Molecular Properties of the Ice Ih Basal Surface

An Application of the SCME Water Interaction Potential

Fernando D. Vila and Hannes Jónsson University of Washington

Chemical Significance

Environment, Weather and Climate

Biological Importance

The SCME Potential

- Based on a Single Center Multipole Expansion
- Does not use point charges
- Rigid
- Transferable
- Parametrized using a mixture of *ab initio* and empirical values

Total Energy:

$$E_{\rm tot} = E_{\rm es+ind} + E_{\rm disp} + E_{\rm rep}$$

$(H_2O)_{n=2-6}$ ring water clusters:

Interaction Energy per H-Bond

Average O-O Distance

Radial Distribution Functions for Liquid Water:

Bulk ice Ih:

Property	$\mathbf{Exp.}^{a}$	GGA	$\mathbf{PW91}^{b}$	SCME	TIP4P	$\mathbf{RWK2}^{c}$	DC	TTM2-R
Lattice $Energy^d$	-0.6110		-0.55	$-0.6109 {\pm} 0.0049$	-0.634	-0.555	-0.550	6370
$\langle r_{OO} \rangle^e$	2.751	2.70		$2.742{\pm}0.004$	2.683		2.738	
a^e	4.4969	4.41		$4.470 {\pm} 0.025$				4.478
b^e	7.7889	7.63		$7.747 {\pm} 0.052$				7.756
c^e	7.3211	7.20		$7.287 {\pm} 0.029$				7.314
$ ho^f$	0.933	0.989	0.954	$0.948 {\pm} 0.004$	1.009	0.942	0.960	0.942
$V_{molec}{}^{g}$	32.05	30.3	31.35	$31.55{\pm}0.15$	29.62	31.73	31.14	31.75
Bulk Modulus ^{h}	10.9		13.5	$11.4{\pm}0.3$	16.6	18.0		
$\mu_{molec}{}^{i}$	2.90		2.8	$3.50{\pm}0.07$	2.35		3.02	2.86^{j}

^bAll values taken from Ref.⁹ except the bulk modulus, taken from Ref.⁷⁸.

 b From Ref.⁷⁹

 $^c\mathrm{From}$ Ref. 75

 d In eV/molec

 e In Å

 f In Å³/molec

 g In g/cm³

^hIn MPa

 i In Debye

 $^j \mathrm{Calculated}$ at 100K

Simulation of the Ice Ih Basal Surface

General Properties of the Cells:

- Proton-disordered
- Null total dipole
- Four bilayers
- Bottom bilayer frozen at bulk conformation

5 Small Cells:

- 3 x 2 x 2 repetitions of the orthogonal cell
- 96 molecules per cell

10 Large Cells:

- •4 x 2 x 2 repetitions of the orthogonal cell
- 128 molecules per cell

Binding energy (in eV) for the different types of minima:

	All				Large			Small		
	#	E	ΔE	#	E	ΔE	#	Е	ΔE	
DFAAH	61	-0.612	0.097	40	-0.606	0.110	21	-0.623	0.074	
DDA-T	52	-0.607	0.078	38	-0.611	0.081	14	-0.597	0.072	
DDA-H	20	-0.590	0.070	13	-0.593	0.071	7	-0.586	0.068	
DFAAT	24	-0.578	0.066	13	-0.570	0.071	11	-0.585	0.061	
DFA-I	41	-0.539	0.074	33	-0.543	0.076	8	-0.525	0.066	

One accepted Hydrogen-Bond One "free" lone pair DFA-H One donated hydrogen One free Hydrogen

Energy histogram for each type of minima:

Full histogram:

Rounding up..

SCME:

- Good behavior over a wide range of conditions: water clusters, liquid water and bulk ice
- Fast
- Able to predict properties that were not included in the parametrization

Adsorption:

There are five prevalent types of sites for adsorption
The distributions of the binding energies for each type of site are very similar

• Approximately 40% of the sites have a binding energy larger than the lattice energy of bulk ice Ih

SCME:

• Improved version of the potential that fixes some of the problems

Faster coding and better software distribution

Adsorption:

- Study of site-to-site transitions
- Use results to estimate surface diffusion rate
- Study multiple adsorptions/surface interactions

"Pet" proyect:

- Modeling of the surface acoustic phonon modes
- Use results to estimate surface diffusion rate
- Study multiple adsorptions/surface interactions