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INTRODUCTION

Wavelets are a special class of functions (or sequences) that are widely used for analyzing time

series, i.e., a sequence of observations recorded over time (an example of such a series is plotted

at the bottom of Figure 3, which shows deseasonalized monthly average temperature anomalies

in the Northern Hemisphere formulated once per month from January 1856 onward [30]). Just

as Fourier analysis is based upon the notion of representing (or re-expressing) a time series as a

linear combination of sinusoids, the idea underlying wavelet analysis is to represent the series as

a linear combination of wavelets. In Fourier analysis, each sinusoid is associated with a particular

frequency f , so we can deduce what frequencies are important in a particular time series by studying

the magnitudes of the coefficients of the various sinusoids in the linear combination. In contrast,

each wavelet is associated with two independent variables, namely, time t and scale τ , because

each wavelet is essentially nonzero only inside a particular interval of times, namely, [t− τ, t+ τ ].

Within that interval, the wavelet spends roughly an equal amount of time above and below zero, so

it appears to be a ‘small wave’ centered at time t and having a width of 2τ . We can thus learn how

a time series varies on particular scales across time if we re-express it using wavelets. (Although

we concentrate entirely on data sampled over time here, in fact wavelets are used extensively with

data sampled over other independent variables, including (i) two dimensional grids, (ii) parametric

curves within a two dimensional surface and (iii) three dimensional objects [22, 31].)

As the term is presently used, wavelets as a subject go back to a seminal paper by Goupillaud

et al. [14] in 1984 in the geophysical literature, but the topic is really a mixture of fairly old concepts

along with some exciting new ideas and algorithms. The vitality of the subject is in part due to

the fact that the theory and application of wavelets have formed bridges among the often disparate

worlds of mathematics, statistics, signal processing and various physical sciences (including all that

touch upon environmetrics). Some idea of the current level of interest in wavelets can be gleaned

from the following: as of March 2000, one database of articles in the physical and engineering

sciences listed over 10,000 articles and books when queried with the keyword ‘wavelet’ – this was

an increase of over 2000 articles from a similar query done in March 1999!

There are two main classes of wavelets. The first includes various forms of the continuous

wavelet transform (CWT) and was the main focus of waveleticians in the 1980s. The second class
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comprises the orthonormal discrete wavelet transform (DWT) and related transforms, which came

into prominence starting in the late 1980s (the DWT we concentrate on below is related to a CWT,

but in a rather subtle manner). In what follows, we introduce wavelets by considering the CWT

of a ‘signal’ x(t), −∞ < t <∞, which we take to be a real-valued square integrable function (i.e.,∫
x2(t) dt < ∞). We then describe the orthonormal DWT of a time series Xt, t = 0, . . . , N − 1,

which we can often regard as a finite number of samples from a signal; i.e., Xt = x(t∆t), where

∆t is the spacing in time between adjacent observed values. After a description of an efficient

‘pyramid’ algorithm for computing the DWT, we discuss two interesting descriptive statistics that

are based on the analysis/synthesis capabilities of the DWT, namely, a decomposition of the sample

variance of a time series and an additive decomposition known as a ‘multiresolution analysis.’ We

briefly describe a variation of the DWT called the ‘maximal overlap’ DWT (MODWT), which is

one version of a ‘shift invariant’ DWT. We then review some important applications for the DWT

and MODWT in the statistical analysis of time series, for which we will then assume that Xt is a

random variable constituting the tth element of a stochastic process.

Because this article is an overview of wavelets and their applications, we must gloss over many

technical details, which the reader can find in a book by the current author and A. T. Walden [28].

There are several good books that address the statistical application of wavelets and would be use-

ful for a reader who wants to delve more into the subject, including Bruce and Gao [4], Carmona et

al. [5], Mallat [22], Ogden [26], Vidakovic [33] and Wornell [36]. Commerical software for wavelets

includes S+Wavelets for S-Plus and the Wavelets Extension Pack for Mathcad (MathSoft); Wavelet

Explorer for Mathematica (Wolfram Research); and WavBox (Computational Toolsmiths) and the

Wavelet Toolbox (MathWorks), both for Matlab. Public domain software includes WaveThresh for

S-Plus (University of Bristol) and WaveLab for Matlab (Stanford Unversity). In addition, anyone

interested in wavelets can benefit from perusing the Wavelet Digest at http://www.wavelet.org,

which regularly issues newsletters and maintains other useful information for the wavelet commu-

nity.
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THE CONTINUOUS WAVELET TRANSFORM

Formally, a real-valued function ψ(t) is called a wavelet if it satisfies the following assumptions:

(i)
∫ ∞

−∞
ψ(t) dt = 0 and (ii)

∫ ∞

−∞
ψ2(t) dt = 1 (1)

(this is a bare bones definition: in practice, we must also impose a technical – but relatively mild

– assumption known as the admissibility condition if we want to be able to reconstruct x(t) from

its wavelet transform). Assumption (ii) says that, for every small ε > 0, there is some T > 0 such

that ∫ T

−T
ψ2(t) dt < 1 − ε.

While [−T, T ] might be quite large, this interval is still vanishingly small when compared to the

entire real axis. Assumption (ii) also means that ψ(t) must be nonzero somewhere, while assump-

tion (i) says that ψ(t) balances itself above and below zero. From these two assumptions we can

picture a function that is basically time limited and oscillates up and down at least once; i.e., ψ(t)

is a ‘small wave’ or ‘wavelet’ (in contrast, we would consider the sinusoids sin(2πft) underlying

Fourier analysis as ‘big waves’ because they never damp down toward zero as |t| gets large).

Figure 1 goes about here.

Figure 1 shows plots of two wavelets. The left-hand plot is of the Haar wavelet, which is

defined as

ψ(H)(u) ≡




−1/
√

2, −1 < u ≤ 0;
1/

√
2, 0 < u ≤ 1;

0, otherwise

(this is arguably the first wavelet since it appeared in a 1910 article by Haar [15]). The other

wavelet ψ(Mh)(u) is proportional to the second derivation of the Gaussian (or normal) probability

density function. This wavelet is called the ‘Mexican hat’ wavelet for obvious reasons.

We can use the Haar wavelet to tell us something about how localized averages of a signal x(t)

vary across time. To quantify this description, let

A(τ, t) ≡ 1
τ

∫ t+ τ
2

t− τ
2

x(u) du.

Elementary books on calculus refer to A(τ, t) as the average value of x(t) over the interval [t− τ
2 , t+

τ
2 ], which is centered at t and has a scale (or width) of τ . In the physical sciences, average values
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of signals are of wide-spread interest. Examples include one second averages of air temperature or

of vertical velocity of air currents above a forest, hourly rainfall rates and monthly average temper-

atures in the Northern Hemisphere. What is often of more interest than the averages themselves,

however, is how the averages evolve over time. One way to study this evolution is to look at the

difference between adjacent averages. Accordingly, let us define

D(τ, t) ≡ A(τ, t+ τ
2 ) −A(τ, t− τ

2 ) =
1
τ

∫ t+τ

t

x(u) du− 1
τ

∫ t

t−τ
x(u) du.

For example, if we let x(t) be the temperature of the Northern hemisphere at time t and if we let

τ be 30.5 days (one month), then a plot of D(τ, t) versus t would tell us how the monthly averages

before and after time t differ as a function of time. To connect this to the Haar wavelet, note that

we can write

D(τ, t) =
∫ ∞

−∞
ψ̃τ,t(u)x(u) du, where ψ̃τ,t(u) ≡




−1/τ, t− τ < u ≤ t;
1/τ, t < u ≤ t+ τ ;
0, otherwise.

If we specialize to the case τ = 1 and t = 0 and then compare ψ̃1,0(u) to the Haar wavelet, we find

that ψ̃1,0(u) =
√

2ψ(H)(u). Thus, to within a constant of proportionality, the Haar wavelet tells us

how unit scale averages differ before and after time zero.

We can easily adjust the Haar wavelet so that it can be used to tell us about changes in x(t)

at other scales and times. Accordingly let us consider

ψ(H)
τ,t (u) ≡ 1√

τ ψ
(H)

(
u−t
τ

)
=




− 1√
2τ
, t− τ < u ≤ t;

1√
2τ
, t < u ≤ t+ τ ;

0, otherwise.

Conceptually we form ψ(H)
τ,t (u) from ψ(H)(u) by taking the latter and stretching it out so that its

nonzero portion covers [−τ, τ ] and then relocating it so that it is centered at time t. It is easy to

check that ψ(H)
τ,t (u) obeys the defining properties for a wavelet in Equation (1) (in particular, we

need
√
τ in the above to satisfy the second assumption).

We can now define the Haar continuous wavelet transform (CWT) of x(t):

W (H)(τ, t) ≡
∫ ∞

−∞
ψ(H)
τ,t (u)x(u) du, where 0 < τ <∞ and −∞ < t <∞.
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Note that W (H)(τ, t) ∝ D(τ, t) so that the (t, τ)th value of this CWT can be interpreted as the

differences between adjacent averages of scale τ located before and after time t. The CWT is fully

equivalent to the signal x(t) since we can recover x(t) from its CWT:

x(t) =
1
Cψ

∫ ∞

0

[∫ ∞

−∞
W (H)(τ, u)ψ(H)

τ,t (u) du
]
dτ

τ2
,

where Cψ is constant depending just on ψ(H)(u). The above formula says that x(t) can be rewritten

as a linear combination of wavelets ψ(H)
τ,t (u), all of which are centered around time t, and each one of

which is associated with a particular scale between zero and infinity; i.e., the wavelet re-expression

of x(t) is both localized in time and scale-based. Note that, if W (H)(τ, u)/τ2 is large (small) in

magnitude, then ψ(H)
τ,t (u) is an important (insignificant) contributor to re-expressing x(t) in terms

of various wavelets. We also have the relationship

∫ ∞

−∞
x2(t) dt =

1
Cψ

∫ ∞

0

[∫ ∞

−∞
[W (H)(τ, t)]2 dt

]
dτ

τ2
.

The left-hand side is called the ‘energy’ in the signal x(t) (it is, however, not energy in the physical

sense unless x(t) has the proper units). We can thus interpret [W (H)(τ, t)]2/τ2 as being proportional

to an energy density function that decomposes the energy in x(t) across different scales and times.

Again, if [W (H)(τ, t)]2/τ2 is large (small), we can say that there is an important (insignificant)

contribution to the energy in x(t) at scale τ and time t.

All of the above still holds if we replace the Haar wavelet with the Mexican hat wavelet (or

any number of other wavelets defined in the literature). The physical interpretation of the Mexican

hat CWT is quite similar to that of the Haar CWT and can be deduced by comparing the plots

of ψ(H)(t) and ψMh(t) in Figure 1: whereas the Haar wavelet compares simple averages before and

after time zero, the Mexican hat wavelet compares a weighted average in a region centered about

zero with weighted averages before and after that region. The interpretation of differences between

weighted averages holds for many other commonly used wavelets (it is, however, problematic for

the popular Morlet wavelet [14], which is complex-valued and is easier to interpret as yielding a

highly localized Fourier transform).
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THE DISCRETE WAVELET TRANSFORM

While the CWT has proven to be quite useful, there are a number of applications in which a discrete

version of this transform (the DWT) is more appropriate for the following reasons. First, in contrast

to the Fourier transform, the CWT does not give a succinct representation of a signal x(t) because

it changes a one dimensional signal into a two dimensional function. Full use of the CWT thus

essentially leads us into image processing, which is considerably more involved computationally

than just dealing with one dimensional signals. Second, the CWT for many time series of interest

is highly redundant in both scale and time; i.e., there is little difference either between W (τ, t)

and W (τ ′, t) when |τ − τ ′| is small compared to τ or between W (τ, t) and W (τ, t′) when |t − t′|

is small compared to τ . Third, with the advent of modern digital computers, almost all signals

are now collected digitally or subjected to a one-time ‘analog to digital’ conversion. The data with

which scientists deal are thus discrete in nature, so it is necessary to discretize the CWT. How this

discretization is accomplished leads to questions (e.g., how to handle boundary conditions) that

are best addressed by directly dealing with a discrete transform. Fourth, as we argue below, the

DWT that we describe here has considerable appeal in its own right because – in contrast to the

CWT – it is an orthonormal transform that effectively decorrelates an important class of stochastic

processes.

The DWT is defined in terms of a wavelet filter and an associated filter known as the scaling

filter (these are sometimes called, respectively, the ‘mother wavelet’ and ‘father wavelet’ filters).

Formally, a wavelet filter h1,l is a sequence that sums to zero, has unit energy and is orthogonal to

its even shifts:

(i)
∞∑

l=−∞
h1,l = 0 and (ii)

∞∑
l=−∞

h1,lh1,l+2n =
{

1, if n = 0;
0, otherwise (2)

(while the assumptions on summation to zero and unit energy are analogous to those we made on

ψ(t) in Equation (1), the assumption about orthogonality to even shifts is new and is needed to

obtain an orthonormal DWT). The most practical wavelet filters have a finite width L, by which

we mean that h1,l = 0 for l < 0 and l ≥ L, while h1,0 	= 0 and h1,L−1 	= 0 (orthogonality to even

shifts implies that L must be an even integer). The Haar wavelet filter is the simplest example of
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a wavelet filter:

h(H)

1,l ≡




1/
√

2, if l = 0;
−1/

√
2, if l = 1;

0, otherwise.

Figure 2 goes about here.

This filter is plotted in the top row of Figure 2(a). Another wavelet filter is shown in the top row

of Figure 2(c). This one is known as the Daubechies ‘least asymmetric’ wavelet of width L = 8,

referred to henceforth as the LA(8) wavelet [7]. As the plot indicates, only three of the eight

nonzero values in this filter are significantly different from zero.

The scaling filter g1,l that is associated with h1,l is constructed by reversing h1,l, shifting it

and then flipping the sign of every other variable: g1,l ≡ (−1)l+1h1,L−1−l. For example, the Haar

scaling filter is given by

g(H)

1,l ≡




−h(H)
1,1 = 1/

√
2, if l = 0;

h(H)
1,0 = 1/

√
2, if l = 1;

0, otherwise.

Plots of the Haar and LA(8) scaling filters are shown in the top rows of Figures 2(b) and (d).

Given h1,l and g1,l, we can now define a DWT of unit level (the number of levels in a DWT

corresponds to the number of scales that we are interested in). We do so first by using these filters

to obtain

W̃1,t ≡
1√
2

L−1∑
l=0

h1,lXt−l mod N and Ṽ1,t ≡
1√
2

L−1∑
l=0

g1,lXt−l mod N , t = 0, . . . , N − 1, (3)

where ‘t− l mod N ’ stands for ‘t− l modulo N ’ and is defined as follows: if 0 ≤ m ≤ N − 1, then

m mod N ≡ m; if not, then m mod N ≡ m + nN , where nN is the unique integer multiple of N

such that 0 ≤ m + nN ≤ N − 1 (this ‘circular’ filtering effectively treats Xt as if it were periodic

with a period of N , which – while admittedly problematic for many time series – is identical to

how the discrete Fourier transform would treat Xt). Assuming for convenience that N is an even

number, we then subsample the sequences W̃1,t and Ṽ1,t by taking every other value starting with

t = 1 to obtain the wavelet and scaling coefficients of unit level (after a multiplication by
√

2):

W1,t ≡
√

2W̃1,2t+1 and V1,t ≡
√

2Ṽ1,2t+1, t = 0, . . . , N1 − 1,

where N1 ≡ N/2 (note that multiplication by
√

2 effectively cancels out the division by this factor

in Equation (3) – we have defined W̃1,t and Ṽ1,t in this manner because they turn out to be the
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coefficients for a transform related to the DWT that we discuss at the end of this section). Together

we have N coefficients in all, and these constitute the coefficients for a DWT of unit level. If we

use the Haar wavelet, we have

W1,t =
X2t+1 −X2t√

2
and V1,t =

X2t+1 +X2t√
2

. (4)

Note that the wavelet (scaling) coefficients are proportional to differences (averages) of adjacent

observations. If we use the LA(8) or other wavelets defined by Daubechies [7], we can make an

analogous interpretation. Thus, while the Haar wavelet filter looks at differences between adjacent

values when applied to a time series, the LA(8) filter yields essentially a contrast between Xt and

values before and after Xt; likewise, whereas the Haar scaling filter produces two point averages,

the LA(8) filter yields a weighted average whose effective width is two.

We can define DWTs for levels higher than unity by conceptually ‘stretching out’ the wavelet

and scaling filters so that they are effectively twice as wide as we go from one level up to the next

(the actual width of the jth level filters is given by Lj ≡ [2j − 1][L− 1] + 1). The Haar and LA(8)

filters hj,l and gj,l for levels j = 2, 3 and 4 are shown in Figure 2 below the corresponding plots for

unit level. When applied to Xt, the filter gj,l yields a (weighted) average over a scale of λj ≡ 2j ,

whereas the filter hj,l produces a differences of averages over a scale of τj ≡ λj/2 = 2j−1 (these are

standardized scales – the corresponding physical scales are λj ∆t and τj ∆t). The hj,l filters for the

Haar case look like subsamples from the Haar wavelet function, whereas the LA(8) filters have a

shape that is reminiscent of the Mexican hat wavelet function.

To obtain the jth level wavelet and scaling coefficients, we first apply the jth level filters to

Xt to obtain

W̃j,t ≡
1

2j/2

Lj−1∑
l=0

hj,lXt−l mod N and Ṽj,t ≡
1

2j/2

Lj−1∑
l=0

gj,lXt−l mod N , t = 0, . . . , N − 1. (5)

Assuming for convenience that N is divisible by 2j , we then subsample and renormalize every 2jth

value, thus yielding the jth level wavelet and scaling coefficients:

Wj,t ≡ 2j/2W̃j,2j(t+1)−1 and Vj,t ≡ 2j/2Ṽj,2j(t+1)−1, t = 0, . . . , Nj − 1,

where Nj ≡ N/2j . Note that, as j increases, we subsample less often, and hence the number of

coefficients decreases; i.e., at scale τj , we subsample every τjth value of W̃j,t to form Wj,t, and
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there are N/(2τj) coefficients on level j. The Jth level DWT consists of the J + 1 sequences

{Wj,t : t = 0, . . . , Nj − 1}, j = 1, . . . , J , and {VJ,t : t = 0, . . . , NJ − 1}.

Figure 3 goes about here.

Figure 3 shows a level J = 7 LA(8) DWT for the Northern Hemisphere temperature series

Xt (using reflection boundary conditions – see Section 4.11 of [28] for details). The series itself is

shown in the left-hand plot on the bottom row and consists of N = 1664 values in all (the sampling

time between data values is ∆t = 1/12th of a year). Above Xt we have plotted the Wj,t and V7,t

series that make up the DWT. The wavelet coefficients are plotted as deviations from zero. Each

coefficient Wj,t is plotted against the midpoint of the time interval spanning the Xt values that

largely determine Wj,t. This time interval has width 2τj ∆t (since there are Nj = N/(2τj) points

at level j, the product of the width and Nj is always N ∆t, i.e., the total span of the time series).

Due to the shape of the LA(8) wavelet, a large value for Wj,t indicates a large difference between

(i) a weighted average over an interval of width τj ∆t centered at the time associated with Wj,t and

(ii) the sum of weighted averages before and after that interval (each of these averages spans an

interval of approximate width τj ∆t/2). Note that, while the variability in the larger scale Wj,t is

homogeneous over time, there is an evident decrease in variability with increasing time at smaller

scales (this is most likely due to an improvement in quality of the measurements over time). In

a similar manner the scaling coefficients are shown in the top row (but now as a line plot) and

represent weighted averages over a scale of λ7 ∆t .= 10.67 years. Note that the overall upward

pattern in Xt is captured in the scaling coefficients.

In practice, we actually do not need to explicitly deal with any of the filters except for h1,l and

g1,l. This is because we can use an elegant ‘pyramid’ algorithm to compute the DWT of level J . To

do so, we define a set of zeroth level scaling coefficients as V0,t = Xt. Given the scaling coefficients

Vj−1,t for level j − 1, we can use h1,l and g1,l to obtain the level j wavelet and scaling coefficients:

Wj,t =
L−1∑
l=0

h1,lVj−1,2t+1−l mod Nj−1 and Vj,t =
L−1∑
l=0

g1,lVj−1,2t+1−l mod Nj−1 for t = 0, . . . , Nj − 1.

Intuitively, the pyramid algorithm makes sense if we recall how h1,l and g1,l modify V0,t = Xt.

If we regard Xt as having a scale of unity, then use of h1,l yields wavelet coefficients that can be
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interpreted in terms of changes at unit scale, while g1,l yields scaling coefficients related to averages

at a scale twice as large (cf. Equation (4)). Since Vj−1,t has scale λj−1 = τj , use of h1,l now yields

wavelet coefficients whose scale is τj , while g1,l yields scaling coefficients with scale 2τj = λj . If we

consider a level J DWT when N = 2J , then there is but a single scaling coefficient VJ,0, in which

case VJ,0 is proportional to the sample mean of the time series and is thus associated with a scale of

λJ = N (i.e., the entire width of the time series). The pyramid algorithm allows us to compute the

DWT using O(N) arithmetic operations (this is fewer than the celebrated fast Fourier transform

algorithm, which requires O(N log2(N)) operations).

We can also express the Jth level DWT in terms of an orthonormal transform of the vector

X ≡ [X0, X1, . . . , XN−1]′. Let Wj ≡ [Wj,0,Wj,1, . . . ,Wj,Nj−1]′ and VJ ≡ [VJ,0, VJ,1, . . . , VJ,NJ−1]′.

Then we have the analysis equation W = WX, where W contains the DWT coefficients, i.e.,

W =




W1

W2
...

WJ

VJ


 , (6)

while W is an N ×N matrix whose rows depend solely on the wavelet filter h1,l. The properties of

the wavelet filter (Equation (2)) imply that W is an orthonormal matrix; i.e., W ′W = IN , where

IN is the N ×N identity matrix.

Orthonormality has two important consequences. First, an orthonormal transform preserves

the ‘energy’ in X in the sense that ‖W‖2 = ‖X‖2, where ‖X‖2 ≡
∑N−1
t=0 X2

t is the squared norm

of the vector X. Using the partitioning of W given in Equation (6), we can write

‖X‖2 =
J∑
j=1

‖Wj‖2 + ‖VJ‖2. (7)

The above yields a scale-based decomposition of energy, in which ‖Wj‖2 represents the contribution

to the energy due to changes on scale τj . If we let X ≡ 1
N

∑N−1
t=0 Xt be the sample mean of the

time series, we can obtain a scale-based analysis of the sample variance (ANOVA):

σ̂2
X ≡ 1

N

N−1∑
t=0

(Xt −X)2 =
1
N

‖X‖2 −X2
=

1
N

J0∑
j=1

‖Wj‖2 +
1
N

‖VJ0‖2 −X2
(8)

10



(multiplication of the last two terms by 2J0 yields the sample variance for the scaling coefficients).

Thus ‖Wj‖2/N is the contribution to the sample variance of Xt due to to changes on scale τj .

Figure 4 goes about here.

As an example, Figure 4 shows ‖Wj‖2/N versus τj ∆t for j = 1, . . . , 7 (the o’s) and ‖V7‖2/N−

X
2

versus λ7 ∆t (the single x) based upon the LA(8) DWT for the Northern Hemisphere tempera-

ture data shown in Figure 3. The dominant contributor to the sample variance is due to variations

in averages at the scale λ7 ∆t .= 10.67 years. For scales τj < λ7, the largest contributor is the

smallest scale, i.e., changes in weighted averages on a scale of τ1 ∆t = ∆t = 1/12th of a year.

After τj , the contributions to the sample variance decrease in a roughly linear manner on a log/log

plot (as discussed below, this is indicative of a process possessing ‘long memory’ in the sense that

the correlation between observations that are separated by k units does not decrease rapidly as k

increases).

A second consequence of orthonormality is that the inverse of the DWT matrix W is just

its transpose W ′, so we can recover X from its DWT coefficients via the synthesis equation X =

W ′W. Thus X and W are fully equivalent and can be regarded as two representations for the

same mathematical entity. We can put this synthesis equation to good use by partitioning W

commensurate with the partitioning of W into the Wj and VJ vectors:

W =



W1

W2
...

WJ

VJ


 ,

where Wj is an Nj × N matrix whose rows are constructed from the filter hj,l, while VJ is an

NJ ×N matrix constructed from the filter gJ,l. We can then write

X = W ′W =
J∑
j=1

W ′
jWj + V ′

JVJ ≡
J∑
j=1

Dj + SJ , (9)

where Dj ≡ W ′
jWj is an N dimensional vector called the jth level detail, while SJ ≡ V ′

JVJ is

called the Jth level smooth. Because the rows of Wj are based on the filter used to create Wj , we

can associate the vector Dj with changes in X on the scale τj ; likewise, SJ is related to averages

11



on a scale λJ . The above additive decomposition of X into details and a smooth is known as a

multiresolution analysis (MRA). It is interesting to note that ‖Dj‖2 = ‖Wj‖2 and ‖SJ‖2 = ‖VJ‖2

so that we can re-express the ANOVA of Equation (8) in terms of the components of the MRA.

Figure 5 goes about here.

As an example, Figure 5 shows the MRA for the Northern Hemisphere temperature data X

corresponding to the DWT depicted in Figure 3. The bottom plot shows X, above which are

depicted (from bottom to top) the details Dj , j = 1, . . . , 7, and the smooth S7. While S7 tracks the

large scale variations in the series, the details give us an indication of how the series varies over time

at various scales. For example, the details for j = 1, 2 and 3 show higher variability at the early

part of the series (roughly up to the 1880s), after which they appear to be fairly homogeneous. The

details for j = 4, . . . , 7 are homogeneous throughout, although the eye is drawn to some anomalous

features (e.g., the bulge in D7 in the 1890s).

We can roughly regard the DWT as a scheme for sampling from some CWT, say, W (τ, t). In

particular we can relate Wj,t to W (τj ∆t, 2tτj ∆t). In this scheme we make use of just the dyadic

scales τj , and we sample across time from W (τj ∆t, t) less often as τj increases. Coupled with

the scaling coefficients VJ,t (which can be considered to be a summary of the CWT at all scales

τ ≥ τJ ∆t), this yields a DWT with the same number of values as the original time series, which is

a drastic reduction from the potential number of values in the CWT; nonetheless, we have not lost

any information in the sense that we can recover X from W and vice versa.

While limiting ourselves to the dyadic scales is often quite acceptable, the subsampling within

each scale can lead to certain undesirable ‘alignment’ effects (i.e., the exact time at which we

start recording a time series can materially influence its DWT at all time points thereafter). One

manifestation of this effect is the fact that a circular shift in a time series can yield a substantially

different MRA. Thus, if T is the N × N matrix such that T X = [XN−1, X0, X1, . . . , XN−2]′

and if we let D(0)
j and D(1)

j be the details in the MRAs for, respectively, X and T X, then in

general D(0)
j 	= T −1D(1)

j (in fact D(0)
j and T −1D(1)

j can differ at every element). These alignment

effects can be alleviated if we eliminate the subsampling in the DWT, leading to a definition for

a ‘nondecimated’ or ‘shift invariant’ DWT known as the maximal overlap DWT (MODWT). The

12



MODWT of level J consists of J + 1 vectors, each of length N , namely, W̃j ≡ [W̃j,0, . . . , W̃j,N−1]′,

j = 1, . . . , J , and ṼJ ≡ [ṼJ,0, . . . , ṼJ,N−1]′, where W̃j,t and ṼJ,t are defined in Equation (5). While

the MODWT is certainly not an orthonormal transform, we can create ANOVAs and MRAs from

it; i.e., in analogy to Equations (7) and (9), we have

‖X‖2 =
J∑
j=1

‖W̃j‖2 + ‖ṼJ‖2 and X =
J∑
j=1

W̃ ′
jW̃j + Ṽ ′

JṼJ ≡
J∑
j=1

D̃j + S̃J , (10)

where W̃j is the N ×N matrix such that W̃j = W̃jX. In contrast to the DWT, if W̃(0)
j and D̃(0)

j

are the jth level MODWT coefficients and detail for X and if W̃(1)
j and D̃(1)

j are the corresponding

quantities for T X, we have the appealing properties T −1W̃(1)
j = W̃(0)

j and T −1D̃(1)
j = D̃(0)

j . The

MODWT has the advantage of a natural definition for all sample sizes N whereas the Jth level

DWT is only naturally defined for an N that is a multiple of 2J (there are various schemes for

getting around this limitation). There is also an efficient pyramid algorithm for the MODWT with

a computational burden of O(N log2(N)) arithmetic operations (while this is admittedly greater

than the O(N) burden for the DWT, it is in fact the same as that of the fast Fourier transform

algorithm).

USES FOR THE DISCRETE WAVELET TRANSFORM

While the ANOVAs and MRAs based upon Equations (7), (9) and (10) can lead to useful qualitative

descriptions for a time series, there is much more that we can do when we combine the DWT or

MODWT with statistical models (to do so, we now regard X as a vector of RVs). Here we consider

briefly three important uses for the DWT and MODWT, all of which we can describe as departures

from the basic ANOVA or MRA decompositions.

Wavelet Shrinkage

Suppose that we entertain a ‘signal plus noise’ model for our time series; i.e., we write X = S + n,

where S is an unknown signal of interest that we are prevented from observing directly due to the

addition of unwanted noise n. If we use W to form the DWT of both sides of this model, we can

write W = WX = W(S) + W(n), where W(S) ≡ WS and W(n) ≡ Wn. Due to the time/scale

nature of the DWT, we can argue that, for a wide variety of signals, the DWT W(S) is a more

compact representation of S than S itself; i.e., whereas a typical signal can have many large values
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spread out over time, its DWT will tend to have a few large coefficients and many small coefficients.

On the other hand, noise typically is spread out homogeneously across time, so its DWT will be

homogeneous across different scales and times. If ‖S‖2 � ‖n‖2 and hence ‖W(S)‖2 � ‖W(n)‖2 also,

then W should consist of (i) a few large coefficients that are largely attributable to the signal and

(ii) many small coefficients that are a combination of W(n) and relatively unimportant coefficients

in W(S).

These considerations lead to the following scheme for estimating S based upon X. We take a

Jth level DWT of X and then consider modifying each wavelet vector Wj to form a new vector,

say, W(t)
j . We do the modification by examining the magnitude of each wavelet coefficient. If a

given coefficient is large (i.e., greater in magnitude than, say, δ(t)), we regard it as capturing an

important part of the signal and put it into W(t)
j unaltered; on the other hand, we consider each

small coefficient as being due to the noise, so we put a zero into W(t)
j in its place. When we are

done, we estimate S via

Ŝ ≡
J∑
j=1

W ′
jW

(t)
j + V ′

JVJ ;

i.e., we take the inverse DWT of the coefficient vectors W(t)
j and VJ . Note that, because the scaling

coefficients are typically large scale weighted averages of the time series and because such averages

usually reflect the large scale characteristics of a signal, we administratively assign all the scaling

coefficients to the signal. Note also that we can regard the construction of the estimated signal as

a modification of the basic MRA scheme of Equation (9) in which we create a denoised detail for

each j.

If we try to implement this scheme in practice, we are immediately faced with a plethora of

practical questions. We can address these questions in a statistically sensible manner if we can make

some additional assumptions about the statistical properties of the noise (we also need to make

assumptions about the signal, e.g., deterministic with certain smoothness properties or stochastic

with a certain covariance structure). The various assumptions that investigators have been willing

to entertain regarding the nature of the signal and the noise have led to a rather large literature

on what is most commonly referred to as ‘wavelet shrinkage’ [8, 9, 10, 33] (this name stems from

the fact that, if we want to estimate S optimally under certain commonly used assumptions, then

we must abandon the simple ‘keep/zero’ strategy we just described in favor of one that shrinks
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wavelet coefficients toward zero). For example, if we are willing to assume that n is Gaussian white

noise with variance σ2
n, then W(n) is also such, and asymptotic theory suggests comparing the

magnitude of the wavelet coefficients to the so-called ‘universal’ threshold of δ(u) ≡ √
[2σ2

n log(N)]

(the theory also assumes S to be deterministic and sampled from certain quite general classes of

functions). In practice, we can estimate σn using a robust estimate of variance based upon the

median absolute deviation (MAD) of the smallest scale wavelet coefficients W1 about their median

[16, 21] (a robust method is required to allow for the possibility of a few large signal coefficients

influencing the coefficients in W1).

Figure 6 goes about here.

Figure 6 shows a very simple example of wavelet-based signal estimation. Here we assume that

the Northern Hemisphere series (the dots) can be decomposed as a trend component (the signal)

plus additive noise. We assume that the trend is inherently smooth, and we propose to estimate

it based upon the DWT displayed in Figure 2. To ensure that the trend estimate is sufficiently

smooth, we forcibly set all the wavelet coefficients on the three smallest scales to zero; i.e., we take

the elements of W(t)
j , j = 1, 2 and 3, to be zero (this amounts to limiting the definition of the trend

here to variations over scales of eight months or higher). We also assume that the noise variances

for the elements of Wj , j = 4, . . . , 7, are all the same, and we estimate this variance based upon

a MAD scale estimate. We then compute the universal threshold and use it to form the elements

of W(t)
j , j = 4, . . . , 7. The resulting estimate of trend is the solid curve in Figure 6. Note that this

estimate is markedly different from traditional smoothers with a fixed bandwidth (e.g., a running

average with a bandwidth of, say, one year): while the estimated trend is quite smooth from 1900

and on, it is less so prior to 1900 because the wavelet scheme has captured two intermediate scale

variations (one near 1870, and the other in the 1890s). This simple example hints at the power of

the wavelet-based approach in estimating signals with time-varying smoothness properties.

Wavelet Variance

If we take Xt to be a stochastic process, then the wavelet coefficients Wj,t define a new stochastic

process that reflects variations in Xt on scale τj . Assuming that it exists, the wavelet variance is

by definition just the variance of Wj,t, namely, ν2
X(τj) ≡ var {Wj,t} (theory and applications of
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the wavelet variance are discussed in, e.g., [3, 5, 11, 12, 13, 18, 19, 20, 27, 28,29, 32]). If Xt is a

stationary process with variance σ2
X , then we have the fundamental relationship

σ2
X =

∞∑
j=1

ν2
X(τj),

which is analogous to the ANOVAs that can be formed from Equations (8) and (10). This scaled-

based decomposition of σ2
X is also analogous to the frequency-based decomposition given by the

power spectral density function SX(f), which has an integral equal to σ2
X (indeed, ν2

X(τj) is related

to SX(f) over the frequency interval [1/τj+2, 1/τj+1]). The advantages of the wavelet variance over

SX(f) are that (i) it is scale-based and hence of interest to physical scientists who naturally regard

phenomena as having different scales of variation (note that νX(τj) has the same units as Xt itself,

which makes it easier to interpret than SX(f)); (ii) it offers a more succinct decomposition for many

processes routinely encountered in the physical sciences (iii) it has a simpler estimation theory;

and (iv) it extends readily to certain nonstationary processes, including those having stationary

increments (i.e., Yt ≡ Xt−Xt−1 is a stationary process even though Xt is not). Given a time series

X that is either stationary or has stationary increments, we can readily estimate ν2
X(τj) based upon

properly normalized averages of the squares of the DWT coefficients Wj or MODWT coefficients

W̃j .

If we revisit Figure 4 and if we assume that the Northern Hemisphere data X is a realization of

a process with stationary increments, we can now regard the circles as DWT-based estimates of the

wavelet variances ν2
X(τj) for j = 1, . . . , 7. Asymptotic theory allows us to assess the quality of these

estimates by forming approximate 95% confidence intervals for the unknown ν2
X(τj). Examples of

such intervals are shown in the figure. (In practice we would prefer to use MODWT-based estimates

because asymptotic theory says that these should be more efficient than the corresponding DWT-

based estimates).

One consequence of the assumption that X has stationary increments is that each Wj should be

a realization of a stationary process (here we are ignoring coefficients influenced by the periodicity

assumption). If we look back at Figure 3, there is good reason to question the validity of the

stationarity assumption for, say, W1 since these coefficients appear to decrease in variability with

increasing time. We should thus really consider var {W1,t} to be a function of time. If we can
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assume that var {W1,t} is slowly varying across time, we can readily adapt the wavelet variance

estimator developed under the assumption of stationarity: we just need to assume that X can be

regarded as having stationary increments within certain blocks of time, but we allow the nature of

the increment process to vary from one block to the next. We then compute a separate estimate of

ν2
X(τ1) for each block based upon just those W1,t with times 2tτj ∆t occurring within that block.

Figure 7 shows time-varying wavelet variance estimates (the circles) for scale τ1 based upon

the DWT for the Northern Hemisphere data shown in Figure 3. Here we assume stationarity over

a block spanning a bit more than a decade, based upon which we can compute 95% confidence

intervals for the unknown wavelet variance ν2
X(τ1) in each block. These intervals verify what our

eyes have picked out, namely, that there is indeed significantly higher variability early on in W1,t

(this variability has been markedly stable since about 1950).

Analysis of Long Memory Processes

By definition we say that Xt is a long memory process if its spectral density function SX(f) is

approximately equal to CS |f |α at low frequencies for some α < 0 and CS > 0 (see Beran [2] for a

precise definition). This implies that SX(f) → ∞ as f → 0, which means that realizations of Xt

have prominent low frequency (large scale) fluctuations. When −1 < α < 0, a long memory process

is stationary, and its autocorrelation sequence (ACS) ρτ ≡ corr {Xt, Xt+τ} is approximately equal

to Cρτβ , where β = −α− 1 and Cρ > 0. While ρτ does decrease to zero with increasing τ , its rate

of decay is much slower than that of more traditional models for time series (i.e., autoregressive

processes, moving average processes, and combinations thereof). The slow rate of decay implies

that Xt retains some ‘memory’ of its distant past. Investigators have found that long memory

processes are effective models for a wide variety of time series, ranging from the microscopic (voltage

fluctuations across cell membranes [17]) to the cosmic (time variability of X-ray from galaxies [25]).

The DWT is a remarkably effective tool for analyzing long memory processes [1, 11, 23, 24,

28, 34, 35, 36] (we require only a very mild condition on the width L of the wavelet filter to be able

to handle α’s of various sizes). To see the basic reason this is true, let us return to Figure 3 and

examine the right-hand column of plots, which show, from bottom to top, the sample ACSs (plotted

as deviations from zero) for the Northern Hemisphere data Xt and for its wavelet coefficients Wj,t.

The sample ACS for Xt is slowly decaying and is reminiscent of ACSs for long memory processes.
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By contrast, the sample ACSs for the wavelet coefficients are all close to zero. The two curves in

each ACS plot delineate how much departure from zero we would expect to see 95% of the time if

each Wj,t were a realization of a white noise sequence. This figure is an illustration of the fact that,

to a good approximation, the DWT decorrelates a long memory process. This property can be put

to good use, e.g., in constructing approximate maximum likelihood estimators for the parameters

of a long memory process (even if the time series is corrupted by the presence of a polynomial

trend) or in bootstrapping certain common statistics for time series.

In addition, we can use the wavelet variance to obtain a preliminary indication of the presence

of long memory in a time series. This result is based on the fact that ν2
X(τj) is approximately

proportional to τ−α−1
j for a long memory process. Thus, if we plot estimate of ν2

X(τj) versus τj on

a log/log scale, we should see a linear variation with a slope of −α− 1 if Xt follows a long memory

model.

As an example, let us look again at the wavelet variance estimates for the Northern Hemisphere

data shown in Figure 4. Roughly speaking (and ignoring the time-varying nature of the wavelet

coefficients at small scales), we see a linear decay (on the log/log scale) in the estimated wavelet

variances with increasing scale. If we fit a least square line through these estimated values in log/log

space, we obtain an estimated slope of −0.37. This translates into an estimate of α = −0.63, which

suggests that Xt might be well-modeled by a stationary long memory process [6].
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Legends for Figures

Figure 1: Two wavelet functions. The left- and right-hand plots show, respectively, the Haar and

Mexican hat wavelet functions.

Figure 2: Two sets of wavelet and scaling filters. The top row in plot (a) shows the Haar wavelet

filter, below which are shown the associated filters hj,l for scales τj , j = 2, 3 and 4. Plot (b) is

like (a), but now for the Haar scaling filter. Plots (c) and (d) are like (a) and (b), but now for the

Daubechies least asymmetric (LA) filter with eight nonzero coefficients (some of these coefficients

are quite close to zero, which is why there appear to be fewer than eight coefficients in the top rows

of (c) and (d)).

Figure 3: Discrete wavelet transform of level J = 7 for a time series Xt of deseasonalized monthly

average Northern Hemisphere temperature anomalies. This time series was obtained from the

Climatic Research Unit, University of East Anglia (http://www.cru.uea.ac.uk/cru/cru.htm)

and deseasonalized using harmonic regression [6]. The series is shown in the bottom left-hand plot

and consists of monthly values from January 1856 to August 1994. Above this series are shown the

LA(8) wavelet coefficients Wj,t for scales τj ∆t = 2j−1/12 years, j = 1, . . . , 7 (from bottom to top,

plotted as deviations from zero). The top left-hand plot shows the corresponding scaling coefficients

V7,t, which are associated with scale λ7 ∆t .= 10.67 years. The plots to the right of Xt and Wj,t are

of the sample autocorrelation sequences for the corresponding series (plotted as deviations from

zero). In the case of each Wj,t, the upper and lower curves depict a 95% confidence interval for a

given autocorrelation under the assumption that the wavelet coefficients are uncorrelated.

Figure 4: Wavelet-based analysis of the sample variance of the Northern Hemisphere temperature

time series. The o’s depict the contribution to the sample variance due to variations on a scale of

τj ∆t = 2j−1/12 years, j = 1, . . . , 7, while the single x is the contribution due to averages on a scale

of λ7 ∆t .= 10.67 years. The sum of the values depicted by the o’s and the x is equal to the sample

variance. The vertical lines emanating each o depict 95% confidence intervals for a hypothesized

true wavelet variance ν2
X(τj) (this analysis is based on the DWT shown in Figure 3).

Figure 5: Multiresolution analysis of the Northern Hemisphere temperature time series. The

series itself is plotted on the bottom row, above which are displayed the details Dj and smooth S7

calculated from the DWT shown in Figure 3.
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Figure 6: Wavelet-based denoising of the Northern Hemisphere temperature time series. The

points in this plot show the time series itself, while the solid curve is a wavelet-based estimate of a

hypothesized smooth trend in the data (this estimate is based on the DWT shown in Figure 3).

Figure 7: Evolution of wavelet variance across time at a scale of τ1 ∆t = 1
12 th year for Northern

Hemisphere temperature time series. Each wavelet variance estimate (the o’s) is computed using the

W1,t coefficients associated with times in nonoverlapping blocks spanning 102
3 years. The vertical

lines emanating each o depict 95% confidence intervals for a hypothesized true wavelet variance

ν2
X(τj) for a given block (this analysis is based on the DWT shown in Figure 3).
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