Real-Space and Real-Time Approaches for Energy-Related Materials

F. Vila

ALS Users Meeting October 2009

Dynamic Structure in Pt Nanoclusters on γ-Al₂O₃

Vila et al. Phys. Rev. B 78, 121404(R) (2008)

Optical Properties of a Model Organic Photovoltaic Device

Dynamic Structure in Pt nanoclusters on γ-Al₂O₃

The Problem

600

800

600

Kang et al. JACS 2006, 128, 12068

Computational Details

Study prototypical Pt₁₀ cluster on [110] surface of γ-Al₂O₃

DFT/MD VASP PBE Functional 396 eV Cutoff 3 fs Step 3 ps Equilibration 5 ps Runs (3) 165 K & 573 K

XANES

FEFF8 Full Multiple Scattering 32 Configurations from MD 7 Å Clusters (~150 atoms)

MD @ 573 K

Brownian-like Motion

Cluster footprint @ 165 K

Cluster footprint @ 573 K

Pt-Pt Pair Distribution Function

2 Negative Thermal Expansion

3 High Pt-Pt Disorder

Pt-O Pair Distribution Function

No O-signal in EXAFS

Decomposition of the Pt-Pt PDF

A Simple Model

Pt L₃ XANES: Conf. Average over MD

Increased intensity and redshift at high T

Increased intensity and redshift at high T

Summary

Possible implications in catalysis: Activity affected by cluster mobility?

RT-TDDFT simulation of the optical properties of a model organic photovoltaic device

The Problem

Theoretically study the initial process of light harvesting in organic photovoltaic devices: Optical Absorption

Develop simple structural models of organic photovoltaic devices

Calculate the optical absorption of photovoltaic components using **RT-TDDFT**

B

Explore spectral trends induced by changes in the structure of the components

Real-Time Time Dependent DFT

Direct numerical integration of the time-dependent Kohn-Sham equations in a time-dependent external electric field:

$$i\frac{\partial\Psi}{\partial t} = H(t)\Psi \quad \Psi(t) = T \exp\left(-i\int_0^t H(t')dt'\right)\Psi(0)$$
$$H = -\frac{1}{2}\nabla^2 + V_{ext}(\mathbf{r},t) + V_H[\rho](\mathbf{r},t) + V_{xc}[\rho](\mathbf{r},t)$$

Optical properties are determined from the total dipole moment:

$$\mathbf{p}(t) = \int \rho(\mathbf{r}, t) \, \mathbf{r} \, d^3 \mathbf{r}$$

$$\chi_{ij}^{(1)}(\omega) = \delta p_i(\omega) / E_j(\omega) = \alpha_{ij}(\omega) \quad \sigma(\omega) \sim \omega \operatorname{Im} \langle \alpha(\omega) \rangle$$

Linear Response

Absorption

Yabana and Bertsch, Phys. Rev. B 54, 4484 (1996)

Optical Absorption in CO (Y. Takimoto)

Delta Function (Unit Impulse at t=0)

Takimoto et al. J. Chem. Phys. 127, 154114 (2007)

Model Structures (VASP, PBC)

C₆₀ on poly-Thiophene (pT) A model for a PCBM-p3TH heterojunction device

Model Structures (VASP, PBC)

A model for a regioregular (rr) p3TH

Model Structures (VASP, PBC)

A model for a regiorandom (ra) p3TH

Interaction Between pT Chains

Effect of Hexyl Chains in p3HT

Electron Density Fluctuations

Summary

Real-Space and Real-Time Approaches for Energy-Related Materials

Y. Takimoto T. Ahmed C. Luscombe A. Jen D. Ginger

... and Thank You

J. J. Rehr A. Ankudinov M. Prange H. M. Lawler J. Vinson J. Seidler T. Fister K. Nagle

J. Kas R. G. Nuzzo A. I. Frenkel

DOE Grants DE-FG35-08G018024, DE-FG02-04ER1599

