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|.INTRODUCTION

During the Summer 1999, | attended Amdr8ennetts summer school for
“Inverse Methods and Data AssimilationDuring this two-week school, | took it
upon myself to calculate representers for tomograph the shallow-water model
that was used to do the numericadescises. Thesethen, are a summary of my
notes in making this calculatiorior this discussion, | hee copied wholesale from
Andrew’s notes, without remorseln addition, these are merely notes, so that the
contain information coreyed by others and for which | cannot claim credit, e.g.
Andrewv’'s comments pertainingto Raleigh-Ritz wariation method and Gary
Egberts momment on wip a measurement of current does not necessany gie
a onstraint on sea-swate elgation.

In his 1985 paper "Array Design byvaise Methods", A. "MrCryptic" Bennett
calculated representers for reciprocal shooting tomograpt a tidal model as
part of a study on array desigAlas, this paper as not heuristically helpful, at
least from the Dushapoint of view...these notes hopefully malhe details of the
issue morexlicit (all in good humour here!!).

For much of the Summer School, a simple 1-D fard model vas used, while
the ercises used a linear shallavater model. These notes lggn with a review
of the 1-D model in order to introduce language, notation and a description of mea-
surement functionals, and then these notes will describe the adjoint equation for the
linear shallav-water model.Representers are calculated using these adjoint equa-
tions. All of these sundry equations argieeved in order for this document to be
reasonably self-contained.
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II.ASIMPLE INVERSE MODEL - NOTATION AND LANGUAGE

Letur = ug(X,t) be the solution of the forard problem:

—=F+f 1
¢ (12)

forOsx<LandO<t<T,with
Ur (X, 0) = 1(x) +i(x) (1b)

forO<x<L, and
ur(0,t) = B(t) + b(t) (1c)

for 0<t<T, wheref,i, b are errors in forcing, initial condition, and boundary
conditions, respectely.

If a measuremenin results in a datund,, at a point ofu, then the Euler
Lagrange equations for the locaftremau of the penalty functional[u] (mini-
mizing misfit with the data and errors in forcing, boundary and initial conditions
with weightsW) are

%a—f -C g—i = - WmZ (O —dn)d(X = X))ot —ty)
(backward) D A(x,T)=0 (2a)
D A(L, 1) =0
0
EN _ 1
Dat —X F + W A(x, 1)

(forward) Du(x, 0) = 1(x) + W A(x, 0) (2b)
B 0(0,t) = B(t) + W;14(0,1)
dad 0

Equation (2a) is the adjoint equation; the adjoariable 1 = Wk Eg—l: + Ca_x FI:I
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(defined in the course of minimizing{u].) The change in sign on the left hand
side of (2a) from (1a) originates from an gyri&ion by parts in the process of min-
imizing J[u]. Thebest estimates fof,i, and b are

f(x,t) = WA, 1), 1(x) =W A(x,0), b(t) = cW;1A(0,1). (2c)

These equations may be sadivfor G using representer function3.here areM of
them, denoted ,(x,t), 1< m< M. Each representer has an "adjoiaty(X, t),
satisfying

O
7 2m e 2 = (- )t~ )

(backward m) B am(X,T) =0 (3a)
[ am(L,t)=0
O

This "adjoint" equation may be igeated backwards in time and space; it picks up
a "bare" delta function "impulse" at the time and place ofrtitle measurement.
The representers,, (X, t) are found by intgrating

or or _
Datm +c a)r(n = Wilam(x,t)

(forward m) E Fm(X, 0) = W am(x, 0) (3b)
E Fm(0,1) = cW; e (0,1)

forward in time and space, with forcing, initial and boundary conditiovendiy
thea,,. Once ther, are found, the solutiodiis in the form

0040 = Ue(X,) + 3 Bnrm(X,1) @

for constant coditients 3,,,. Thus, the solution to thevarse problem the sum of

the forward model run with the prescribed forcing and a linear superposition of the
representers. Notinat the representer is a function in space and time, and if the
forward problem iwolved multiple fields such as sea sud elgation and cw
rents, then THE representeowd be the SET of functions corresponding to sea

3



6 October 1999

surface elgation and currents [three days of labor before thisrada on me...].
The coeficients s,,, are found by solution of the equation

(R+w)j=d-ue (5)

where thel™ column of theM x M representer matriR consists of theV mea-
sured alues of thé™ representer function (x,t). With the solution of (5) foi3,
the solution ford may be found by straightfoavd inteyration of a fev differential
equations.

The representers Y dl the earmarks of Greemfunctions in that theare calcu-
lated using delta function impulses, and then a linear superposition of thesn gi
the desired "best" solutiorlhis linear superposition is the solution for the pertur
bation around the initial "best guess" fielgl ug is also knavn to tomographers as
the "reference" oceanln the general case, the "reference" ocean is clearly time
dependent, so generally and technically & set of rays wuld hare o be alcu-
lated at each time step.

This discussion has used only scatardiagonal, weightdV, i.e. "white" cwari-
ances. Theesults may be (and should be) generalized tiphlly meaningful
covariances so that the solutions smoothed in a pisically meaningful vay. The
use of coariances is the answer towdo obtain better eigenfunction solutions in
the Raleigh-Ritz ariational problem for the eige@lues of a quantum mechanical
problem (e.g., Baym, 1969)With enforced ceariances, the eigenfunction solu-
tions may be a little better than the jyniesults that sometimes typify the "bare"
Raleigh-Ritz method.

I11. MEASUREMENT FUNCTIONALSREVIEWED

The abee formalism pertains to point measurements, hence the delta functions
in (2a) and (3a).However, as | have ld the world until | was blue in thedce,
tomograply is a Ine-integgral measurementThis section generalizes the point
measurements to an arbitrary measurements functional, and attemptside pro
some meaning to this functional.

An arbitrary measurement functional,, ¢ [u] of a fieldu(y, s) is

Amiy.s[ul = j dyj dsK(y,s; x,t) u(y, s) (6)

whereK(y, s; X, t) is the "kernel" of the measurement, and where the measurement
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m(y, S) pertains to a function ofy( s).

For the measurement functional, s [u], equation (3a) becomes

[0 da oo

T 5 ~ ¢y = Amye@(x-3t-97
(backward m) B am(X,T) =0 (7)

] am(L,t) =0

O

The equation for the representers, is as in (3b). But what does
/\m(y,s@(x ~ V) (t - s)gmean?

For the case of point measurements of a figkkl t) the measurement functional
IS,

Amxplul = I de dt 5(x = X))o (t =t )u(X,t) = u(Xm, tm) (8)

so that for a point measurement thertel," K(X, t; Xm, tm) = (X = Xm) o (t —t,).
The right-hand side of (7) is then,

Aty P(X = Y)S(t =)= [ dy [ dso(y = xm)3(s~ tm)d(x = V)3(t =5)  (9)

=0(X—Xp)d(t —ty)

With this latter gpression, (7) reduces to (3ayhe key  interpreting the mea-
surement functional is the measuremerdrfiel,” K. The right hand side of the
first equation of (7) is a "delta function" associated with the particular data type.
The example of tomographbelow will hopefully male this more clear

V. MEASUREMENT KERNELSFOR TOMOGRAPHY

Case A: A Line integral of sea-surface height. To begn with a simple case, |
will discuss a line eerage of sea-suate height, i.e. a scalar fiel@his case is not
entirely unplysical, because sound speed is sessiti pressure, and, were it not
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for the \ast number of other competing phenomena, tomographld indeed
measure the slight pressurariations caused by sea s displacementsSo,
suppose we ha a feld of sea-sudce heighg(x, y) and we mak a neasurement
that arerages along a line gment of this field.In the x direction, suppose thege
ment goes fronx; to x,, and suppose the path of thisgseent, p, is (X, Yo(X)),
whereyy(x) = mx +b (Fig. 1). The measurement ofis

1
q- E!q(x, y) ds (10)

Where L is the length of the line gement. Theelement of path length

ds= dx; ; 1+ Izplyﬁ—dx?/'l_FFnZ. Therefore, the measurement applied to the

scalar fieldg(x, y) |s

Ala] = % J dt I dxz[ (Y = Yo(X))(t ~ tm)VI+m2 q(x, y) (11)

The measurementknel is therefore,
K(X, y,t) = 5(y = Yo(X))3(t = tm)(8(X = X1) = 8(X = X))V1+n? (12)

whered(x) is the familiar theta function.Note that this is still a point measure-
ment in time. This epression may be plugged directly into (7) to obtain the
adjoint equation for a tomograpimeasurement and the simple dynamics of that
equation.

Case B: Don't forget theray paths... In reality, tomograply consists of ray paths
that hare 10-100 turning points along a slice of range and depth (FigT&is ray
path may be described by a pafth,which in the tvo dmensions of range and
depth is &, zy(x)). Letus suppose that the measurement is by reciprocal tomogra-
phy, and that the data are the féifence between reciprocal \eh times
T=53 (T* = T7). Themeasurement of current,s therefore
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uds

c3(x, 2) (13)

T = Amiyglul = 1[

e 5(z = 2o(X))8(t = tm)u(x, ,t) a(X)
= ;([dx_‘L dzIdt Cg(x, 2

where it is assumed that the currens to good approximation the projection of
the currentli(x, y, z) along the ray path, e.g.eutical components are giaible,
anda(x) =1+ (dz/dx) is the ray angle.The reader may perform a simple check
by doing the intgrals woer z and t. Note that the arc length
ds = dxy/I1+(dzZ/dx) = a(x) dx. The measurementknel is therefore,

6(2 = 2p(x))(t — tm)(6(X — X1) — 8(X — X3)) &(X)

K(x,zt) = 2(x, )

(14)

Case C. A Line Integral of a Current Field. Neglecting the depth dimension
acpin, let us consider a line-igwal measurement of a current field, i.e.extor
field (Fig. 3). As in Case A abee, the pathp is (X, yo(X)), and | introducer
which is a unit ector in the direction of the acoustic paths (zy, 7y). Themea-
surement ofi is

1
uaEJp’u[’Eds (15)

The measurement applied to trextor field is

Xo Y
A[U] = % J’ dt J’ dx 1[ Sy — Yo(X))s(t -t )VI+m2u [F (16)

Note thatt (¥ = uyzy +uy7y, and r, = IN1+m?, 7, = mV1+m?. The measure-
ment contains an ambiguity between th@nd y components of the flo field.
The measurementknel is a @ctor in this case; it is
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K(X, ¥, 1) = 6(y = Yo (t — tm)(0(X = X1) = (X — x))VI+mez  (17)

Though | hae witten §(t —t,,) throughout this section, this is not entirely true
because of the finite time-of-flight of tomogrgmgnals. Mostof the time this is
unimportant, bt one &ample of when it IS important is for ocean tides and
O(1-hrlong) trans-Acific acoustic transmissions.

V. THE ADJOINT AND REPRESENTER EQUATIONS FOR THE
SHALLOW WATER MODEL

Assuming the reader is reasonakdyniliar with the shallev-water equations, |
will skip a multitude of introductory formalities, and write the adjoint equation for
a linear shallav water model and tomographic data directly:

Aoy Ao}
—a—tm+fa%—Ha—):”+rua}Jn= (18a)
M ———
0 7,6 (t —t) (Y = Yo(X))(6(X = X1) — 8(X — X2))V1+m? (for current)
B 0 (for sea—surface height)
da) Ao
- atm - fay, - H 0—; +ryay, = (18b)
L T
0 Ty (t —ty)d (Y = Yo(X)(O(X = Xq) — 6(X = X,))V1+m2 (for current)
g 0 (for sea— surface height)

_Oay,  Dan, N Oap, [
ot 9dmax oy O

+rqog = (18c)

0 (for current)

St —tm)d(Y — Yo(X))(6(X — X1) — 8(x — X,))VL+m? (for sea— surface height)

II:I,H_\I:IIZI

The shallev water equations here V& dag coeficients {r,r,,rq}, and the
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boundary conditions are periodic in tRealirection and no-fi in the y direction,
l.e. this is a channelOn the right-hand side, | @ witten the "delta function”
appropriate for either a line-igeal measurement of current, or a line-grsd
measurement of sea-sack height. These formidable lookingxeressions hze a
simple interpretationRecall that in intgrating the adjoint equation bacéwds in
time and space for a point measurement thgiatmn "picled up" a delta function
impulse at the time and place of the measuremienthe case of tomographthe
impulse is a knife-edge impulse - agseent delta function, if you will (Fig. 4).
The impulse in the case of current is tempered by the projegtion:,.

These equations may be used to eolvfor THE adjoint
{an(X, 1), (X, 1), ad(x,1)}, which may then be used to get THE representer
{rm(x, 1), rm(x, 1), ro(x, 1)} as described earlier

The matrixR is used to calculate the c@iefents 8. R is found by applying the
measurement functional (@&ator...) to the representer fieid so that for a single
measurement of current (i.e. a single transmission),

X Y
R= % [t J dx 4’ 5(y = Yo(X))8(t = tm)VI+Mm2(riz, +r'z)) (19)

VI. THE REPRESENTER, {rp(x,y.t), rm(xy,t), rd(xy,t)}, FOR
TOMOGRAPHY AND A SHALLOW WATER MODEL

Before describing the representers for tomogyapWwill begin by first describing
a uggestve un of the shall-water model in the forard direction, and then the
representer for a point measurement of seaserheight.With this introductory
discussion, a better understanding of the tomogragpresenters will foll. As a
remindey the covariances emplged here are "white" so no smoothing or additional
structure is introduced to the representers through teiances. Theyrid spac-
ing for the model empieed is 100-km, and the domain under consideration is
1000-km across channel and 2000-km along chariBedr in mind that the grid
spacing is crude and that the model implementation is perhaps not the best either
hence the results slva here are not perfect.

The run of the model in the foard direction (Fig. 5) starts out with no initial
currents and aagyissian displacement of the sea atef Thefigure shavs a
selected number of snapshots of the fields, equally spaced inTimeenitial dis-
turbance of the sea sade propagtes nicely way from its origin, and later the
effects of the periodic boundary conditions may be séédre blue arrovs at the
top of each frame are, of course, the currectars.



6 October 1999

A representer for a point measurement of seasarfieight is slvan in Figure 6.

The time of the measurement is the third frame, whichvshbe delta-function
impulse discussed earlier in the gration of the adjoint equationThis delta
function "propagtes” avay from its origin, as for the forard model run, xcept

that the representer influences the model solution at times before and after the mea-
surement. Theimilarity with the forvard model run, and recall that a steapsy

sian may be used as an approximation for a delta function, is apparent.

Finally getting to the gratification of the tomographic represghigure 7 shas
the representer for a tomographic measurement of semsuréight. The tomo-
graphic path is as described in Fig. Again, the third frame shes the "delta
function” impulse, a ggment impulse in this caséMost of the wigglyness of the
representer is for avenumbers perpendicular to the acoustic pafthis property
brings to mind the tomographic measurement of the internal tide, and one might
consider at this point a reduced \gta model... The representer haswe
wavenumber disturbances along the acoustic path.

Figure 8 shais the representer for a tomographic measurement of current at the
time of the third framelf Figure 7 had a delta function in eétion at the time of
the measurement, then the third frame of Fig. 8 has thestilesi d a delta func-
tion in elevation at the time of the measureme#tstrong "current" along the path
at the time of the measurement is also apparent in the repreaedtas in all pre-
vious cases the disturbance progiag avay from the time and place of the mea-
surement.

In Figs. 7 and 8, note that a measurement ebibta (current) will influence the
estimation of current (ekation), since the solution for the perturbations to the first
guess fieldig is a linear superpostion of representdfi®ewever, this is true only if
the dynamical error$ are weak; lage errors in dynamicsfettively decouple ele-
vation and current (Duska & al., 1997).
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Figure 1. Line-integral measurement of the
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Figure 5. An example of a forward model run. The sea-surface begins with
a gaussian displacement at T=0.
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Figure 6. An example of a representer for a point measurement of sea-surface
elevation at time T=0.
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Figure 7. An example of a representer for a line-integral measurement of
sea-surface elevation at time T=0.
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Figure 8. An example of a representer for a line-integral measurement of
current at time T=0.



