RT-TDDFT simulation of the optical properties of a model organic photovoltaic device

F. Vila and J. J Rehr

WASHINGTON

Interfacial Engineering for Highly Efficient-Conjugated Polymer-Based Bulk Heterojunction Photovoltaic Devices DOE Grant DE-FG35-08G018024 "Sunlight provides by far the largest of all **Carbon-neutral** energy sources."

"Sunlight is a compelling solution to our need for clean, **abundant** sources of energy in the future."

Why Solar?

Why Organic?

""Plastic" solar cells made from molecular, polymeric, or nanoparticlebased structures could provide **flexible, inexpensive**, conformal, low-cost solar electricity systems."

"... new theoretical tools are required to **guide** and **interpret** experiment and assist in the design of molecules, materials, and systems."

BASIC RESEARCH NEEDS FOR SOLAR ENERGY UTILIZATION. (Report on the Basic Energy Sciences Workshop on Solar Energy Utilization, DOE, 2005)

Theoretically study the initial process of light harvesting in organic photovoltaic devices: Optical Absorption

Calculate the optical absorption of photovoltaic components using RT-TDDFT

Explore spectral trends induced by changes in the structure of the components

Real-Time Time Dependent DFT

Direct numerical integration of the time-dependent Kohn-Sham equations in a time-dependent external electric field:

$$i\frac{\partial\Psi}{\partial t} = H(t)\Psi \quad \Psi(t) = T \exp\left(-i\int_0^t H(t')dt'\right)\Psi(0)$$
$$H = -\frac{1}{2}\nabla^2 + V_{ext}(\mathbf{r},t) + V_H[\rho](\mathbf{r},t) + V_{xc}[\rho](\mathbf{r},t)$$

Optical properties are determined from the total dipole moment:

$$\mathbf{p}(t) = \int \rho(\mathbf{r}, t) \, \mathbf{r} \, d^3 \mathbf{r}$$

$$\chi_{ij}^{(1)}(\omega) = \delta p_i(\omega) / E_j(\omega) = \alpha_{ij}(\omega) \quad \sigma(\omega) \sim \omega \operatorname{Im} \langle \alpha(\omega) \rangle$$

Linear Response

Absorption

Yabana and Bertsch, Phys. Rev. B 54, 4484 (1996)

Numerical Real-Time Evolution

The ground state density ρ_0 , overlap matrix *S* and Hamiltonian matrix H(t) are evaluated at each time-step using SIESTA:

$$i\frac{\partial c(t)}{\partial t} = S^{-1}H(t)c(t)$$

Orbital coefficients

Soler et al. J. Phys.: Condens. Matter 14, 2745 (2002)

Accurate and stable time evolution achieved using the Crank-Nicholson approximation:

$$c(t + \Delta t) = \frac{1 - iS^{-1}H(t)\Delta t/2}{1 + iS^{-1}H(t)\Delta t/2}c(t) + \mathcal{O}(\Delta t^2)$$

Tsolakidis et al. Phys. Rev. B 66, 235416 (2002)

Optical Absorption in CO (Y. Takimoto)

Delta Function (Unit Impulse at t=0)

Step Function (Turn-off Constant E at t=0)

Takimoto et al. J. Chem. Phys. 127, 154114 (2007)

Optical Absorption in CO (Y. Takimoto)

Delta Function (Unit Impulse at t=0)

Takimoto et al. J. Chem. Phys. 127, 154114 (2007)

Optical Absorption in CO (Y. Takimoto)

Delta Function (Unit Impulse at t=0)

Step Function (Turn-off Constant E at t=0)

Takimoto et al. J. Chem. Phys. 127, 154114 (2007)

Computational Details: RT-Siesta

- Energy Resolution: 0.2 eV
- Time Step: 0.01 fs
- *#* of Time Steps: 1068
- XC Functional: PBE
- Basis Set: Double Zeta + Polarization
- Energy Shift: 1 meV (Radii ~ 9 au)
- Mesh Cutoff: 120 Ry
- Pseudopotentials: Troullier-Martins

Model Structures (VASP, PBC)

C₆₀ on poly-Thiophene (pT) A model for a PCBM-p3TH heterojunction device

Model Structures (VASP, PBC)

A model for a regioregular (rr) p3TH

Model Structures (VASP, PBC)

A model for a regiorandom (ra) p3TH

Interaction Between pT Chains

Effect of Hexyl Chains in p3HT

Effect of pT Chain Length

18

Conclusions

RT-TDDFT simulation of the optical properties of a model organic photovoltaic device

WASHINGTON

... and Thank You