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Experimental/Theoretical Landscape
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Motivation

Why real-time and finite temperature?

Old approaches not well suited for new science:

XFEL pulsed x-ray sources (FLASH, LCLS)

Pump-probe experiments (with finite electronic T)

Interest in time-dependent response

Direct access to time-domain

Importance of non-equilibrium states

Interest in exotic states (warm dense matter)
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The Challenge



Green’s Functions and DFT/MD Approaches in X-Ray 

Excited States and Structural Disorder

Real-Time Approaches for Optical and Core Response

Finite Temperature Green’s Functions

This talk:



Green’s Functions and DFT/MD Approaches in X-Ray 

Excited States and Structural Disorder



XAS: XANES and EXAFS
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FEFF Quantitative XANES Theory in One Picture
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Many-body Fermi’s
Golden Rule

Effective Single particle
Fermi’s Golden Rule

XAS absorption coefficient

Many-body to Effective Single Particle



Substitute sum over 
final states with 
Green’s function

FEFF: From Sum-Over-States to Green’s Function

Effective Single particle 
Fermi’s Golden Rule



FEFF: Local basis and Matrix elements

Insert complete set of site states

Matrix elements

Green’s function
matrix



Getting G: Path Expansion and Full Multiple Scattering

Dyson’s equation:

Iterating:

Atomic pot., site scat., 
central atom, etc. 

Path expansion

Full Multiple Scattering

XANES

EXAFS



Full spectrum: Expt. Vs Theory

fcc Al

UV x-ray



BN 89 atom cluster

Ground state potential:

Usually insufficient

Need QP effects

Beyond DFT: Quasi-particle Self-Energy Effects

Quasi-particle (QP) effects:



Average commonly expressed in 
terms of the cumulant expansion

First cumulants
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FT of Ge EXAFS (k)

J. Kas et al. (2007)
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Multiple Scattering Path
XAFS DW Factor

Debye-Waller Factors in EXAFS



XAFS DW Factor for path R:

VDOS expressed as imaginary part 
of the phonon Green’s function

Seed state: Displacement 
along path

Dynamical Matrix: Calculated using ab initio
methods (Abinit, Gaussian, VASP, NWChem, etc)

DW factors from Phonon Green’s Function



Expt: Dalba et al. (1999)

EXAFS near-neighbor DW Factor of Ge

CD (Correlated Debye):
Standard FEFF

LDA, hGGA:
Ab initio DW

Directional bonding:
Needs AIDW



Pt10 on g-Al2O3

MD @ 165 K

Librational Motion

Brownian-like Motion

MD @ 573 K

F. D. Vila, J. J. Rehr, J. Kas, R. G. Nuzzo, A. I. Frenkel

Physical Review B 78, 121404(R), 2008 

Dynamic structure in supported Pt

nanoclusters: Real-time density functional 

theory and x-ray spectroscopy simulations 

Complex dynamics:

multiple-time scales, librational

motion, fluctuating bonding

Simulations explain:

large structural disorder, Negative 

Thermal Expansion (NTE).

Dynamic Structural Disorder In XANES



Theory: Static Simulations are Inadequate

Vila et al. Physical Review B 78, 121404(R), 2008 

MD simulations reproduce experiment

+δ (“Oxidized”) -δ (“Metallic”)

Pt10 on g-Al2O3 @ 165 K

n



Real-Time Approaches for Optical and Core Response



Real-Time TDDFT Advantages

Can be more efficient than frequency space (large systems)

Very versatile (pulses, transport, etc)

More “physical/realistic”

Easy access to NLO properties



Direct numerical integration of the time-dependent Kohn-Sham

equations in a time-dependent external electric field:

Real-Time Time Dependent DFT

Optical properties are determined from the total dipole moment:

Linear Response Absorption

Yabana and Bertsch, Phys. Rev. B 54, 4484 (1996)



Orbital coefficients

Numerical Real-Time Evolution

The ground state density 0, overlap matrix S and Hamiltonian 

matrix H(t) evaluated at each time-step using SIESTA:

Accurate and stable evolution using Crank-Nicolson propagator:

Tsolakidis et al. Phys. Rev. B 66, 235416 (2002)

Soler et al. J. Phys.: Condens. Matter 14, 2745 (2002)

-

-



E(t)

0

Ground state 

without field

Evolution for t > 0

E(t)

0

Ground state with 

constant field

Evolution for t > 0

Delta Function (Unit Impulse at t=0)

Time (fs)

Step Function (Turn-off Constant E at t=0)

Optical Absorption in CO
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Takimoto et al. J. Chem. Phys. 127, 154114 (2007)



Linear Response: Chromophore YLD_156
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Expt. (CHCl3)
absorption peak

Real-time (gas) 
absorption peak

0 = 1.72 eV

(l0 = 721 nm)

0 = 1.65 eV

(l0 = 753 nm)



Real time Nonlinear Response

Nonlinear expansion:

How do we invert to get nonlinear response function?

Must take into account response time:



Time (fs)

Dynamic NLO with Quasi-Monochromatic Field F

F : Sine wave with sine or Gaussian envelope

SHG
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Second Harmonic Generation (SHG) in pNA
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XAS Absorption (FGR, ΔSCF, FSR)

Core Hole Green’s Function Autocorrelation Function

FT

Crank-Nicolson

Real-Time X-Ray Spectroscopy (RTXS)



Atom GS

CH PP Screened CH

SCF TDInit

PAW

RTXS in “Pictures”



C K-Edge XAS of Diamond (C47H60 cluster)

Expt: Fister et al., Phys. Rev. B 75, 174106 (2007)



Finite Temperature Green’s Functions



Green’s Functions at Finite-T

Motivation:

For excited states & thermodynamics at finite-T and 

extreme conditions (WDM, T ~ TF ) we need methods 

beyond 0 K DFT

J. J. Kas and J. J. Rehr Phys. Rev. Lett. 109, 176403 (2017)

Starting point: Sum-rules for energy and density

Key ingredient: Spectral function from Green’s function



Which Green’s Function? GW vs Cumulant

We choose the cumulant G: Better than GW

G(ω) = G0+ G0 Σ G

No vertex: Γ = 1 Implicit vertex

C ~ | Im ΣGW  | 

G(t) = G0 (t) e
C(t)

GW Cumulant*

ΣGW = iGW W =  -1 v

*Recent review: J. Zhou et al.  J. Chem. Phys. 143, 184109  (2015)



Finite T Cumulant Green’s Function

Similar to T=0 [1] with implicit temperature dependence [2]

[1] Kas et al., Phys. Rev. B 90, 085112 (2014)

[2] Kas el al., Phys. Rev. Lett. 109, 176403 (2017)

Natural separation into independent particle and correlation parts

FT Cumulant

Retarded Green’s function 

Matsubara formalism



Thermodynamics from G

UW Preprint  Jan 2018

Chemical potential μ(n,T) : solution of n(μ,T) = n  

Can always separate into independent particle + xc parts:

μ(n,T)  =     μ0(n,T)     +     μxc(n,T) 



Exchange-Correlation Potential

Good agreement with finite T DFT functionals

KSDT: VV Karasiev, T Sjostrom, J Duffy and SB Trickey, Phys. Rev. Lett. 112, 076403 (2014)



Summary

Green’s Functions: 
Provide an efficient and versatile approach to:

X-Ray Excited States

Structural Disorder

Finite Temperature Effects

Real-Time Approaches:
RT-TDDFT:

Alternative to frequency-space simulations

Fast implementation, highly adaptable

Both linear and non-linear response

Access to core response

DFT/MD:

Crucial for systems with dynamic disorder/bond breaking
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