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� Introduction

The parabolic equation �PE� method ����� is very e�ective for solving range�
dependent ocean acoustics problems	 This document is a user
s guide for the
Range�dependent Acoustic Model �RAM�� a FORTRAN code based on the
latest techniques in PE modeling	 Version �	� of RAM is designed for single�
processor calculations	 Version �	�p can be several times faster than Version
�	� on a parallel�processing computer	 Section 
 describes the PE techniques
used in RAM	 Section � describes the computer code and the format of the
input �le	

RAM is based on the split�step Pad�e solution ������ which allows large
range steps and is the most e�cient PE algorithm that has been developed ���	
Range dependence is handled accurately by applying an energy�conservation
correction ����� as the acoustic parameters vary with range	 An initial con�
dition �or starting �eld� is constructed using the self�starter �������� which
is an accurate and e�cient approach based on the PE method �hence the
name�	

The numerical solution of the parabolic wave equation involves repeat�
edly solving tridiagonal systems of equations	 This key component of RAM
has been optimized by minimizing the number of operations and by using
a special elimination scheme that is e�cient for problems involving variable
ocean depth ��
����	 The split�step Pad�e algorithm is based on rational func�
tion approximations	 The tridiagonal systems of equations that correspond
to di�erent terms of the rational approximation may be solved in parallel to
achieve signi�cant gains in e�ciency	
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� Parabolic equation techniques

The PE method is based on assuming that outgoing energy dominates back�
scattered energy and factoring the operator in the frequency�domain wave
equation to obtain an outgoing wave equation	 A function of an operator
is then approximated using a rational function to obtain an equation that
can be solved numerically	 By reducing an elliptic boundary�value problem
to an initial�value problem in range� run times can be reduced by a factor
of several orders of magnitude	 This gain in e�ciency does not come at the
expense of accuracy because range dependence is gradual �so that outgoing
energy dominates� in many ocean environments	

We work in cylindrical coordinates� where the range r is the horizontal
distance from a point source� z is the depth below the ocean surface� and � is
the azimuth	 Cylindrical spreading is handled by removing the factor r����

from the complex pressure p	 Problems are reduced to two dimensions using
the uncoupled�azimuth approximation �������� which is valid when horizon�
tal variations in the medium are su�ciently gradual	 Range dependence is
handled by approximating the medium as a sequence of range�independent
regions	 An arbitrary level of accuracy may be obtained by using a su�cient
number of regions	

Away from the source� p satis�es the following far��eld equation in each
range�independent region�
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where � is the density� k � �� � i�����c is the wave number� � is the
circular frequency� c is the speed of sound� � is the attenuation in dB��� and
� � ���	 log�� e�

��	 Factoring the operator in Eq	 ���� we obtain
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where k� � ��c� and c� is a representative phase speed	 Assuming that
outgoing energy dominates back�scattered energy� we obtain the outgoing






wave equation�
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The formal solution of Eq	 ��� is

p �r � �r� z� � exp
�
ik��r �� � X����

�
p �r� z� � ���

where �r is the range step	 Applying an n�term rational function to approx�
imate the exponential function� we obtain

p �r � �r� z� � exp �ik��r�
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Version �	� of RAM is based on Eq	 ��� and is designed for single�processor
applications	 Expanding the rational function in Eq	 ��� by partial fractions�
we obtain

p �r � �r� z� � exp �ik��r�
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Version �	�p of RAM is based on Eq	 ��� and is useful for parallel processing�
with the terms on the right�hand side assigned to di�erent processors	 Since
the sum form of the rational function is more sensitive to round�o� errors
than the product form� it is necessary to compile Version �	�p in double
precision when k��r is large	

The complex coe�cients �j�n and �j�n are de�ned by placing accuracy
and stability constraints on the rational function	 The accuracy constraints
guarantee that the propagating spectrum X �� � is handled accurately	 The
purpose of the stability constraints� which are essential for the self�starter and
the energy�conservation correction� is to annihilate the evanescent spectrum
Re�X� 
 ��	 RAM computes the coe�cients in Eq	 ��� by �rst solving a
linear problem for the coe�cients of a ratio of two polynomials of degree n
and then using subroutines from ���� to �nd the roots of the polynomials	
The constraints used in RAM are that 
n � ns derivatives of the rational
function are correct at X � � and that the rational function vanishes at ns

points in the evanescent region	 We have found that ns � � or 
 is e�ective
for most problems	 The stability constraints introduce a small amount of
arti�cial attenuation� which is insigni�cant for most problems but can be
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signi�cant for propagation in deep water to very long ranges	 To handle
this type of problem accurately� RAM provides the option of turning o� the
stability constraints at a speci�ed range	

The self�starter is an accurate and e�cient approach for obtaining an
initial condition for Eq	 ���	 For the case of a line source at z � z� in plane
geometry� the complex pressure satis�es
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Integrating Eq	 ��� over an arbitrarily small x interval about the origin� we
obtain
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Substituting the outgoing wave equation into Eq	 ���� we obtain

k� �� � X���� p � � �z � z�� 
 ����

The initial condition can not be evaluated numerically at x � � due to
the singularity at the source location	 We evaluate the �eld at x � x� to
avoid the singularity� where x� is on the order of a wavelength	 Substituting
Eq	 ��� into Eq	 ���� with x� in place of �r� we obtain

p �x�� z� �
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The self�starter requires a modi�cation for the case of a point source in
cylindrical geometry	 The normal�mode representation of the acoustic �eld
is used in ���� to show that the self�starter for a point source is of the form�
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To avoid encountering singular intermediate solutions� RAM solves Eq	
��
� with the following approach �����
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The intermediate function q has two continuous derivatives	 A rational�linear
function is used to approximate the operator in Eq	 ����	

The solution is advanced through each of the range�independent regions
using Eq	 ��� or ���	 For range�dependent problems� it is necessary to specify
a condition at the vertical interfaces between regions	 Accurate solutions may
be obtained by conserving the energy �ux�
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Z
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 ����

The normal�mode representation is used in ���� to show that energy �ux may
be conserved by conserving the linear quantity�

A � �����k
���
� �� � X���� p 
 ����

In the limit of nearly horizontal propagation�

A � p�� � ����

where � � ���k����	 Conserving p�� provides accurate solutions for most
problems in ocean acoustics	 To conserve energy� RAM is implemented using
the modi�ed dependent variable �p � p�� and the modi�ed depth operator�
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Since di�erent quantities are conserved across horizontal �p� and vertical
�p��� interfaces� Gibbs oscillations can occur for problems involving sloping
interfaces	 The stability constraints annihilate these artifacts� which project
onto the evanescent spectrum	

The depth operator �X is discretized using Galerkin
s method as described
in ���	 This approach for replacing the depth operator with a tridiagonal ma�
trix handles piece�wise continuous depth variations in the acoustic parame�
ters	 After discretizing in depth� the numerical solution involves repeatedly
solving tridiagonal systems of equations	 As Figure � indicates� Gaussian
elimination involves sweeping downward to eliminate entries below the main
diagonal followed by back substitution sweeping upward	 The entries near
the ocean bottom interface change when bathymetry varies� and it is neces�
sary to repeat the downward elimination throughout the ocean bottom	 The
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other elimination scheme illustrated in Figure � is more e�cient for problems
involving variable ocean depth	 Elimination begins at both the top �entries
below the main diagonal are eliminated� and bottom �entries above the main
diagonal are eliminated� of the grid and ends at the ocean bottom interface	
Back substitution then proceeds in both directions from the ocean bottom	
With this approach� it is necessary to modify only a few rows of the matrices
when ocean depth varies	

� Computer implementation

In this section� we discuss how to run RAM and how the code is organized	
Since ram�f �Version �	�� and ramp�f �Version �	�p� are relatively short
and simple codes� they are easy to modify for special applications such as
interfacing with a data base� outputting data in a particular format� or using
as a subroutine for another code	 The �les in the RAM package include
ram�f� ramp�f� ram�in� ram�jpg� and ram�ps	 These �les are available via
anonymous ftp from ram�nrl�navy�mil in the directory �ftp�pub�ram	

The main part of ram�f contains a call to the subroutine setup to ini�
tialize parameters� a loop that marches the solution in range� a call to outpt

to write out transmission loss� and a call to updat to update the tridiagonal
matrices when the environment varies with range	 Subroutine setup reads
in and de�nes parameters� initializes the pro�les and tridiagonal matrices�
and constructs the starting �eld	 Subroutines profl and zread read in the
pro�les and interpolate them onto the grid and de�ne the functions that ap�
pear in Eq	 ���� in the water column and in the bottom	 Subroutine matrc

sets up the tridiagonal matrices and the special decomposition described in
Section 
	 Subroutine solve solves the tridiagonal system using the decom�
posed matrices	 Subroutine outpt writes out transmission loss at z � zr at
every range to tl�line and on a decimated range�depth grid to tl�grid	
Subroutine updat modi�es the matrices when ocean depth varies �this pro�
cedure requires little e�ort� and reconstructs the matrices when the pro�les
are updated	

Subroutine epade computes the coe�cients of the rational function with
the help of several other subroutines including subroutines from ���� for �nd�
ing the roots of a polynomial	 Subroutine epade writes out to pade�check

the values of the rational functions and the functions they approximate over
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a set of points that includes both the propagating and evanescent spectrum	
This �le can be used to determine appropriate values for n and c�	 The
subroutines that compute the coe�cients of the rational approximation are
written in double precision	 Everything else is written in single precision	
For some computers and applications� it is necessary to modify the precision
for the codes or parts of the codes	 Double precision is required for ramp�f

when k��r is large	 Double precision is required for both ram�f and ramp�f

when the number of depth grid points is large	
The form of the input �le ram�in is illustrated in Figure 
	 Many of

the inputs that are de�ned in Figure � correspond to parameters de�ned
in Section 
 and are self�explanatory	 The �rst line of ram�in contains the
title� which may be any string of characters	 The decimation factors ndr

and ndz are the number of range and depth grid spacings between output to
tl�grid	 The maximum depth of output to tl�grid is zmplt	 The depth
of the ocean is de�ned by the bathymetry points rb and zb� with linear
interpolation between the input points	 The stability constraints are turned
o� at the range rs	 This option can be used for long�range propagation in
deep water to prevent the introduction of arti�cial attenuation	 When rs is
set to �� the stability constraints are used for all ranges	

The pro�le block�s� follow the bathymetry block	 The range of the pro�le
block rp must be speci�ed for each pro�le block after the �rst one	 Since
there is no limit to the number of pro�le blocks� RAM can handle complex
environments	 The sample input �le appearing in Figure 
 has two pro�le
blocks	 The speed of sound in the water column cw and the bottom cb are
constructed from cw and cb	 The density �b and attenuation �b in the bottom
are constructed from rhob and attn	 In the water column� the density is
assigned the value �w � � g�cc and the attenuation is assumed to vanish	 To
prevent arti�cial re�ections� the bottom of the computational grid �the depth
zmax� is placed well below the ocean bottom interface and the attenuation is
increased over the lower few wavelengths of the grid	 The pro�les are linearly
interpolated in depth between the input values and are assumed constant �not
extrapolated� outside the range of input	 With this convention� the number
of inputs is minimized �e	g	� constant pro�les are de�ned in the sample input
�le simply by specifying the value at z � ��	

For problems involving variable ocean depth d �r�� the acoustic parame�

�



ters are de�ned as follows�

c �r� z� �
�
cw �z� for z 
 d �r�
cb �z� for z � d �r�

����

� �r� z� �
�
�w for z 
 d �r�
�b �z� for z � d �r�

�
��

� �r� z� �
�

� for z 
 d �r�
�b �z� for z � d �r�

�
��

The pro�les are not interpolated in range	 Range dependence in cw� cb� �b�
and �b is handled by updating cw� cb� rhob� and attn abruptly at the range
rp	 If gradual range dependence is desired� it is necessary to either use an
appropriate sequence of pro�le blocks or modify ram�f to interpolate pro�les	

The problem de�ned in Figure 
 involves range�dependent sound speed
and bathymetry	 There is a surface duct in the upper part of the water
column for r 
 
� km	 The sound speed in the water column is homogeneous
for r � 
� km	 There is an absorbing layer in the lower ��� m of the ocean
bottom	 A relatively large value is used for c� in order to obtain an accurate
rational approximation for phase speeds between ���� and ���� m�s	 The
RAM solution appearing in Figure � for this problem is accurate for a range
step of ��� m	 To achieve similar accuracy with �nite�di�erence algorithms
that predate the split�step Pad�e algorithm �
��

�� it is necessary to use
a range step of about � m	 For this problem� the split�step Pad�e solution
therefore provides an e�ciency gain of about an order of magnitude with a
single processor and about two orders of magnitude with parallel processing	
A color image of the solution of this problem appears in the �le ram�jpg	

RAM provides accurate solutions for ocean acoustics problems provided
the inputs are selected properly	 Accuracy may be controlled by perform�
ing simple convergence tests to determine an appropriate parametrization of
the environment and appropriate values for the grid spacings� the number of
terms in the rational approximation� the value of the reference sound speed�
the location of the lower boundary� and the thickness of the absorbing layer	
The size of �r is limited by the rate of range dependence	 When range de�
pendence is strong �i	e	� the ocean bottom interface is relatively steep�� it
is necessary to use a relatively large number of range�independent regions	
The size of the smallest region is an upper bound on �r	 When the rate
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of range dependence varies signi�cantly� e�ciency can be improved by mod�
ifying ram�f to allow a variable range step	 The transmission loss data in
tl�line is useful for convergence tests	
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(a)

(b) (c)

(d) (e)

Figure �� Techniques for solving tridiagonal systems	 �a� The matrix prior
to elimination	 The solid lines indicate the three diagonals	 The broken
line corresponds to the ocean bottom interface	 The dashed lines indicate�
the �b� elimination and �c� back substitution steps of Gaussian elimination 
the �d� elimination and �e� back substitution steps of a scheme designed to
e�ciently handle varying bathymetry	
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range�dependent example title

���� ���� ���� freq zs zr

������� ����� � rmax dr ndr

������ ��� � ����� zmax dz ndz zmplt

������ � � ��� c� np ns rs

��� ����� rb zb

	������ 	����

�� ��

��� �	���� z cw

����� ������

	���� ��
���

�� ��

��� ������ z cb

�� ��

��� ��� z rhob

�� ��

����� ��� z attn

������ ����

�� ��

������� rp

��� ��
��� z cw

�� ��

��� ������ z cb

�� ��

��� ��� z rhob

�� ��

����� ��� z attn

������ ����

�� ��

Figure 
� Sample input �le ram�in	 Lines with �� �� are used to indicate
the end of the bathymetry and pro�le blocks	
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title arbitrary string of characters

freq source frequency 
Hz�

zs source depth 
m�

zr receiver depth for tl�line 
m�

rmax maximum range 
m�

dr range step 
m�

ndr range decimation factor for tl�grid 
��no decimation�

zmax maximum depth 
m�

dz depth grid spacing 
m�

ndz depth decimation factor for tl�grid 
��no decimation�

zmplt maximum depth of output to tl�grid

c� reference sound speed 
m�s�

np number of terms in rational approximation

ns number of stability constraints 
� or ��

rs maximum range of stability constraints 
m�

rb range of bathymetry point 
m�

zb depth of bathymetry point 
m�

z depth of profile point 
m�

cw sound speed in water column 
m�s�

cb sound speed in sediment 
m�s�

rhob density in sediment 
g�cc�

attn attenuation in sediment 
dB�wavelength�

rp range of profile update 
m�

Figure �� De�nition of the parameters that appear in ram�in	
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Figure �� Transmission loss at z � �� m for the test problem de�ned in Figure

	 The reference solution is given by the solid curve	 The RAM solution is
represented by the circles that are spaced by ��� m in range	
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