A Comparison of Acoustic Thermometry, TOPEX, XBT, and HOT Observations of Ocean Temperature in the Northeast Pacific Ocean

Abstract

Acoustic thermometry offers naturally integrating observations of
large-scale temperature with unrivalled accuracy and precision.
These temperature measurements have no calibration drift. In a
world of a climate signal of order 0.01 C/yr and high wavenumber
(mesoscale) noise of order 1 C rms, some spatial low-pass filtering
is needed to pull out the climate signatures.

Time series of temperature have been measured using long-range
acoustic transmissions in the Northeast Pacific as part of the
Acoustic Thermometry of Ocean Climate (ATOC) project (The ATOC
Consortium, 1998; Dushaw, et al., 1999; Dushaw 1999; Worcester et
al., 1999). In this paper,these timeseries are compared with other
available data types.The acoustic timeseries of transmissions from a
source off the coast of central California began in early 1996, while
the timeseries from a source north of Kauai, Hawaii began in late
1997. As a result of marine mammal protocols, the timeseries are
intermittent. The California source was turned off in Fall 1998 after
24 months of operation in accord with permit requirements.
Transmissions from the Kauai source ended on October 6, 1999,
although we are seeking to extend the timeseries of these
transmissions for another 5 years.

Assuming that the variations in sea surface height observed by
TOPEX/POSEIDON are caused solely by thermal expansion, the
amplitude of the annual cycle of heat content derived from altimetry
is larger than that found by the acoustic data, Levitus climatology,
and monthly maps of ocean temperature derived from XBT’s of
opportunity (courtesy of W.White). The "anomalies”, or deviations of
temperature from the annual cycle, are the essence of the climate
problem. The heat content "anomalies" determined by the XBT
maps are comparable in size to the differences between the XBT
and acoustically derived heat content. These differences may be
due to undersampling in space or time by the XBTs, errors in the
XBT maps as a result of such things as fall rate errors, aliasing of
internal wave or mesoscale variability, or the deeper sampling
(below 400 m) of the acoustic data. The 12-year timeseries of
temperature derived from the Hawaiian Ocean Timeseries (HOT)
data set (monthly CTD casts), highlights the problem of mesoscale
noise in sampling at a single point. However, thermal variability at
100-day timescales is observed in the acoustic data obtained
between Hawaii and California using the Kauai source with no
corresponding variability in the TOPEX data (and certainly not in the
heavily-smoothed XBT maps). Acoustic thermometry s
complementary to altimetry and hydrography.
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Theory

The travel time along a ray pathT; is

ds
o= 1'"[ Colx, t) + S(x, t) +ulx, 1) - 7

Co is a reference sound speed field (Levitus)
§c is the difference between "true" sound speed and reference

ds is an element of the ray path length
u - 7 is the current effect (neglect)
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Assuming fixed raypaths, solve for sc(t) using travel time data.
Usedsc(x, t) = Y Ai(t)Fi(x), and solve for the A;(t).

Are data equal to ray travel times incy(x, t) + 5c(x, t)? (YES)
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The Acoustic Thermometry of Ocean Climate (ATOC) array. The array spans most of the
Northeast Pacific Ocean. Acoustic paths to the various SOSUS and vertical-line array
receivers from the Kauai and Pioneer Seamount acoustic sources are shown. Paths noted by
heavy lines are those for which ray travel time data have been derived. Paths noted by light
lines have weaker or noisier receptions in which clear ray arrivals are not evident, but travel

time data may eventually be derived for these paths.

The acoustic data are of high quality. Tidal variations of order 10 ms in travel time are
observed in the data obtained at 5-Mm range on acoustic paths from California to receivers K
and L (below). These tidal variations are caused by tidal currents, and they match the tidal
variations predicted using a TOPEX/POSEIDON tidal model (TPXO.2) fairly well. This is one of
many aspects of these acoustic data that give us confidence in the measurement of oceanic

temperature.
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The acoustical sampling must be considered in the interpretation of the
temperature measurements. The ray paths associated with resolved ray arrivals for
acoustic transmissions from Kauai to receiver D located near Central California are
shown above. Near Hawaii the ray paths do not sample the upper 100-200 m of the
ocean, while near California the rays are surface reflecting, or near-surface
refracting. These raypaths were derived using the annual mean Levitus ocean atlas.
Ray paths for the transmissions from California to the central North Pacific are
generally surface reflecting for the entire path, and so the entire water column is

sampled.
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At left, an objective map of ocean sound speed
variability averaged over the top 1000 m of the ocean
calculated using data obtained from both the Pioneer
Seamount and Kauai acoustic sources. The error map
(the diagonal of the error covariance) is shown by the
white contour lines; the assumed correlation length
scale (1000 km) is evident in the width of the contour
lines across an acoustic path. The uncertainty at any
one point is only slightly reduced from the a priori
uncertainty, but the uncertainty of the average along an
acoustic path is much smaller. Because the ray paths
do not sample to the ocean surface in the subtropical
Pacific like they do in northern and eastern Pacific,
these maps must be interpreted with care.

Acoustical arrays such as these may be used to detect
spatial patterns of climate variability. The panel to the
right shows the first empirical orthogonal function (EOF) 10
of 0-400 m heat content derived from XBT's of
opportunity (XBT data courtesy of Warren White). This
EOF shows the “classic” pattern of the Pacific Decadal
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Warren White has made available (http:/jedac.ucsd.edu)
objective maps of 0—400 m ocean heat content derived from XBT’s
of opportunity. These maps were used to calculate line-averages of
temperature for comparison to the ATOC and TOPEX/POSEIDON
timeseries (left, top).

In most cases the amplitudes of the annual cycle derived from
the XBT data are similar to that from the acoustic timeseries, but
less than that from the altimeter data. The XBT data do not show
the "mesoscale”, or 100-day timescale variability observed in the
acoustic data, of course.

While the XBT and acoustic data have similar ampitude of
annual cycles, the differences between the two timeseries (lower
left) are comparable to the estimate of the thermal "anomaly"
derived from the XBT data. This suggests that the "anomaly"
derived from the XBT data has order 100% error. This error may
result from inadequate spatial and temporal sampling of the XBT
data, from the aliasing of mesoscale or internal wave motions, from
the limited depth sampling (to 400 m in this case), or from fall-rate
or other instrumental errors (the broadcast XBT’s have a 0.2 °C
nominal uncertainty). Such problems are illustrated in a compari-
son of temperature measurements from individual XBT’s obtained
in a 10°x10° square in the central North Pacific (1998 NODC World
Ocean Data Base) to the ATOC and altimeter timeseries (below
right). For all of these figures the XBT data have been scaled to
obtain a 0-1000 m depth average.
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