

Ab Initio XAS Debye-Waller Factors Beyond the Harmonic Approximation

Fernando Vila¹, H. Rossner², H. Krappe² and J. J. Rehr¹

¹ Department of Physics, University of Washington, Seattle, USA ² Hahn-Meitner-Institut, Berlin, Germany

> Supported by DOE Grant DE-FG02-04ER1599

Submitted to PRB and available at: *http://arxiv.org/abs/cond-mat/0702397*

Introduction

XAFS Debye-Waller (DW) Factor

$$\left\langle e^{i2kr} \right\rangle \equiv e^{2ikR_0}e^{-W(T)}$$

- Originate from thermal and configurational disorder
- Crucial for a quantitative treatment of XAS

Average commonly expressed in terms of the cumulant expansion:

$$W(T) = -\sum_{n=1}^{\infty} \frac{(2ik)^n}{n!} \sigma^{(n)}(T)$$

First cumulants:

$$\begin{cases} \boldsymbol{\sigma}^{(1)} = \langle r - R_0 \rangle \\ \boldsymbol{\sigma}^{(2)} = \langle (r - \bar{r})^2 \rangle \equiv \boldsymbol{\sigma}^2 (T) \\ \boldsymbol{\sigma}^{(3)} = \langle (r - \bar{r})^3 \rangle \end{cases}$$

J. Kas et al. (2007)

Lanczos Recursion Algorithm

XAFS DW Factor for path *R*:

$$\sigma_R^2(T) = \frac{\hbar}{2\mu_R} \int_0^\infty \frac{1}{\omega} \coth\left(\frac{\beta\hbar\omega}{2}\right) \rho_R(\omega) \, d\omega$$

 $\rho_{R}(\boldsymbol{\omega}) = -\frac{2\boldsymbol{\omega}}{\pi} \operatorname{Im} \left\langle 0 \left| \frac{1}{\boldsymbol{\omega}^{2} - \mathbf{D} + i\boldsymbol{\varepsilon}} \right| 0 \right\rangle$

- Originally developed by Poiarkova and Rehr
- Extended by Krappe and Rossner

VDOS expressed as imaginary part of the phonon propagator:

Seed state: Displacement along path Total VDOS of Cu

Dynamical Matrix: Calculated using the Density Functional Theory (DFT) of Response implemented in ABINIT (Gonze et al., 2002)

Anharmonicity Effects on the Einstein Freq. of Cu

BvK: Nicklow et al. (1967)

Prescriptions for the Calculation of the Dynamical Matrix

- I. Calculate D with the LDA at the <u>theoretical</u> estimate of a(T)
 - Fully ab initio

F(a,

- Provides lattice expansion directly
- Computationally demanding

$$T) = E(a) + 3k_B T \int_0^\infty d\omega \ln\left[2\sinh\left(\frac{\beta\hbar\omega}{2}\right)\right] \rho_a(\omega)$$

$$D_{jl\alpha,j'l'\beta} = A_{jl\alpha,j'l'\beta} + B_{jl\alpha,j'l'\beta} \Delta a$$

- II. Calculate D with the hGGA at the experimental estimate of a(T)
 - Uses a new functional (hGGA): 50% LDA + 50% GGA
 - Requires experimental input
 - Lattice expansion from Correlated Einstein model
 - Less computationally demanding

Debye-Waller factors (in 10⁻³ Å²) for Pt and GaAs

	n	CD	LDA(I)	hGGA(II)	Expt
	1	3.55	3.23	3.23	3.22 ± 0.05
Pt	2	4.38	4.64	4.78	4.7 ± 0.3
(190 K)	3	4.50	4.44	4.49	4.3 ± 0.4
	4	4.56	4.60	4.66	4.5 ± 0.4
	1	5.41	4.98	4.90	4.83 ± 0.05
Pt	2	6.69	7.23	7.34	6.8 ± 0.5
(300 K)	3	6.91	6.92	6.89	6.7 ± 0.6
	4	7.01	7.17	7.16	7.0 ± 0.6
Ga∆s	1	5.17	3.97	3.86	4.2 ± 0.1
(295 K)	2	7.75	12.70	12.01	11.7 ± 0.14
	3	7.69	14.91	14.01	
Ga∆s	1	5.15	3.96	3.86	4.2 ± 0.1
(295 K)	2	7.20	10.80	10.19	9.6 ± 0.1
	3	7.68	14.83	14.00	

XAFS Debye-Waller Factor of Cu

Expt: Fornasini et al. (2004)

XAFS Debye-Waller Factor of Ge

Expt: Dalba et al. (1999)

First XAFS Cumulant of Cu

Expt: Fornasini et al. (2004), AIP Handbook (1972)

WASHINGTON

Third XAFS Cumulant of Cu

Expt: Fornasini et al. (2004)

Conclusions

- Developed two prescriptions for the calculation of XAFS cumulants
- **Can determine lattice expansion from:**
 - Free energy minimization
 - Correlated Einstein model
- New Lanczos seed states provide:
 - Total VDOS
 - Perpendicular correction to first cumulant
 - Crystallographic Debye-Waller factors
- Developed new functional (hGGA): 50% LDA + 50% GGA

Future Prospects

- Implementation for arbitrary crystals
- Better form of hGGA functional ("Diminished functionals", cf. Perdew et al.)
- "Black Box" implementation for FEFF XAFS
- Tables of Debye-Waller factors for most common substances

