## Dynamic Anomalies in the Nanoscale Structure and Disorder of Supported Metal Nanoparticles

#### F. D. Vila, A. I. Frenkel, R. G. Nuzzo and J. J. Rehr





DOE grant DE-FG02-03ER15476 With computer support from DOE - NERSC.

Dens

## Dynamic Disorder in Nanosystems

#### Drives structural effects: Fluctuating bonding Cluster mobility

#### Affects electron distributions: Charge separation Layering and segregation

Enriches the catalytic landscape: Changes adsorbate dynamics (right) Opens new reaction channels

#### CO dynamics on Pt<sub>10</sub>Sn<sub>10</sub>



#### Rehr and Vila J. Chem. Phys. 140, 134701 (2014)

## **Experiment: Anomalies in Supported Pt NPs**



Negative Thermal Expansion (NTE) in smaller NPs Large OK ("static") disorder in smaller NPs Apparent bond strengthening with NP size decrease

Sanchez et al. JACS 131, 7040, 2009

#### Anomalous Effective Grüneisen Parameter?

$$\gamma = -\frac{1}{3} \frac{d \ln \nu_{\rm E}}{d \ln R_{\rm PtPt}} \qquad \Longrightarrow \qquad \gamma \cong -\frac{1}{3} \frac{\Delta \nu_{\rm E}}{\Delta R_{\rm PtPt}} \frac{R_{\rm PtPt}}{\nu_{\rm E}}$$

Pt metal:

- Expt:  $\gamma = 2.7$ Theo:  $\gamma = 2.8$
- 0.9-1.1 nm NPs: From Einstein Model Fit: Expt:  $\gamma \cong 5\pm 2$

Einstein Model with Static Disorder

$$\sigma^{2}(T) = \sigma_{S}^{2} + \frac{h}{8\pi^{2}\mu} \frac{1}{\nu_{e}} \operatorname{coth}\left(\frac{h\nu_{E}}{2k_{B}T}\right)$$



#### Effective Grüneisen parameter larger in NPs than bulk

## Anomalous Effective Grüneisen Parameter?

$$\gamma = -\frac{1}{3} \frac{d \ln v_E}{d \ln R_{PtPt}} \implies \gamma \cong -\frac{1}{3} \frac{\Delta v_E}{\Delta R_{PtPt}} \frac{R_{PtPt}}{v_E}$$
Pt metal:  
Expt:  $\gamma = 2.7$   
Theo:  $\gamma = 2.8$   
0.9-1.1 nm NPs:  
From Einstein Model Fit:  
Expt:  $\gamma \cong 5\pm 2$   

$$\rho_R(\omega) \cong \sum_{i=1}^{N} w_i \delta(v - v_i)$$

$$\bar{v}_E = \langle v^{-2} \rangle^{-\frac{1}{2}} = \left(\sum_{i=1}^{N} \frac{w_i}{v_i^2}\right)^{-\frac{1}{2}}$$

#### We can estimate from *R*-dependent PDOS

## A. Frenkel: Anomalous Effective Grüneisen Parameter?



#### What is the origin of this discrepancy?

## The Problem: Anomalous Bond Strengths Einstein Model



Sanchez et al. JACS 131, 7040, 2009



# "The Mystery of the Superstrong Pt Nanoparticles"

## **Computational Details**

Systems: Pt<sub>10</sub> and Pt<sub>20</sub> clusters Support:  $\gamma - Al_2O_3$ 4 layers Dehydroxylated Cell: 19.4 Å× 13.7 Å 16 Å vacuum

MD Setup: 6 initial conditions 20 ps runs: 10 ps analysis 3 fs time-step Nosé-Hoover thermostat Method: PBE XC functional US PPs, 297 eV cutoff VASP

## Total Mean Square Relative Displacement (MSRD)



#### Reasonable agreement between theory and expt.

## High (> 1THz) and Low (< 1 THz) Frequency Filtering



#### Power Spectra of CM and Pt-Pt Dynamics



Nice separation of slow and fast dynamic regimes

## Vibrational MSRD



#### Normal linear vibrational behavior

## Dynamic Structural Disorder (DSD) MSRD



Normal linear behavior: Low frequency quasi-harmonic modes

## DSD: Correlation Between CM and Pt-Pt Dynamics



Moderate/strong correlation between CM libration and Pt-Pt bonds

#### Anomalous Structural Disorder (ASD) MSRD



Anomalous quasi-static disorder: Causes apparent strengthening

## Temp. Dep. Anomalous Bond Distributions ( $\sigma^2_{ASD}(T)$ )



Dynamic activation and depletion of long bonds

## Grüneisen Parameter: NPs vs Bulk



#### Grüneisen Parameter: Enhanced by anomalous disorder

#### Summary

Partitioned MSRD from DFT/MD simulations reveals:

NEW concept: Anomalous Structural Disorder (ASD) Decreases with T

Single mechanism, dynamic activation, explains: NTE Large disorder Bond strengthening

Normal behavior of Pt-Pt vibrations, but slightly stronger bonds Coupling to CM motion  $\rightarrow$  Dynamic disorder

Implications for interpretation of EXAFS:Analysis must account for both ASD and DSDNeed new ASD modelling approachAnomaly signature?:  $\gamma_{NP} > \gamma_{Bulk}$ 

Dynamic anomalies in the nanoscale structure and disorder of supported metal nanoparticles

#### F. D. Vila, A. I. Frenkel, R. G. Nuzzo and J. J. Rehr

Acknowledgements: J. J. Kas S. R. Bare S. T. Hayashi S. Vilmolchalao





DOE grant DE-FG02-03ER15476 With computer support from DOE - NERSC.