Chapter 8

Ordinary differential equations

Consider first a scalar, first-order ordinary differential equation (ODE) of the form

Y _fwt) with (o) =ue. (51
The problem we address now is the advancement of such a system in time by integration of this
differential equation. As the quantity being integrated, f, is itself a function of the result of the
integration, y, the problem of integration of an ODE is fundamentally different than the problem of
numerical quadrature discussed in §7, in which the function being integrated was given. Note that
ODEs with higher-order derivatives and systems of ODEs present a straightforward generalization
of the present discussion, as will be shown in due course. Note also that we refer to the independent
variable in this chapter as time, ¢, but this is done without loss of generality and other interpretations
of the independent variable are also possible.

The ODE given above may be “solved” numerically by marching it forward in time, step by step.
In other words, we seek to approximate the solution y to (8.1) at timestep tn11 = ¢, + hy given
the solution at the initial time ¢q and the solution at the previously-computed timesteps t; to t¢,.
For simplicity of notation, we will focus our discussion initially on the case with constant stepsize
h; generalization to the case with nonconstant h,, is straightforward.

8.1 Taylor-series methods
One of the simplest approaches to march the ODE (8.1) forward in time is to appeal to a Taylor
series expansion in time, such as
h? h3
Y(tns1) = y(tn) + hy'(tn) + T?Jll(tn) + F?Jm(tn) +.o (8.2)

From our ODE, we have:
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etc. Denoting the numerical approximation of y(t¢,) as y,, the time integration method based on
the first two terms of (8.2) is given by

‘yn-&-l = Yn + hf(yn;tn)- ‘ (8.3)

This is referred to as the explicit Euler method, and is the simplest of all time integration schemes.
Note that this method neglects terms which are proportional to h%, and thus is “second-order”
accurate over a single time step. As with the problem of numerical quadrature, however, a more
relevant measure is the accuracy achieved when marching the ODE over a given time interval (¢g, to+
T) as the timesteps h are made smaller. In such a setting, we lose one in the order of accuracy (as in
the quadrature problem discussed in §7) and thus, over a specified time interval (¢o, %o +7T'), explicit
Euler is first-order accurate.
We can also base a time integration scheme on the first three terms of (8.2):

2
Ynt1 = Yn + hf(Yn,tn) + %[ft(ynatn) + f(ynatn)fy(yna tn)].

Even higher-order Taylor series methods are also possible. We do not pursue such high-order Taylor
series approaches in the present text, however, as their computational expense is relatively high (due
to all of the cross derivatives required) and their stability and accuracy is not as good as some of
the other methods which we will develop.

Note that a Taylor series expansion in time may also be written around ¢,,41:
h? h3
! " "
Y(tn) = y(tner) — hy' (tnsr) + E?J (tns1) — ?y (tng) + ...

The time integration method based on the first two terms of this Taylor series is given by

‘yn+1 =Yn +hf(Yns1, tns1). ‘ (8.4)

This is referred to as the implicit Euler method. It also neglects terms which are proportional
to h?, and thus is “second-order” accurate over a single time step. As with explicit Euler, over a
specified time interval (¢o,to + T'), implicit Euler is first-order accurate.

If f is nonlinear in y, implicit methods such as the implicit Euler method given above are
difficult to use, because knowledge of y,,11 is needed (before it is computed!) to compute f in order
to advance from y,, to y,,41. Typically, such problems are approximated by some type of linearization
or iteration, as will be discussed further in class. On the other hand, if f is linear in y, implicit
strategies such as (8.4) are easily solved for y,11.

8.2 The trapezoidal method

The formal solution of the ODE (8.1) over the interval [t,, t,+1] is given by

tnt1
Yn+l = YUn +/ f(y, t)dt.
t

n

Approximating this integral with the trapezoidal rule from §7.1.1 gives

s = U+ o1 W) + St )] (5

This is referred to as the trapezoidal or Crank-Nicholson method. We defer discussion of the
accuracy of this method to §8.4, after we discuss first an illustrative model problem.
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8.3 A model problem

A scalar model problem which is very useful for characterizing various time integration strategies is

y' =Xy with  y(te) = yo, (8.6)
where ) is, in general, allowed to be complex. The exact solution of this problem is y = yoe*(*~to),
The utility of this model problem is that the exact solution is available, so we can compare the
numerical approximation using a particular numerical method to the exact solution in order to
quantify the pros and cons of the numerical method. The insight we gain by studying the application
of the numerical method we choose to this simple model problem allows us to predict how this method
will work on more difficult problems for which the exact solution is not available.

Note that, for ®(A\) > 0, the magnitude of the exact solution grows without bound. We thus
refer to the exact solution as being unstable if R(A) > 0 and stable if £(A) < 0. Graphically,
we denote the region of stability of the exact solution in the complex plane A by the shaded region
shown in Figure 8.1.
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Figure 8.1: Stability of the exact solution to the model problem ' = Ay in the complex plane \.

8.3.1 Simulation of an exponentially-decaying system

Consider now the model problem (8.6) with A\ = —1. The exact solution of this system is simply
a decaying exponential. In Figure 8.2, we show the application of the explicit Euler method, the
implicit Euler method, and the trapezoidal method to this problem. Note that the explicit Euler
method appear to be unstable for the large values of h. Note also that all three methods are more
accurate as h is refined, with the trapezoidal method appearing to be the most accurate.

8.3.2 Simulation of an undamped oscillating system

Consider now the second-order ODE for a simple mass/spring system given by
y" = —w?y  with  y(to) = vo, ¥'(to) =0, (8.7)

where w = 1. The exact solution is y = yo cos[w(t — to)] = (yo/2)[e’“(I~t0) 4 e=iw(t=to)],
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Figure 8.2: Simulation of the model problem y' = Ay with A = —1 using the explicit Euler method
(top), the implicit Euler method (middle), and the trapezoidal method (bottom). Symbols denote:

o,h=21; x,h=0.06; , exact s’olution.

We may easily write this second-order ODE as a first-order system of ODEs by defining y; = y
and y, = 9’ and writing:

() = (o) () 59

The eigenvalues of A are +iw. Note that the eigenvalues are imaginary; if we has started with the
equation for a damped oscillator, the eigenvalues would have a negative real part as well. Note also
that A may be diagonalized by its matrix of eigenvectors:

A=SAS~! where A= (““ 0 )

0 —iw
Thus, we have

y=SAS7ly = Sly'=ASly = 7 =Az
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Figure 8.3: Simulation of the oscillatory system 3" = —w?y with w = 1 using the explicit Euler
method (top), the implicit Euler method (middle), and the trapezoidal method (bottom). Symbols

denote: o, h=0.6; x,h=0.1; , exact solution.

where we have defined z = S~'y. In terms of the components of z, we have decoupled the dynamics
of the system:

! .
z] = w2

2h = —iwzs.

Each of these systems is exactly the same form as our scalar model problem (8.6) with complex (in
this case, pure imaginary) values for A\. Thus, eigenmode decompositions of physical systems (like
mass/spring systems) motivate us to look at the scalar model problem (8.6) over the complex plane
A. In fact, our original second-order system (8.7), as re-expressed in (8.8), will be stable iff there are
no eigenvalues of A with () > 0.

In Figure 8.3, we show the application of the explicit Euler method, the implicit Euler method,
and the trapezoidal method to the first-order system of equations (8.8). Note that the explicit Euler
method appears to be unstable for both large and small values of h. Note also that all three methods
are more accurate as h is refined, with the trapezoidal method appearing to be the most accurate.

We see that some numerical methods for time integration of ODEs are more accurate than others,
and some numerical techniques are sometimes unstable, even for ODEs with stable exact solutions.
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In the next two sections, we develop techniques to quantify both the stability and the accuracy of
numerical methods for time integration of ODEs by application of these numerical methods to the
model problem (8.6).

8.4 Stability

For stability of a numerical method for time integration of an ODE, we want to insure that, if the
exact solution is bounded, the numerical solution is also bounded. We often need to restrict the
timestep h in order to insure this. To make this discussion concrete, consider a system whose exact
solution is bounded and define:

1) a stable numerical scheme: one which does not blow up for any h,

2) an unstable numerical scheme: one which blows up for any h, and

3) a conditionally stable numerical scheme: one which blows up for some h.

8.4.1 Stability of the explicit Euler method
Applying the explicit Euler method (8.3) to the model problem (8.6), we see that
Ynt1 = Yn + Mhyn = (1 4+ Ah)y,.
Thus, assuming constant h, the solution at time step n is:
yn =1+ M)y 20"y = o=1+Mh
For large n, the numerical solution remains stable iff
loj <1 = (1+Agh)*+ (\h)? < 1.

The region of the complex plane which satisfies this stability constraint is shown in Figure 8.4. Note
that this region of stability in the complex plane Ah is consistent with the numerical simulations
shown in Figure 8.2a and 8.3a: for real, negative A, this numerical method is conditionally stable
(i.e., it is stable for sufficiently small h), whereas for pure imaginary A, this numerical method is
unstable for any A, though the instability is mild for small h.
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Figure 8.4: Stability of the numerical solution to ¢y’ = Ay in the complex plane Ah using the explict
Euler method.
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8.4.2 Stability of the implicit Euler method
Applying the implicit Euler method (8.4) to the model problem (8.6), we see that

Ynt1l = Yn + AYny1 = Yn+1 = (1 - /\h)_lyn-

Thus, assuming constant h, the solution at time step n is:

— 1 " A} = _ 1
Yn = 1— \h Yo =0 Yo U_l—)\h.

For large n, the numerical solution remains stable iff
o<1 = (1=Agh)*+ (A\1h)? > 1.

The region of the complex plane which satisfies this stability constraint is shown in Figure 8.5. Note
that this region of stability in the complex plane Ah is consistent with the numerical simulations
shown in Figure 8.2b and 8.3b: this method is stable for any stable ODE for any h, and is even
stable for some cases in which the ODE itself is unstable.
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Figure 8.5: Stability of the numerical solution to ¢y’ = Ay in the complex plane Ah using the implicit
Euler method.

8.4.3 Stability of the trapezoidal method
Applying the trapezoidal method (8.5) to the model problem (8.6), we see that

b 1+ 40
Ynt1 = Yn + 7(‘1”" FYnt1) = Ynpr = — 2 | Y

Thus, assuming constant h, the solution at time step n is:

A\ " Ak
_(1+ 5 2 n N L+ 5
Yn = h Yo = 0 Yo g VR

2

For large n, the numerical solution remains stable iff

o] <1 = ... = R <O0.
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The region of the complex plane which satisfies this stability constraint coincides exactly with the
region of stability of the exact solution, as shown in Figure 8.6. Note that this region of stability in
the complex plane Ah is consistent with the numerical simulations shown in Figure 8.2c and 8.3c,
which are stable for systems with ®(\) < 0 and marginally stable for systems with ®(\) = 0.
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Figure 8.6: Stability of the numerical solution to y' = Ay in the complex plane Ah using the
trapezoidal method.

8.5 Accuracy

Revisiting the model problem y' = Ay, the exact solution (assuming tq = 0 and h = constant) is

A2h? A3h3 "

U(tn) = Mogo = (M)yo = (1 Mt

On the other hand, solving the model problem with explicit Euler led to
yn = (1+ Ah)"yo = o"yo,

solving the model problem with implicit Euler led to

1\ n
yﬁ(ﬁ) yo = (14 M+ XB + X0 +...) "o £ 0"y,

and solving the model problem with trapezoidal led to

1+2\" A2h2 AR "
yn:<1 fh> yo=<1+/\h+ 5+t +> Yo = o"yo.
T2

To quantify the accuracy of these three methods, we can compare the amplification factor ¢ in each
of the numerical approximations to the exact value e*". The leading order error of the explicit Euler
and implicit Euler methods are seen to be proportional to h?, as noted in §8.1, and the leading
order error of the trapezoidal method is proportional to k. Thus, over a specified time interval
(to,to + T), explicit Euler and implicit Euler are first-order accurate and trapezoidal
is second-order accurate. The higher order of accuracy of the trapezoidal method implies an
improved rate of convergence of this scheme to the exact solution as the timestep h is refined, as
observed in Figures 8.2 and 8.3.



8.6. RUNGE-KUTTA METHODS 87

8.6 Runge-Kutta methods

An important class of explicit methods, called Runge-Kutta methods, is given by the general form:

ki = f(yn,tn)
ky = f(yn+51 hki tn + oy h)
B = £ (un + Bo ks + B3 ks, + 0o 1) (8.9)

yn+1:yn+’71hk1+’}/2hk'2+’}/3hk'3+...,

where the constants a;, §;, and ~; are selected to match as many terms as possible of the exact
solution:

h2 h3
Y(tnt1) = y(tn) + hy'(tn) + Ey”(tn) + ?ym(tn) +..
where
y =f
y” =fi+ ffy

y" = fu + fefy +2ffye + fy2f + f2fyya

etc. Runge-Kutta methods are explicit and “self starting”, as they don’t require any information
about the numerical approximation of the solution before time t,; this typically makes them quite
easy to use. As the number of intermediate steps k; in the Runge-Kutta method is increased, the
order of accuracy of the method can also be increased. The stability properties of higher-order
Runge-Kutta methods are also generally quite favorable, as will be shown.

8.6.1 The class of second-order Runge-Kutta methods (RK2)
Consider first the family of two-step schemes of the form (8.9):
ki = f(yn, tn),
ky = f(yn + Brh ki, ty + a1 h)
~ F(Wnstn) + Ly Wnsta) (B A S Wast)) + filynsta) (a1 B),
Yn+1 = Yn + 71 hki + 2 hks
N g 10 h Fnstn) + 92 b (£ s tn) + Bi b fy (W ta) FWnsta) + a1 h fiyas ta)
X Y+ (1 +92) h f(ynstn) + 7212 B1 fy(Ynstn) F(Ynstn) + 72 h% a1 fe(yn, tn).

Note that the approximations given above are exact if f is linear in y and ¢, as it is in our model
problem. The exact solution we seek to match with this scheme is given by

2
y(tn+1) = y(tn) + hf(yn: tn) + % (ft(ym tn) + f(yn tn)fy(ynatn)) +..
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Matching coefficients to as high an order as possible, we require that

Nntr=1
h2
29 _ 1 1
72h ﬁl_? = alzﬁla Y2 =5 ’)/1:1——
N 20(1 20(1
’thQOél:?

Thus, the general form of the two-step second-order Runge-Kutta method (RK2) is

ki = f(ynatn)
k2:f(yn+ahk1,tn+ah) (8.10)

Yni1 = Yn + (1 - %)hkl n (%)hl@,

where « is a free parameter. A popular choice is & = 1/2, which is known as the midpoint method and
has a clear geometric interpretation of approximating a central difference formula in the integration
of the ODE from ¢,, to t,,41. Another popular choice is & = 1, which is equivalent to perhaps the
most common so-called “predictor-corrector” scheme, and may be computed in the following order:

predictor : yr. 1 = Yn + hf(Yn,tn)

h R
corrector : Yni1 = Yn + 2 FWnstn) + f(Yni1stntr) |-

The “predictor” (which is simply an explicit Euler estimate of y,+1) is only “stepwise 2nd-order
accurate”. However, as we shown below, calculation of the “corrector” (which looks roughly like a
recalculation of y,, 41 with a trapezoidal rule) results in a value for y,,; which is “stepwise 3rd-order
accurate” (and thus the scheme is globally 2nd-order accurate).

Applying an RK2 method (for some value of the free parameter a) to the model problem y' = Ay
yields

Ynt1 = Yn + (1 - %)h)\yn + (%)hk(l +ahANyn
A2 12
2

21,2
)ynéoyn = a:1+>\h+>‘2h.

:(1+>\h+

The amplification factor ¢ is seen to be a truncation of the Taylor series of the exact value e =

14+ A+ )‘Z—hz + )‘Z—hB + ... We thus see that the leading order error of this method (for any value
of a) is proportional to h® and, over a specified time interval (¢y,ty + 7'), an RK2 method is
second-order accurate. Over a large number of timesteps, the method is stable iff |o| < 1; the
domain of stability of this method is illustrated in Figure 8.7.
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Figure 8.7: Stability of the numerical solution to y’ = Ay in the complex plane Ah using RK2.

8.6.2 A popular fourth-order Runge-Kutta method (RK4)

The most popular fourth-order Runge-Kutta method is

y’ﬂ: tn)

(
(yn + g kl;tn+1/2)
(

h
Yn + 3 ko, tn+1/2) (8.11)

f
f
f
f@n+hMJm0

ky
k2
ks
k4

h h h
il =Un + =k + = (ks + k —k
Yn+1 y+61+3(2+3)+64

This scheme usually performs very well, and is the workhorse of many ODE solvers. This particular
RK4 scheme also has a reasonably-clear geometric interpretation, as discussed further in class.

A derivation similar to that in the previous section confirms that the constants chosen in (8.11)
indeed provide fourth-order accuracy, with the A — o relationship again given by a truncated Taylor
series of the exact value:

XN R2 N3RS ARt
+ + :

=1
o + \h + 5 5 2

Over a large number of timesteps, the method is stable iff |o| < 1; the domain of stability of this
method is illustrated in Figure 8.8.
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Figure 8.8: Stability of the numerical solution to y’ = Ay in the complex plane Ah using RK4.

8.6.3 An adaptive Runge-Kutta method (RKM4)

Another popular fourth-order scheme, known as the Runge-Kutta-Merson method, is

k1 = f(ynatn)
ky = f(yn + gklatn+l/3)

h
ks = f(yn + E(kl + k2):tn+1/3)

h
ky = f(yn + g(kl + 3k3), tn+1/2) (8]_2)

h 3h
Yni1 = Yn + §k1 - 7’% + 2hky

ks = f(y,‘;H,th)
h 2h h
Ynt+1 = Yn + Ekl + ?k‘z} + Ek5.

Note that one extra computation of f is required in this method as compared with the method given
in (8.11). With the same sort of analysis as we did for RK2, it may be shown that both y , and
Ynt1 are “stepwise dth-order accurate”, meaning that using either to advance in time over a given
interval gives global 4th-order accuracy. In fact, if §(¢) is the exact solution to an ODE and y,, takes
this exact value of §j(t,) at t = t,, then it follows after a bit of analysis that the errors in y,, and

Yn+1 are

. W,
Yra1 = Ultns1) = —1—20y( )+ 0(h®) (8.13)
h5
-9 =———j" o). 14
Ynt1 — J(tnt1) 7207 + O(h?) (8.14)

Subtracting (8.13) from (8.14) gives

5

. h
Yn+1 — ?Jn+1 = my(v) + O(h’ﬁ)a
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which may be substituted on the RHS of (8.14) to give

et = itns1) = =5 (s = i) + O(H°). (5.15)
The quantity on the LHS of (8.15) is the error of our current “best guess” for y,+1. The first term
on the RHS is something we can compute, even if we don’t know the exact solution §(t). Thus, even
if the exact solution () is unknown, we can still estimate the error of our best guess of y,,+1 with
quantities which we have computed. We may use this estimate to decide whether or not to refine
or coarsen the stepsize h to attain a desired degree of accuracy on the entire interval. As with the
procedure of adaptive quadrature, it is straightforward to determine whether or not the error on
any particular step is small enough such that, when the entire (global) error is added up, it will be
within a predefined acceptable level of tolerance.

8.6.4 A low-storage Runge-Kutta method (RKW3)

Amongst people doing very large simulations with specialized solvers, a third-order scheme which is
rapidly gaining popularity, known as the Runge-Kutta-Wray method, is

k1 :f(ynatn)
ko Zf(yn+ﬂlhk1,tn+a1h)

Ky = f (yn+ B2 bk + By ks, + a2 )
Ynt1 =Yn + 1k +y2 hky + v3 hks,

(8.16)

where

ﬁl = 8/157 ﬁ? = 1/47 ﬁS = 5/127
(03] :8/15, a2:2/3,
7 =1/4, =0, 73 = 3/4.
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Figure 8.9: Stability of the numerical solution to ' = Ay in the complex plane Ah using third-order
Runge-Kutta.



