Real-time time-correlation approach for x-ray absorption and emission

F. D. Vila, A. J. Lee and J. J Rehr

Department of Physics, University of Washington

APS Meeting, Boston, Feb. 27 – Mar. 2

Supported by NSF Grant PHY-0835543 (AJL, FDV), DOE BES Grant DE-FG03-97ER45623 (JJR) and facilitated by the DOE CMCSN Grant DE-FG02-08ER46540I

Why Use a Time-Dependent Approach?

XAS traditionally calculated with Fermi's Golden Rule (FGR) using wavefunctions or real-space Green's functions (RSGF)

Currently:

New experimental pulsed sources (XFEL, LCLS) and pump-probe experiments

Increased interest in time-dependent (TD) response

Our approach:

Compute response using TD autocorrelation function

Goal:

Time-dependent x-ray response, including **core hole dynamics**

TD Methods: Two Useful Examples

Real-Time TDDFT for NLO response

Real-Time DW factors

TD Methods: Two Useful Examples

Real-Time TDDFT for NLO response

Real-Time DW factors

Real-Time X-Ray Spectroscopy (RTXS)

RTXS Equations

XAS Absorption (FGR, \DeltaSCF, FSR) $\mu(\omega) = \sum_{k} |\langle c|d|k \rangle|^{2} \delta_{\Gamma}(\omega + \varepsilon_{c} - \varepsilon_{k}) \theta(E - E_{F})$ $\downarrow \mathbf{FT}$ $\mu(\omega) = \frac{1}{\pi} \operatorname{Re} \int_{0}^{\infty} dt \, e^{i\omega t} G_{c}(t) \langle \psi(t) | \psi(0) \rangle \theta(\omega + \varepsilon_{c} - E_{F})$

Core Hole Green's Function

$$G_c(t) = i \exp[i(\varepsilon_c + i\Gamma)t]$$

Autocorrelation Function

$$\langle \Psi(t) | \Psi(0) \rangle = \sum_{jj'} \langle c | d^{\dagger} | j \rangle U_{jj'}(t,0) \langle \tilde{j}' | d | c \rangle$$

Computational Details

Implemented on UW RT extension of SIESTA with: Real-time propagation PAW for dipole matrix elements (based on UW OCEAN)

Present implementation:

Quasi-monochromatic source with finite lifetime

SIESTA details:

TZDP basis Norm conserving PP 150 Ryd grid cutoff Experimental structures

TD:

Simulation time ~1-5 fs with 0.01 fs steps Broadening and E_c shift to match experiment

Comparisons with:

StoBe (GTO-based FGR, TST core hole approximation) **FEFF** (Real Space Multiple Scattering, FSR)

C Kα XES of C₆H₆

Expt: Skytt et al., Phys. Rev. A 52, 3572 (1995)

C Kα XES of Diamond (C₄₇H₆₀ cluster)

Expt: Ma et al., Phys. Rev. Lett. 69, 2598 (1992)

C K-Edge XAS of Diamond (C₄₇H₆₀ cluster)

Expt: Fister et al., Phys. Rev. B 75, 174106 (2007)

Core Hole Density Relaxation and **XAS Effects in Diamond**

(Isosurface and Projection)

Current Developments

Other dynamical effects: Core hole formation and screening Photoelectron dynamics with valence relaxation

Summary

New, real-time autocorrelation method for x-ray response: Simulated XAS and XES in good agreement with other methods (FGR and RSGF) and experiment

Real-time time-correlation approach for x-ray absorption and emission F. D. Vila, A. J. Lee and J. J Rehr

Department of Physics, University of Washington

Supported by NSF Grant PHY-0835543 (AJL, FDV), DOE BES Grant DE-FG03-97ER45623 (JJR) and facilitated by the DOE CMCSN Grant DE-FG02-08ER46540I