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1.  INTRODUCTION 
 
 Modern military weather forecasters rely heavily on 
numerical models (Jones et al., 2002) to produce their 
forecasts.  The reliability of this information is variable 
such that forecasters must also consider the amount of 
uncertainty inherent in the models’ information.  The 
steps involved in conducting a thorough evaluation of 
model uncertainty are time consuming.  Forecasters must 
answer the following questions: How accurate have the 
models been over the past few days?  How do the model 
initializations compare to the observational data?  How 
uncertain are the current model predictions?  Because 
military forecasting is often done under time pressure, 
the amount of uncertainty evaluation that can be 
conducted is often limited.  In addition, the optimal 
means to convey this information to the end user is not 
well understood.  Nevertheless, the level of uncertainty 
in a forecast can be a crucial factor in tactical decisions. 
  
 The design of the MUM system described below 
resulted from field observations and task analyses of 
operational Navy forecasters.  MUM supports the 
process of uncertainty evaluation by taking on those 
steps that are computationally demanding for humans.  
This effort is part of a Department of Defense Multi-
disciplinary University Research Initiative (MURI) on 
statistical and cognitive approaches to visualizing 
uncertainty in mesoscale meteorology, and is being 
conducted at the University of Washington in Seattle. 
 
2.  METHOD 
 
 Two studies were conducted to gain a better 
understanding of how uncertainty evaluation is 
conducted by operational Navy forecasters and how 
uncertainty fits into the forecasting process. 
 
2.1 Verbal protocol analysis 
  
 We began with a cognitive task analysis (CTA) of 
operational forecasters at the Naval Pacific Meteorology 
and Oceanography Facility (NPMOF), Whidbey Island, 
WA.  We observed four forecasters as they produced a 
Terminal Aerodrome Forecast (TAF), which is produced 
every six hours and amended when necessary. Not only 
is the TAF written under time pressure, but forecasters 

are also responsible for simultaneous duties. They 
respond to numerous requests in person and over the 
phone that necessarily interrupt the forecasting process. 
 
 For this study, the forecasters were instructed to 
verbalize their thoughts as they produced the TAF. We 
made audio recordings of their verbalization as well as 
video recordings to their computer screens. The auditory 
recordings were transcribed and broken down into 
individual numbered statements.  Each statement was 
then coded and organized under goals. 

 
 For the most part the forecasters gathered 
information, primarily numerical models from the Web, 
early in the process.  One forecaster delayed information 
gathering until he began to write his TAF, suggesting 
that he was avoiding maintaining a large memory load 
for the duration of the process. We noted that few 
forecasters had a detectable stage at which they built a 
complex mental model of the current atmospheric 
conditions (Trafton et al., 2000). Instead, most 
forecasters relied upon rule-of-thumb forecasting, 
applying standardized general rules to the current 
situation to derive the forecast (e.g., If a system is 
coming into the coast, strong southerly winds should be 
forecasted over Whidbey Island). 
 

  All forecasters made some effort to evaluate model 
uncertainty and talked about specific strategies for doing 
so.  These were mostly complex mental comparisons of 
model output to other sources of information.  
Forecasters also discussed model biases, the quality of 
the initialization, and adjustments they would make to 
the model prediction to arrive at their own forecast. 

 
  Although some forecasters evaluated a number of 

different numerical models and compared them to 
various information sources, others focused on specific 
models and made only one or two comparisons.  
Forecasters tended to avoid head-to-head comparisons 
between models and complex quantitative evaluations.  
They rarely evaluated recent model performance and we 
did not observe them using either probability or 
ensemble products. 

 
2.2 Questionnaire study 
 
 Our results were confirmed in a questionnaire study 
in which forecasters filled out a survey asking about 
model evaluation techniques after each TAF they 
produced.  They also rated model performance. We 
expected to see the forecasting process altered when the 
models were judged to be performing poorly.  Instead, 
forecasters appeared to have a fairly set forecasting 
routine, relying upon the same information sources and 
evaluation techniques from one TAF to the next. 
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3. FINDINGS FROM THE TASK ANALYSIS 
 
 From these two studies we learned that forecasters 
are concerned with model uncertainty and that they 
evaluated it on every TAF we observed.  Naval 
forecasters clearly believe this is an important step, 
suggesting they will likely use products designed to 
facilitate this effort.  
 

 
 
Figure 1.  Example of forecaster cognitive offloading 
from short-term memory (right box) to long-term 
memory (left box). 
 
 Nonetheless, naval forecasters tended to avoid some 
procedures.  We speculate that the avoided procedures 
are likely those placing the greatest demand on working 
memory.  It has long been known that working memory, 
roughly synonymous with conscious level processing, is 
severely limited (Miller, 1956). Moreover, working 
memory capacity is functionally decreased by time 
pressure (Edland & Svenson, 1993), and interruptions 
(Rogers & Monsell, 1995), which are common in 
military forecasting.  Tasks such as making complex 
mental comparisons, creating mental models of the 
current atmospheric conditions, and deciding which 
evaluation techniques are appropriate to a specific 
forecast draw heavily on this limited resource.  
 
 The forecasters we observed tended to avoid such 
tasks and relied instead upon approaches that tapped 
long-term memory (Figure 1).  These are the solutions 
that can be memorized and applied with little adjustment 
to the current situation, such as rules of thumb or set 
routines.  Although this approach alleviates working 
memory load, it may be at the cost of flexibility and 
thoroughness.  
 
 From the analysis of coded statements and in-depth 
review of the tools and information sources used by the 
forecasters we observed, we noted the following issues: 
 

Forecasters are aware of model uncertainty and they 
attempt to estimate it by synoptic scale pattern 
matching and comparison of specific values. 
 

Uncertainty evaluation is streamlined in response to 
time pressure and experience level. 

 
Their primary information sources are numerical 
models. They receive most information via the web 
and rely on a small subset of available information. 
Despite this limited data set, they spend significant 
time navigating between info sources. 
 
They have limited tools available to assess model 
uncertainty. 
 
They are unsure how and when to use ensemble and 
other types of uncertainty products. 

  
4.  THE MUM SYSTEM ARCHITECTURE 
 
 A key objective of the UW MURI is to develop and 
test new visualizations of uncertainty information based 
on the UW Short Range Ensemble Forecast (SREF), 
Mass & Grimmit (2002).  We felt that merely creating 
new products and then expecting overloaded forecasters 
to use them would yield disappointing results.  What is 
needed is a framework that addresses all aspects of 
uncertainty that typically confront forecasters.  They 
need a computer interface that presents only the essential 
information, yet allows for knowledge discovery when 
time or operational necessity requires it.  We have 
developed the MUM as a system that achieves these 
objectives while addressing the issues and constraints 
noted in our task analysis. 
 
 The severe time constraints that naval forecasters 
work under are expected to increase due to current 
manning reductions and future regional forecasting (i.e., 
forecasts made for multiple remote sites).  Using a 
monitoring paradigm, the MUM provides tools for quick 
assessment of model uncertainty.  Forecasters can then 
decide the best use of their limited time.  A forecaster 
wants to use, without correction, the model parameters 
which have performed well in the past and thus have 
limited uncertainty in the future.  Other parameters may 
need further investigation through the use of personal 
knowledge to correct for uncertainty in a model forecast.  
Ideally, a forecaster should have automation tools that 
allow the selection of the best performing model (or 
ensemble member) plus the ability to modify model 
fields prior to forecast generation. 
 
 The MUM system is based on Java Server Page 
(JSP) and servlet technology.  It is hosted at the Applied 
Physics Laboratory (APL-UW) on a Linux system 
running a Tomcat server.  The model data used in the 
system comes from the UW SREF.  This includes the 
global fields used for the SREF boundary conditions and 
the individual ensemble members of the SREF.  This 
data is stored and archived on the APL-UW server.   
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 Figure 2 outlines the data flow and software models 
that make up the MUM.  Processing for model 
verification is routinely run in the background and 
maintained in a file that is called when the MUM JSP is 
downloaded to a user’s browser.  During the download 
of the interface page, a MUM model grabs the 
information that provides the color-coding of the 
stoplight graphics. 
 

 
Figure 2.  MUM architecture and data flow 
 
 5.  MUM HUMAN-COMPUTER INTERACTION 
 
 While the MUM interface is still a work in progress, 
it currently produces model uncertainty assessments in 
real-time.  The interface presents information in a past- 
present-future framework on the left, bottom center, and 
right control panels.  As users select information links, a 
visualized representation is displayed in the center 
window.  
 
 Based on our task analysis, the forecasters’ highest 
percentage of time was spent reviewing model 
initialization.  Therefore, the default presentation is the 
current model initialization field overlaid on top of the 
most current satellite picture.  The MUM currently pulls 
these products from the UW site: 
http://www.atmos.washington.edu/~bnewkirk/desc.html  
 
 Figure 3 shows the default view that is displayed 
inside a web browser after the selection of the MUM 
link: http://isis.apl.washington.edu/monitor/monitor.jsp.  
Clicking on the image can enlarge the default picture.  In 
addition to the model field, the 24-hour wind forecast is 
shown compared to verification observations, along with 
the difference between forecast and observed pressure 
for that location.  This assemblage of information 
provides the forecaster with the assessment of both the 
performance of the past model forecast and its 
initialization compared to the satellite picture.  Further 
iterations of the MUM will include additional 

initialization assessment tools such as an interpolated 
model versus observation table for selected locations. 
 

 
 
Figure 3.  MUM with initialization information 
 
 On the left of the screen is model performance 
information.  For the initial assessment, we use a 
stoplight paradigm, which is familiar to military 
personnel.  These graphics provide pertinent information 
on the past performance of global models (upper section) 
and ensemble members (lower section). Models are 
judged based on their RMS error (Root Mean Squared 
Error) over a window of time in the past. RMSE is 
calculated by comparing a forecast against the 
corresponding zero-hour analysis.  Comparing the most 
recent error result against the trend of error in the past 
generates the stoplight color. Green colored stoplights 
indicate low error, or good performance. Yellow 
indicates intermediate performance, and red indicates 
poor performance. 
 
 On the right side of the screen is uncertainty 
information about the future.  As with the model 
performance section on the left, the top-level 
information is displayed with stoplight graphics, but 
these graphics are derived for a point (initially set at 
NAS Whidbey, KNUW).  However, the model 
performance stoplights are derived over a geographic 
area (from global scale down to mesoscale). 
 
 Current research on ensembles has shown a 
relationship between the skill of the model prediction 
and the spread of the answers each member gives for a 
particular parameter.  We use this spread relationship as 
a proxy for forecast uncertainty.  The uncertainty 
stoplight table contains a number of stoplight graphics, 
the color of which attempts to classify the uncertainty of 
the model prediction. Green indicates less uncertainty or 
an indication of higher accuracy, while yellow indicates 
intermediate uncertainty. Red stoplights indicate high 
uncertainty for the corresponding combination of 
forecast hour and parameter. As the spread is a property 
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of the ensemble as a whole, uncertainty is not provided 
for individual ensemble members. 
 
 Ensemble spread directly corresponds to the 
stoplight color. If the ensemble spread is in the top 
1/12th (91.66% and above) of all past spread values, the 
stoplight is red. If the spread lies between the top 2/12ths 
and 1/12th (83.33% to 91.66%) the stoplight is yellow. 
All other values are green. 
 
 The spread meteograms (shown in Figure 4) are new 
visualizations currently being tested in the MUM.  These 
meteograms display information about MM5 ensemble 
performance for a single geographic location. Ensemble 
prediction data for a single parameter is shown over a 
time period of four days, where the most recent 00 hour 
prediction lies at the center, marked by a bright vertical 
line. The ensemble data is shown as a shaded region 
spanned by the minimum and maximum predicted value 
at the given time. 
 
 Data in the past 48 hours is a composite of three 
predictions; the -48 hour data is pulled from the 24-hour 
prediction initialized 72 hours previous, the -45 hour to -
24 hour data (inclusive) is drawn from the prediction 
initialized 48 hours before the current 00 line, and the -
21 hour to 0-hour values are from the ensemble forecast 
initialized at -24 hours. Future predictions are all from 
the forecast initialized at 00 hours, although the 0-hour 
value is not available for all parameters and may appear 
as a discontinuity. 
 
 In addition to ensemble spread, observation data 
appears in the left portion of the meteogram as a red-
orange data plot. This is pulled from the METAR for the 
nearest observing station.  In a well-tuned ensemble 
system this observation should typically fall within the 
range of the spread.  If the observation routinely falls 
outside the spread, the forecaster can more easily 
pinpoint biases in the ensemble system.   

 
 
Figure 4.  MUM with ensemble spread meteogram 
  

 Additional tools and visualizations will be added to 
the MUM.  We are also investigating techniques for 
interacting with the probability distribution information 
that can be derived from an ensemble system.  Navy 
operators may be interested in knowing the forecasted 
range of a particular parameter with a 99% certainty, or 
the value of the top two most probable forecast 
scenarios.  The MUM will allow the user to interact with 
this type of probabilistic information.  
 
6.  CONCLUSION 
 
 We have developed a software framework and a 
prototype interface that assemble, process, and visualize 
uncertainty information for weather forecasters.  This 
system is based on extensive observation and analysis of 
navy forecasters in their operational environment.  The 
MUM will be used to test methods of presentation and 
user interactivity toward the goal of improving forecast 
quality, timeliness, and usefulness.  Most importantly, 
we hope the MUM will encourage forecasters to use 
probabilistic information in new and innovative ways. 
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