (single pole) and associated temp: Freq (THz) Temp (K) 34.118 1637.35

pDOS	n Moments and	associated Eins	stein freqs	and temps:
n	Mom (THz^n)	Freq (THz)	Temp (K)	
-2	0.00087	33.85132	1624.55	
-1	0.02941	34.00240	1631.80	
0	1.00000			
1	34.09808	34.09808	1636.40	
2	1164.03434	34.11795	1637.35	

Path Length (Ang), s^2 (1e-3 Ang^2): 1.583 1.234

EXAFS near-neighbor DW Factor of Cu

Expt: Fornasini et al. (2004)

EXAFS near-neighbor DW Factor of Ge

Expt: Dalba et al. (1999)

Ab Initio DW Factors in Metal-Ligand Complexes

Ru(bpy)²(AP)(H₂O)⁺⁺

Good agreement for tight ligands (bpy)

Useful agreement for weak ligands (AP and H2O) Still within error margin

	R _{M-L} (in Å)		σ ² (in 10 ⁻³ Å ²)		
Path	Theory	Ехр	Theory	Exp.	
Ru-N(bpy)	2.08		2.49	2.6±0.9	
	2.04	2.05±0.01	2.32		
	2.10		2.60		
	2.09		2.50		
Ru-N(AP)	2.14	2.10±0.03	2.61	4±3	
Ru-O	2.22	2.06±0.05	4.93	9±7	

N(bpy)

Expt: Salassa et al., J. of Physics: Conference Series 190, 012141 (2009)

Disorder:

Can be crucial in XANES Need external input for FEFF simulations MD trajectories MC sampling

Disorder effects

Vila et al. Physical Review B 78, 121404(R), 2008

Dynamic Structural Disorder (DSD) in Nanoparticles

DSD drives: Fluctuating bonding Cluster mobility Charge separation Layering and segregation Adsorbate dynamics (right) Adsorbate reactivity

Inhomogeneity

CO dynamics on Pt₁₀Sn₁₀

Rehr and Vila J. Chem. Phys. 140, 134701 (2014)

Disorder affects reactivity

Large differences in activation energy (E_{act}) Reaction path depends on DSD

Pt charge modulation in PtSn nanoparticles

Edge position and charge transfer

Edge position: Fermi level shift on charge transfer

A broad introduction to FEFF Basic understanding of the MS method The code structure of FEFF

Introduction to the more advanced methods in FEFF Electronic structure: Many-pole self-energy RPA core-hole Augmenting FEFF with DFT Structure and disorder are key to good results

The FEFF group: Seattle and beyond

From left to right:

Ken Nagle Towfiq Ahmed Fernando Vila Micah Prange John Rehr Yoshi Takimoto Hadley Lawler Adam Sorini John Vinson Josh Kas Kevin Jorissen Aleksi Soininen Alex Ankudinov (Shauna Story) (Egor Clevac)

Expectations for Demo tomorrow

Brief introduction to (might skip depending on audience): Installing and running the code FEFF input and output Simple examples of FEFF calculations

User problems and discussion: PLEASE, bring your own problem Will briefly show very advanced calculations

Possible roundtable with feature requests