Dynamic structural disorder and reactivity in supported metal nanocatalysts

F.D. Vila, J. J. Rehr and A.I. Frenkel

DOE grant DE-FG02-03ER15476 With computer support from DOE - NERSC.

"A theoretical tour de force" J. Horr. Phys. A

> "Love it.." An anonymous referee

> > "Hate it.." Nature editor

An Evolving Picture of Metal Nanocatalysts

Metal nanocatalysts: Keystone of heterogeneous catalysis in industry

Theoretical studies of nanocatalysts used to: Use static structures Sample few conformations Not account for realistic temperature

More recently:

Finite temperature DFT/MD simulations Highlight importance of disorder

Static Simulations are Usually Not Sufficient

Need dynamics to reproduce experiment

Vila et al. Physical Review B **78**, 121404(R), 2008

Model of Negative Thermal Expansion (NTE)

Low T

High T

Overall behavior: Results from inhomogeneous changes Driven by dynamic fluctuations

Dynamic Structural Disorder (DSD) in Nanoparticles

DSD drives: Fluctuating bonding Cluster mobility Charge separation Layering and segregation Adsorbate dynamics (right) Adsorbate reactivity

Inhomogeneity

Rehr and Vila J. Chem. Phys. **140**, 134701 (2014)

April 2014 Volume 140 Number 13 The Journal of Chemical Physics AIP

CO dynamics on Pt₁₀Sn₁₀

Model of Charge Segregation

In PtSn alloy nanoparticles: Sn segregation to particle surface Driven by Coulomb repulsion Less charged Pt atoms in particle core

Disorder Affects Reactivity

Large differences in activation energy (E_{act}) Reaction path depends on DSD

Inhomogeneity in Well-defined(?) Nanoparticles

Bond contraction with heating/desorption White line: redshift, Emission line: blueshift EXAFS measurements: Predict truncated cuboctahedron Pt₃₇

Hypothesis: Both phenomena related to desorption Is inhomogeneity important to these phenomena too?

Preliminary Methods and Models

- Pt₃₇ on C and SiO₂:
 - PBE/PAW optimization with 400 eV planewave cutoff
 - C surface: 3 graphite layers (4 x 4, 384 atoms)
 - SiO₂: reconstructed (001) α -quartz (2 x 4, 278 atoms)

Bond Expansion

Pt₃₇ on Graphite Pt₃₇ on SiO₂ 20 20 – Pt₃₇ – Pt₃₇ 15 15 10 10 5 5 0 20 20 Pt₃₇ + CO (Edge) Pt₃₇ + CO (Edge) 15 15 10 10 # of Bonds 5 5 0 0 20 20 Pt₃₇ + CO (Face) Pt₃₇ + CO (Face) 15 15 10 10 5 5 20 20 Pt₃₇ + 15 CO (Top) Pt₃₇ + 15 CO (Top) 15 15 10 10 5 0∟ 2.5 0 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 2.6 2.7 2.8 2.9 3.0 3.1 3.2 R_{PtPt} (Å) R_{PtPt} (Å)

PtPt mean expansion (vs H-covered, not shown): 1.2% on C and 0.4% on SiO₂ (Expt. 1% and 0.4%)

Bond Distance vs # of NN

Higher coordination ⇔ Longer bonds Similar behavior on both supports

of Pt NN on SiO_2

Mean PtPt Bond Lengths on SiO₂

Charge Inhomogeneity

CO-bound Pt atoms loose 0.2-0.3*e* each Layer charge alternation Bond expansion due to charge loss

Charge inhomogeneity on SiO₂

Ab initio Vibrational Properties

Projected Vibrational DOS: Use efficient pole model

$$p_{R}(\omega) = -\frac{2\omega}{\pi} \operatorname{Im} \left\langle 0 \left| \frac{1}{\omega^{2} - \mathbf{D} + i\varepsilon} \right| 0 \right\rangle$$

(D)
$$\cong \sum_{v=1}^{N} w_{v} \delta(\omega - \omega_{v}) = (M_{j}M_{j'})^{-1/2} \frac{\partial^{2} E}{\partial u_{jl\alpha} \partial u_{j'l'\beta}}$$

Dynamical Matrix (D) from VASP:

$$\sigma_R^2(T) = \frac{\hbar}{2\mu_R} \int_0^\infty \frac{1}{\omega} \coth\left(\frac{\beta\hbar\omega}{2}\right) \rho_R(\omega) d\omega$$

Properties: DW factors and mean Einstein temperatures:

$$T_E = \frac{\hbar \langle \omega^2 \rangle^{-\frac{1}{2}}}{k_B} = \frac{\hbar}{k_B} \left(\sum_{\nu=1}^N \frac{w_\nu}{\omega_\nu^2} \right)^{-\frac{1}{2}}$$

Bond Stiffness Inhomogeneity on SiO₂

Broad range of stiffness over single nanoparticle **Reduced** Gruneisen parameter (γ) *vs* metal

Mean PtPt Einstein Temperatures on SiO₂

Model of Stiffness

Pt nanoparticles have: Stiff outer shell (Shorter R_{PtPt}, less #NN) Soft core (Longer R_{PtPt}, more #NN) Outer shell weakens upon CO adsorption

Conclusions

Inhomogeneity encompasses nanoparticle behavior:

- Changes reactivity
- Modulates charge distribution
- Modulates structure and vibrations
- Coupled to adsorbate interaction
- Correlations between XAFS parameters
 - #NN \Leftrightarrow R_{PtPt} \Leftrightarrow $\nu_E \Leftrightarrow \sigma_{PtPt}^2$

• Future work

- Finite temperature dynamics
- Local x-ray spectroscopy

Structural and charge inhomogeneity in supported Pt clusters

F.D. Vila, J. J. Rehr and A.I. Frenkel

Acknowledgements: J. J. Kas E. Klevak S. Story S. T. Hayashi S. Vilmolchalao S. Bare S. Kelly A. Elsen U. Jung Y. Li O. Safonova R. Thomas M. Tromp R. Nuzzo

DOE grant DE-FG02-03ER15476 With computer support from DOE - NERSC.