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I. INTRODUCTION

During the Summer 1999, I attended Andrew Bennett’s summer school for
"Inverse Methods and Data Assimilation."During this two-week school, I took it
upon myself to calculate representers for tomography and the shallow-water model
that was used to do the numerical exercises. These,then, are a summary of my
notes in making this calculation.For this discussion, I have copied wholesale from
Andrew’s notes, without remorse.In addition, these are merely notes, so that they
contain information conveyed by others and for which I cannot claim credit, e.g.
Andrew’s comments pertainingto Raleigh-Ritz variation method and Gary
Egbert’s comment on why a measurement of current does not necessarily give one
a constraint on sea-surface elevation.

In his 1985 paper "Array Design by Inverse Methods", A. "Mr. Cryptic" Bennett
calculated representers for reciprocal shooting tomography and a tidal model as
part of a study on array design.Alas, this paper was not heuristically helpful, at
least from the Dushaw point of view...these notes hopefully make the details of the
issue more explicit (all in good humour here!!).

For much of the Summer School, a simple 1-D forward model was used, while
the exercises used a linear shallow-water model.These notes begin with a review
of the 1-D model in order to introduce language, notation and a description of mea-
surement functionals, and then these notes will describe the adjoint equation for the
linear shallow-water model.Representers are calculated using these adjoint equa-
tions. All of these sundry equations are reviewed in order for this document to be
reasonably self-contained.
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II. A SIMPLE INVERSE MODEL - NOTATION AND LANGUAGE

Let uF = uF (x, t) be the solution of the forward problem:

∂uF

∂t
+ c

∂uF

∂x
= F + f (1a)

for 0 ≤ x ≤ L and 0≤ t ≤ T , with

uF (x, 0) = I (x) + i(x) (1b)

for 0 ≤ x ≤ L, and

uF (0, t) = B(t) + b(t) (1c)

for 0 ≤ t ≤ T , where f , i, b are errors in forcing, initial condition, and boundary
conditions, respectively.

If a measurementm results in a datumdm at a point ofu, then the Euler-
Lagrange equations for the local extrema ˆu of the penalty functionalJ [u] (mini-
mizing misfit with the data and errors in forcing, boundary and initial conditions
with weightsW ) are

(backward)








−
∂

�
∂t

− c
∂

�
∂x

= − w
M

m=1
Σ (ûm − dm) � (x − xm) � (t − tm)

�
(x, T ) = 0

�
(L, t) = 0

(2a)

( forward)








∂û

∂t
+ c

∂û

∂x
= F + W −1

f
�

(x, t)

û(x, 0) = I (x) + W −1
i

�
(x, 0)

û(0, t) = B(t) + W −1
b

�
(0, t)

(2b)

Equation (2a) is the adjoint equation; the adjoint variable
�

≡ W f



∂û

∂t
+ c

∂û

∂x
− F


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(defined in the course of minimizingJ [u].) The change in sign on the left hand
side of (2a) from (1a) originates from an integration by parts in the process of min-
imizing J [u]. Thebest estimates forf , i, and b are

f̂ (x, t) ≡ W −1
f

�
(x, t), î (x) ≡ W −1

i
�

(x, 0), b̂(t) ≡ cW −1
b

�
(0, t). (2c)

These equations may be solved for û using representer functions.There areM of
them, denotedrm(x, t), 1 ≤ m ≤ M . Each representer has an "adjoint"� m(x, t),
satisfying

(backward m)








−
∂ � m

∂t
− c

∂ � m

∂x
= � (x − xm) � (t − tm)

� m(x, T ) = 0

� m(L, t) = 0

(3a)

This "adjoint" equation may be integrated backwards in time and space; it picks up
a "bare" delta function "impulse" at the time and place of themth measurement.
The representers,rm(x, t) are found by integrating

( forward m)








∂rm

∂t
+ c

∂rm

∂x
= W −1

f � m(x, t)

rm(x, 0) = W −1
i � m(x, 0)

rm(0, t) = cW −1
b � m(0, t)

(3b)

forward in time and space, with forcing, initial and boundary conditions given by
the � m. Once therm are found, the solution̂u is in the form

û(x, t) = uF (x, t) +
M

m=1
Σ � mrm(x, t) (4)

for constant coefficients � m. Thus, the solution to the inverse problem the sum of
the forward model run with the prescribed forcing and a linear superposition of the
representers. Notethat the representer is a function in space and time, and if the
forward problem involved multiple fields such as sea surface elevation and cur-
rents, then THE representer would be the SET of functions corresponding to sea
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surface elevation and currents [three days of labor before this dawned on me...].
The coefficients � m are found by solution of the equation

(R + w−1I) ˆ� = d − uF (5)

where thel th column of theM × M representer matrixR consists of theM mea-
sured values of thel th representer functionrl(x, t). With the solution of (5) forˆ� ,
the solution forû may be found by straightforward integration of a few differential
equations.

The representers have all the earmarks of Green’s functions in that they are calcu-
lated using delta function impulses, and then a linear superposition of them gives
the desired "best" solution.This linear superposition is the solution for the pertur-
bation around the initial "best guess" fielduF ; uF is also known to tomographers as
the "reference" ocean.In the general case, the "reference" ocean is clearly time
dependent, so generally and technically a new set of rays would have to be calcu-
lated at each time step.

This discussion has used only scalar, or diagonal, weightsW , i.e. "white" covari-
ances. Theresults may be (and should be) generalized to physically meaningful
covariances so that the solutionû is smoothed in a physically meaningful way. The
use of covariances is the answer to how to obtain better eigenfunction solutions in
the Raleigh-Ritz variational problem for the eigenvalues of a quantum mechanical
problem (e.g., Baym, 1969).With enforced covariances, the eigenfunction solu-
tions may be a little better than the junky results that sometimes typify the "bare"
Raleigh-Ritz method.

III. MEASUREMENT FUNCTIONALS REVIEWED

The above formalism pertains to point measurements, hence the delta functions
in (2a) and (3a).However, as I have told the world until I was blue in the face,
tomography is a line-integral measurement.This section generalizes the point
measurements to an arbitrary measurements functional, and attempts to provide
some meaning to this functional.

An arbitrary measurement functionalΛm(y,s)[u] of a fieldu(y, s) is

Λm(y,s)[u] = ∫ dy ∫ ds K (y, s; x, t) u(y, s) (6)

whereK (y, s; x, t) is the "kernel" of the measurement, and where the measurement
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m(y, s) pertains to a function of (y, s).

For the measurement functionalΛm(y,s)[u], equation (3a) becomes

(backward m)








−
∂ � m

∂t
− c

∂ � m

∂x
= Λm(y,s)




�
(x − y)

�
(t − s)


� m(x, T ) = 0

� m(L, t) = 0

(7)

The equation for the representersrm is as in (3b). But what does

Λm(y,s)



�
(x − y)

�
(t − s)


mean?

For the case of point measurements of a fieldu(x, t) the measurement functional
is,

Λm(x,t)[u] = ∫ dx ∫ dt
�

(x − xm)
�

(t − tm)u(x, t) = u(xm, tm) (8)

so that for a point measurement the "kernel," K (x, t; xm, tm) =
�

(x − xm)
�

(t − tm).
The right-hand side of (7) is then,

Λm(y,s)



�
(x − y)

�
(t − s)


= ∫ dy ∫ ds

�
(y − xm)

�
(s − tm)

�
(x − y)

�
(t − s) (9)

=
�

(x − xm)
�

(t − tm)

With this latter expression, (7) reduces to (3a).The key to interpreting the mea-
surement functional is the measurement "kernel," K . The right hand side of the
first equation of (7) is a "delta function" associated with the particular data type.
The example of tomography below will hopefully make this more clear.

IV. MEASUREMENT KERNELS FOR TOMOGRAPHY

Case A: A Line integral of sea-surface height. To begin with a simple case, I
will discuss a line average of sea-surface height, i.e. a scalar field.This case is not
entirely unphysical, because sound speed is sensitive to pressure, and, were it not
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for the vast number of other competing phenomena, tomography could indeed
measure the slight pressure variations caused by sea surface displacements.So,
suppose we have a field of sea-surface heightq(x, y) and we make a measurement
that averages along a line segment of this field.In the x direction, suppose the seg-
ment goes fromx1 to x2, and suppose the path of this segment, p, is (x, y0(x)),
wherey0(x) = mx + b (Fig. 1). The measurement ofq is

q →
1

L
p
∫ q(x, y) ds (10)

Where L is the length of the line segment. The element of path length

ds = dx√ 1+ 


dy

dx



2

= dx√ 1+ m2. Therefore, the measurement applied to the

scalar field,q(x, y), is

Λ[q] =
1

L

T

0
∫ dt

x2

x1

∫ dx
Y

0
∫ 	 (y − y0(x)) 	 (t − tm)√ 1+ m2 q(x, y) (11)

The measurement kernel is therefore,

K (x, y, t) = 	 (y − y0(x)) 	 (t − tm)( 
 (x − x1) − 
 (x − x2))√ 1+ m2 (12)

where 
 (x) is the familiar theta function.Note that this is still a point measure-
ment in time. This expression may be plugged directly into (7) to obtain the
adjoint equation for a tomography measurement and the simple dynamics of that
equation.

Case B: Don’t forget the ray paths... In reality, tomography consists of ray paths
that have 10−100 turning points along a slice of range and depth (Fig. 2).This ray
path may be described by a path,Γ, which in the two dimensions of range and
depth is (x, z0(x)). Let us suppose that the measurement is by reciprocal tomogra-
phy, and that the data are the difference between reciprocal travel times
T = 1

2 (T + − T −). Themeasurement of current,u is therefore
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T = Λm(y,s)[u] =
Γ
∫

u ds

c2
0(x, z)

(13)

=
x2

x1

∫ dx
0

−H
∫ dz ∫ dt

�
(z − z0(x))

�
(t − tm)u(x, z, t) a(x)

c2
0(x, z)

where it is assumed that the currentu is to good approximation the projection of
the current→u(x, y, z) along the ray path, e.g., vertical components are negligible,
anda(x) = √ 1+ (dz/dx) is the ray angle.The reader may perform a simple check
by doing the integrals over z and t. Note that the arc length
ds = dx√ 1+ (dz/dx) = a(x) dx. The measurement kernel is therefore,

K (x, z, t) =
�

(z − z0(x))
�

(t − tm)( � (x − x1) − � (x − x2)) a(x)

c2
0(x, z)

(14)

Case C: A Line Integral of a Current Field. Neglecting the depth dimension
again, let us consider a line-integral measurement of a current field, i.e. a vector
field (Fig. 3). As in Case A above, the pathp is (x, y0(x)), and I introduce→

which is a unit vector in the direction of the acoustic path,→
 = ( 


x , 

y). Themea-

surement of→u is

→u →
1

L
p
∫ →u ⋅ →
 ds (15)

The measurement applied to the vector field is

Λ[ →u] =
1

L ∫ dt
x2

x1

∫ dx
Y

0
∫

�
(y − y0(x))

�
(t − tm)√ 1+ m2 →u ⋅ →
 (16)

Note that →u ⋅ →
 = ux



x + uy



y and 

x = 1/√ 1+ m2, 


y = m/√ 1+ m2. The measure-
ment contains an ambiguity between thex and y components of the flow field.
The measurement kernel is a vector in this case; it is
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→
K (x, y, t) = � (y − y0(x)) � (t − tm)( � (x − x1) − � (x − x2))√ 1+ m2→� (17)

Though I have written � (t − tm) throughout this section, this is not entirely true
because of the finite time-of-flight of tomography signals. Mostof the time this is
unimportant, but one example of when it IS important is for ocean tides and
O(1-hr-long) trans-Pacific acoustic transmissions.

V. THE ADJOINT AND REPRESENTER EQUATIONS FOR THE
SHALLOW WATER MODEL

Assuming the reader is reasonably familiar with the shallow-water equations, I
will skip a multitude of introductory formalities, and write the adjoint equation for
a linear shallow water model and tomographic data directly:

−
∂ � u

m

∂t
+ f � v

m − H
∂ � q

m

∂x
+ ru � u

m = (18a)






1

L
�

x � (t − tm) � (y − y0(x))( � (x − x1) − � (x − x2))√ 1+ m2 (for current)

0 (for sea− surface height)

−
∂ � v

m

∂t
− f � u

m − H
∂ � q

m

∂y
+ rv � v

m = (18b)






1

L
�

y � (t − tm) � (y − y0(x))( � (x − x1) − � (x − x2))√ 1+ m2 (for current)

0 (for sea− surface height)

−
∂ � q

m

∂t
− g


∂ � u

m

∂x
+

∂ � v
m

∂y



+ rq � q
m = (18c)






0 (for current)
1

L
� (t − tm) � (y − y0(x))( � (x − x1) − � (x − x2))√ 1+ m2 (for sea− surface height)

The shallow water equations here have drag coefficients {ru, rv, rq}, and the
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boundary conditions are periodic in thex direction and no-flow in the y direction,
i.e. this is a channel.On the right-hand side, I have written the "delta function"
appropriate for either a line-integral measurement of current, or a line-integral
measurement of sea-surface height.These formidable looking expressions have a
simple interpretation.Recall that in integrating the adjoint equation backwards in
time and space for a point measurement the integration "picked up" a delta function
impulse at the time and place of the measurement.In the case of tomography, the
impulse is a knife-edge impulse - a segment delta function, if you will (Fig. 4).
The impulse in the case of current is tempered by the projection� x or � y.

These equations may be used to solve for THE adjoint
{ � u

m(x, t), � v
m(x, t), � q

m(x, t)}, which may then be used to get THE representer
{ru

m(x, t), rv
m(x, t), rq

m(x, t)} as described earlier.
The matrixR is used to calculate the coefficients ˆ�

. R is found by applying the
measurement functional (a vector....) to the representer field→r , so that for a single
measurement of current (i.e. a single transmission),

R =
1

L ∫ dt
x2

x1

∫ dx
Y

0
∫ � (y − y0(x)) � (t − tm)√ 1+ m2(ru � x + rv � y) (19)

VI. THE REPRESENTER, {ru
m(x, y, t), rv

m(x, y, t), rq
m(x, y, t)}, FOR

TOMOGRAPHY AND A SHALLOW WATER MODEL

Before describing the representers for tomography, I will begin by first describing
a suggestive run of the shallow-water model in the forward direction, and then the
representer for a point measurement of sea-surface height.With this introductory
discussion, a better understanding of the tomography representers will follow. As a
reminder, the covariances employed here are "white" so no smoothing or additional
structure is introduced to the representers through the covariances. Thegrid spac-
ing for the model employed is 100-km, and the domain under consideration is
1000-km across channel and 2000-km along channel.Bear in mind that the grid
spacing is crude and that the model implementation is perhaps not the best either,
hence the results shown here are not perfect.

The run of the model in the forward direction (Fig. 5) starts out with no initial
currents and a gaussian displacement of the sea surface. Thefigure shows a
selected number of snapshots of the fields, equally spaced in time.The initial dis-
turbance of the sea surface propagates nicely away from its origin, and later the
effects of the periodic boundary conditions may be seen.The blue arrows at the
top of each frame are, of course, the current vectors.
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A representer for a point measurement of sea-surface height is shown in Figure 6.
The time of the measurement is the third frame, which shows the delta-function
impulse discussed earlier in the integration of the adjoint equation.This delta
function "propagates" away from its origin, as for the forward model run, except
that the representer influences the model solution at times before and after the mea-
surement. Thesimilarity with the forward model run, and recall that a steep gaus-
sian may be used as an approximation for a delta function, is apparent.

Finally getting to the gratification of the tomographic representer, Figure 7 shows
the representer for a tomographic measurement of sea-surface height.The tomo-
graphic path is as described in Fig. 4.Again, the third frame shows the "delta
function" impulse, a segment impulse in this case.Most of the wigglyness of the
representer is for wav enumbers perpendicular to the acoustic path.This property
brings to mind the tomographic measurement of the internal tide, and one might
consider at this point a reduced gravity model... The representer has low-
wavenumber disturbances along the acoustic path.

Figure 8 shows the representer for a tomographic measurement of current at the
time of the third frame.If Figure 7 had a delta function in elevation at the time of
the measurement, then the third frame of Fig. 8 has the derivative of a delta func-
tion in elevation at the time of the measurement.A strong "current" along the path
at the time of the measurement is also apparent in the representer, and as in all pre-
vious cases the disturbance propagates away from the time and place of the mea-
surement.

In Figs. 7 and 8, note that a measurement of elevation (current) will influence the
estimation of current (elevation), since the solution for the perturbations to the first
guess field→uF is a linear superpostion of representers.However, this is true only if
the dynamical errorsf are weak; large errors in dynamics effectively decouple ele-
vation and current (Dushaw, et al., 1997).
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Figure 1.  Line-integral measurement of the
scalar field q(x,y).  S and R are acoustic source
and receiver.

Figure 2.  A ray path along a slice in range and
depth for the region of the Sargasso Sea.  
Reciprocal tomography measures the current
u(x,z) averaged along the ray path.

Figure 3.  Line-integral measurement of the 
vector field u(x,y) by reciprocal shooting.  τ  is 
 a unit vector along the acoustic path.                   

Figure 4.  In the discretized implemention of
the model, the "delta function" forcing on the
right-hand side of (18) when calculating the
adjoint is given as the average of the 
Kronecker delta functions at the time of
the measurement.                   
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a gaussian displacement at T=0.
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Figure 6.  An example of a representer for a point measurement of sea-surface
elevation at time T=0.
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Figure 7.  An example of a representer for a line-integral measurement of 
sea-surface elevation at time T=0.
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Figure 8.  An example of a representer for a line-integral measurement of 
current at time T=0.


