Thermal and composition effects on the structure, dynamics, and reactivity of PtSn bimetallic nanoparticles on  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>

F. Vila, J. J. Rehr, S. D. Kelly and S. R. Bare



**A Honeywell Company** 

#### **Motivation**

- Alumina-supported Pt-based catalysts:
  - Used for: Reforming of light petroleum distillate
  - Modifiers (Sn, Re and Ir): profound effect on stability, reduce carbon deposition
- Knowledge of structure and dynamics: Understanding and improvement of catalytic activity

**Operando Theory:** Study thermal and composition effects on the structure and reactivity of PtSn clusters on  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> under realistic operando conditions

#### **Previous Work**

APRIL 7, 2011 VOLUME 115 NUMBER 13 pubs.ocs.org/JPG

## THE JOURNAL OF PHYSICAL CHEMISTRY



NANOMATERIALS, INTERFACES, HARD MATTER

#### Experimental (XAS, STEM, TPR, and XPS) and Theoretical (DFT) Characterization of Supported Rhenium Catalysts

S. Bare, S. Kelly, F. D. Vila, D. Boldingh, E. Karapetrova, J. Kas, G. Mickelson, F. Modica, N. Yang, J. J. Rehr

J. Phys. Chem. C **115**, 5740, 2011

DFT/EXAFS model with three species was used to identify the dominant Re adsorption site on the alumina surface.

# Re on $\gamma Al_2O_3$

#### **Previous Work**

Dynamic structure in supported Pt nanoclusters: Real-time density functional theory and x-ray spectroscopy simulations

F. D. Vila, J. J. Rehr, J. Kas, R. G. Nuzzo, A. I. Frenkel Physical Review B **78**, 121404(R), 2008

Complex dynamics on multiple-time scales including librational motion of the center of mass and fluctuating bonding.

Simulations explain unusual phenomena including large structural disorder and Negative Thermal Expansion (NTE).



 $Pt_{10}$  on  $\gamma Al_2O_3$ 

## **DFT/MD and XANES Computational Details**



Initial structures: randomly Sn-substituted Pt<sub>20</sub> cluster

<u>DFT/MD</u> VASP **PBE Functional 396 eV Cutoff 3 fs Steps 3 ps Equilibration** 9 ps Runs (4/Temp) 298 and 598 K **XANES** FEFF9

Full Multiple Scattering 15 MD Samples 7Å Clusters (~150 atoms)

## **Dynamical Properties: Molecular Dynamics**



#### **Cluster Internal Structure: Pt-Pt**



Shorter R<sub>Pt-Pt</sub> and NTE trend at higher Pt concentration

#### **Cluster Internal Structure: Pt-Sn**



Pt-Sn shell: Unaffected by temperature and concentration

#### **Cluster Internal Structure: Sn-Sn**



Sn-Sn shell: Structure develops at high Pt concentration

#### **Cluster-Surface Interaction: Pt-O and Sn-O**



Pt-O shell: More O per Pt in Sn-poor clusters Sn-O shell: Very similar except for O uptake shoulder

#### **Cluster-Surface Interaction: zDF**



Surface-cluster interaction: Sn changes interface from Pt-rich to Pt-poor

#### **Electronic Properties: Total DOS**



Small E<sub>Fermi</sub> shift, change in DOS largest at E<sub>Fermi</sub>

#### **Electronic Properties: Net Atomic Charge**



Near surface: Both species more positive Far from surface: Clusters nearly neutral Pt mean net charge: Controlled by Sn

## **Electronic Properties: Pt L3 XANES (298 K)**



Edge shift: ~ to E<sub>Fermi</sub> shift Phase shift in EXAFS: R<sub>Pt-Pt</sub> change

## **Reactivity: Static Thermal Sampling (STS)**

- MD reactivity sampling:
  - Computationally demanding
  - Difficult to capture relevant events
- Need efficient alternative: STS
  - Extract snapshots from MD
  - "Drop" adsorbate on cluster
  - Optimize adsorbate interaction while keeping cluster fixed

## **Reactivity:** R<sub>H-H</sub> and R<sub>Molecule-Metal</sub> Distribution



Two H<sub>2</sub> interactions: Weak and strong Strong interaction: Shorter R<sub>Molecule-Metal</sub> distance

## **Reactivity: H<sub>2</sub> Dissociation Probability**



On  $Pt_{10}Sn_{10}$ : Low probability (<1%) at both 298 and 573K On  $Pt_{15}Sn_5$ : 5% at 298K and 10% at 598K

### Conclusions

- Operando DFT/MD provides a wealth of structural and dynamical information
- Sn atoms:
  - Modulate Pt-Pt interaction
  - Preferentially on surface layer
  - Act as "barrier" between surface and Pt
  - Differential charging of Pt and Sn atoms
- STS reveals:
  - Different cluster-H<sub>2</sub> interaction types
  - Preferential H<sub>2</sub> dissociation on Pt-rich clusters

Thermal and composition effects on the structure, dynamics, and reactivity of PtSn bimetallic nanoparticles on  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>

F. Vila, J. J. Rehr, S. D. Kelly and S. R. Bare

Supported by: NSF Grant PHY-0835543 UOP LLC, a Honeywell Company With computer support from NERSC

Thank you...



