wireless security strategies and challenges

David Morton
dmorton@u.washington.edu
Not related to wireless security...but I took this pic on campus and looking for excuse to show :)
Section one –
WEP, WPA & 802.1x
to encrypt or not to encrypt

 Encryption
 – WEP, WPA-PSK, 802.1x w/WPA

 Open, unencrypted wireless
 – Counter intuitive?
Why Unencrypted Wireless?

- University of Washington wireless is unencrypted.
- Treat all networks as untrusted, even wireless.
- Use application level encryption across all connections.
 - Ideally end-to-end (HTTPS/SSL, SSH, etc)
- Easiest to use and support
What about VPN?

- Good option – can protect wireless and some wired infrastructure.

- But... (there's always a but)
 - Often requires client and client config maint
 - All traffic may not be encrypted (split tunnel)
 - Most secure when term point is closest to dest
 - IP Addresses still viewable wirelessly
Wireless Encrypt – WEP

- WEP is broken.
- Don’t use it-
 - Creates false sense of security
 - Tools to break are easy and readily available
 - Shared secret is easily discovered
 - It’s hardly a secret when you have to tell everyone

- But...
 - Some devices don’t support other encryption
Wireless Encrypt – WPA

- Wifi Alliance name for subset of 802.11i

- Primary flavors
 - WPA-PSK
 - 802.1x with WPA
 - WPA2 not yet widely adopted
WPA-PSK
(pre-shared key)

- WPA-PSK a “secret” is shared between client and access point
- WPA support is advertised in an IE (information element) of the access point’s Beacon
- Wait, wasn’t WPA-PSK hacked?
 - Yes, short passwords are vulnerable to dictionary attack (coWPAatty, et al)
 - short passwords easier to crack than WEP
 - mixed cased, numbers & symbols recommended
WPA-PSK
(pre-shared key)

- 802.11i recommends 20 character passphrase
- After initial auth, keys are automatically rotated
- WPA-PSK isn’t a great solution > a few users
- Larger nets should use 802.1x with WPA
802.1x with WPA
(aka 802.1x)

- Often referred to simply as 802.1x
 - Full alphabet soup of a common deployment
 802.1x with PEAP v0/MSCHAP v2, WPA, TKIP (or AES), MIC with full funk style server cert check

- Yea, 802.1x can be complex
 - Requires client software (supplicant)
 - Choice of appropriate “EAP” type
 - Network upgrades possible
 - New Servers or server upgrades possible
 - Encryption, complexity harder to support
802.1x with WPA (aka 802.1x)

But, provides a fair amount of protection
- No IP passed until properly authenticated
- PEAP/TTLS pass authn in encrypted tunnel
- RADIUS (used for authn) well understood & flexible
- Federation and roaming well understood
- NAC, health checks, VLAN assignment and other policies based solutions are all possible
- Timers to force periodic re-authentication
802.1x basic call flow

Suppliant (Client) -> EAPOL -> Authenticator (Access Point) -> RADIUS -> Authentication Server

Access Denied

- EAPOL Start
- EAP-Request/Identity
- EAP-Response/Identity
- EAP Success/Failure

Full Access if Success

RADIUS Access-Request
RADIUS Access-Accept/Reject
802.1x future

- Some feel 1x is too complex, especially support
- Upcoming standards
 - 802.1ae - Link layer encryption
 - 802.1af - extension to 1x to support 802.1ae
 - Improved MIBs for management/support
- Higher Ed to benefit wider enterprise adoption
Section two – challenges
(present and future)
Wireless offers unique challenges

- Shared media
 - Block wireless to wireless P2P (i.e., PSPF)

- Session hijack - unencrypted esp vulnerable
 - Sniff wireless to find IP and take it
 - Authorized ARP can help

- Cheap options for remote eavesdropping
 - My favorite is the 3-mile Chinese spoon
Voice over Wifi (VoWLAN)

- You want encryption (you know you do)
 - 802.1x is good, as long as you don’t move
 - Many clients 500ms to 10 seconds to roam and authenticate via 802.1x!
 - Delay budget provides only about 150ms

- Proprietary solutions for fast roaming exist
 - Cisco ‘fast, secure roaming’
 - Typically no interop between vendors
Standards based? (VoWLAN)

- IEEE 802.11r - 18 or so months away
 - goal of sub 50ms handoff (no perceivable delay)
- In-between voice packets, evaluates and pre-authenticates to neighboring Access Point
 - will likely rely on 802.11e availability & QOS info
- Without 802.1x DOS is especially disruptive
 - imagine I turn on AP capabilities on my Mac
 - use the VoWLAN SSID
 - user roams to me, call dead
pdas, phones & handhelds

- Encryption and connection options are often very limited.
- Newer mass market devices support WPA.
- Some may support 802.1x (Windows Mobile 2003/2005 support limited PEAP).
- Older devices may only support WEP.
- Commercial products (notably Funk Odyssey works on many platforms and multiple EAP types).

How does this affect your decisions?
outdoor and mesh

Covering large areas with wifi poses some special challenges

Location management is particularly difficult
 - triangulation (readings from 3-4 APs) used indoors
 - outdoor rarely has much overlapping coverage

Capacity in high-density areas can be a problem

As can rogue AP detection
wireless security
strategies and challenges

Questions?

David Morton
dmorton@u.washington.edu