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Abstract. Multi-scale analysis of univariate time series has appeared in the
literature at an ever increasing rate. Here we introduce the multi-scale analysis of
covariance between two time series using the discrete wavelet transform. The wavelet
covariance and wavelet correlation are defined and applied to this problem as an
alternative to traditional cross-spectrum analysis. The wavelet covariance is shown
to decompose the covariance between two stationary processes on a scale by scale
basis. Asymptotic normality is established for estimators of the wavelet covariance
and correlation. Both quantities are generalized into the wavelet cross-covariance and
cross-correlation in order to investigate possible lead/lag relationships. A thorough
analysis of interannual variability for the Madden—Julian oscillation is performed using
a 35+ year record of daily station pressure series. The time localization of the discrete
wavelet transform allows the sub-series, which are associated with specific physical time
scales, to be partitioned into both seasonal periods (such as summer and winter) and
also according to El-Nifio-Southern Oscillation (ENSO) activity. Differences in variance
and correlation between these periods may then be firmly established through statistical
hypothesis testing. The daily station pressure series used here show clear evidence
of increased variance and correlation in winter across Fourier periods of 16-128 days.
During warm episodes of ENSO activity, a reduced variance is observed across Fourier
periods of 8-512 days for the station pressure series from Truk Island and little or no

correlation between station pressure series for the same periods.

Some key words: Confidence intervals; Cross-correlation; Cross-covariance; Madden—
Julian oscillation; Maximal overlap discrete wavelet transform; Southern Oscillation

Index.



1. Introduction

The bivariate relationship between two time series is often of crucial interest in
atmospheric science. For example, the Madden—Julian oscillation (MJO) [Madden and
Julian, 1971] was found using bivariate spectral analysis between the station pressure
and zonal wind components at Canton Island (2.8°S, 171.7°W) — specifically the
co-spectrum and magnitude squared coherence. This oscillation has been documented
as having a period anywhere from 30-60 days and has appeared in many studies in the
Indian Ocean and tropical Pacific Ocean; see Madden and Julian [1994] for a review.
Several empirical studies, using a wide variety of atmospheric time series, have noted
a time-varying aspect to the oscillation. Its apparent broadband nature might be best
described as non-stationary in a statistical sense; i.e., the mean or variance of these
observed time series vary with time. The broad peak observed in previous spectral
analyses might be attributed to modulation in frequency and/or amplitude of the
oscillation over the measured time series.

Given the potential time-varying nature of the MJO, as observed through
atmospheric time series, analyzing it using a transform which captures events both
locally in time and frequency is appealing. The short-time Fourier transform is one
such technique, where the discrete Fourier transform is applied to subsets of the time
series via a moving window resulting in a grid-like partition of the time-frequency plane.
The discrete wavelet transform (DWT) is another technique, where the time-frequency
plane is partitioned such that high-frequencies are given small windows in time and
low-frequencies are given large windows in time via an adaptive windowing of the time
series. See Kumar and Foufoula-Georgiou [1994] and Kumar [1996] for descriptions of
time-frequency/time-scale analysis in a geophysical setting. A non-decimated version
of the orthonormal DWT — the maximal overlap DWT (MODWT) — has proven useful
in analyzing various geophysical processes [Percival and Guittorp, 1994; Percival and

Mofjeld, 1997].



It is known that the wavelet variance, for a univariate time series, is an alternative
representation of the spectral density function (SDF) for stationary and certain types of
non-stationary processes [Percival, 1995]. The adaptive windowing (band-pass filtering)
by the DWT produces wavelet coefficients associated with specific frequency intervals
instead of individual frequencies as are Fourier coefficients in the periodogram. A key
advantage over the periodogram is that the wavelet variance involves basis functions
that are local in time — allowing for non-stationary features to be characterized by the
wavelet variance. Here, we introduce the wavelet covariance and correlation between two
processes. They are alternative representations of the cross spectrum and magnitude
squared coherence, respectively, that allow for levels of association between time series
to vary over time.

Previous investigations of the MJO have used classical and ad-hoc Fourier-based
techniques to measure possible time-varying association between atmospheric time
series without the ability to rigorously test for differences between disjoint time periods
(see Section 1.1). Some previous studies, such as Anderson et al. [1984] and Madden
[1986], designed custom filters and then explicitly band-pass filter their observed time
series in order to analyze its time-varying structure. Instead of having to design a
specific set of filters, the DWT provides a convenient collection of band-pass filters
whose inherent structure allows for relatively straightforward manipulation of its output
(wavelet coefficients) into recognizable statistical quantities such as variance, covariance
and correlation.

For example, one quantity of interest might be the correlation between the MJO
and Southern Oscillation Index (SOI) around the standard periods of the MJO, 32-64
days. A possible hypothesis to test is: are the MJO and SOI associated in boreal winter
and boreal summer? Looking at Figure 8, the wavelet correlation for wavelet scale 16
(corresponding to Fourier periods of 32-64 days) is not significantly different from zero

in boreal summer (—0.08 with approximate 95% confidence interval of [—0.15,0.04]) and



is greater than zero in boreal winter (0.38 with approximate 95% confidence interval of
[0.30,0.46]). The fact that these two confidence intervals do not overlap is equivalent to
rejecting the null hypothesis of equivalent levels of association at an o < 0.05 level of
significance. A much more thorough analysis between these time series is presented in
Section 5. We will show that wavelet-based techniques allow one to make quantitative
statements about variables of interest where only qualitative comparisons were available
in the past. A review of previous investigations concerning the time-varying nature

of the MJO follows, along with a review of the small amount of literature concerning

bivariate wavelet methodology and a brief outline of this paper.

1.1. Previous Work on the Madden—Julian Oscillation

Temporal variations in the MJO and its relationship with El Nino-Southern
Oscillation (ENSO) events have previously been investigated using techniques such as
cross-spectral analysis. Previous work on the time-varying nature of the MJO includes
Madden [1986] who performed a seasonally varying cross-spectral analysis on nearly
twenty time series of rawinsonde data from tropical stations around the world. The
MJO appears strongest during December—February (boreal winter) and weakest during
June-August (boreal summer), and that it is always stronger in the western Pacific
and Indian oceans than elsewhere. Guitzler [1991] used daily time series from six
near-equatorial rawinsonde stations to investigate intraseasonal variance of zonal winds
(200 and 850 mb) . Interannual modulation of the amplitude of the MJO was observed
at stations east of 140°E (which includes Truk Island) and the 31-66 day variance was
observed to increase in the lower troposphere during warms events, as indicated by the
Southern Oscillation. Salby and Hendon [1994] found a much broader spectral peak
of 35-95 days in convection along the equator, rather than the 30-60 day band as in
Madden [1986]. Madden and Julian [1994] noted the broadband nature of the oscillation

by comparing the station pressure spectra for Truk Island (7.4°N, 151.8°W) during two



time spans — 1967 to 1979 and 1980 to 1985. The MJO appeared to have a 26-day
period in the early 1980s.

The influence of ENSO events has also been hypothesized to affect characteristics
of the MJO. Anderson et al. [1984] filtered atmospheric relative angular momentum
(4 years) and the 850-200 mb shear of the zonal wind at Truk Island (25 years) with a
filter designed to pass the frequency band corresponding to periods of 32-64 days. They
noted that, with respect to the Truk Island series, a possible association with increased
amplitude of the oscillation during the 1956-57, 1972-73, and 1976-77 ENSO warm
events but noted that the duration of these increases were much longer than the ENSO
events. Gray [1988] performed a correlation analysis between daily station pressure data
from Truk (7°N, 152°W), Balboa (9°N, 80°W), Darwin (12°S, 131°E) and Gan (1°S,
73°E), with seasonal sea surface temperature anomalies on a 5° grid. The data were
partitioned into ENSO and non-ENSO years; in non-ENSO years a strong seasonal shift
in frequency was found at all sites except Truk Island.

Kuhnel [1989] investigated the characteristics of a 40-50 day oscillation in cloudiness
for the Australo-Indonesian region. Using data on a 10° x 5° grid, regions in the eastern
Indian Ocean and western Pacific Ocean were found to have a pronounced 40-50 day
peak with no obvious seasonal variation. Another region in the Indian Ocean (5-15°S,
95-100°E) showed a stronger oscillation in the March—June period. Regions around
5-15°S over northern Australia and in the Pacific Ocean showed a much stronger 40-50
day oscillation during the Australian monsoon season from December to March than
the rest of the year. The 40-50 day cloud amount oscillation did not appear to be
affected by warm ENSO events. Murakami and Sumathipala [1989] looked for synoptic
scale ‘westerly bursts’ over the western Pacific ocean and their possible influence on
the 1982-83 ENSO. Analyzing daily 850 mb winds, along with daily OLR and SST
data, they utilized a type of multiresolution analysis via bandpass filtering and also

partitioned the filtered series into summer and winter seasons. Only loose associations



were found between interannual modes and the number of days of westerly acceleration,
although strong associations in air-sea interactions occurred during heightened ENSO
activity.

Weickmann [1991] looked at ENSO and the MJO during 1981-82 using outgoing
longwave radiation (OLR). Some similarity was found between the MJO and its
transients, and the December 1981 ENSO-related transition and its transients. Gambis
[1992] applied the continuous wavelet transform (CWT) to the derived length of day
(LOD) and Southern Oscillation Index, where the LOD exhibits 50-55 day oscillations
similar to those observed in the MJO. Increased numbers of significant high-frequency
bands were observed during the northern hemisphere winters. However, high-frequency
content (= 55 day period) in the LOD did not appear to be more concentrated during
El Nifno events, but a strong concentration of low-frequency (& 1000-3000 day period)
oscillations did correspond to ENSO events. For the SOI, both low- and high-frequency
content were more concentrated during El Nino events. No hypothesis testing was
performed, nor was any attempt made to perform a bivariate wavelet analysis.

Anyamba and Weare [1995] sought to better define year-to-year variability,
propagation properties and spatial structure of the 40-50 day oscillation. An
autoregressive spectrum (with order varying between 10 and 25 terms) was fit to
OLR, spatially smoothed onto a 5° x 5° grid, with several higher-frequency spectral
peaks being visually significant. The MJO tended to be weaker in amplitude during
July-August (as in Madden [1986]) because of a shift away from the equator by the
dominant spatial mode. Suppression of the MJO appeared to occur during the entire
1982-83 ENSO episode. Kestin et al. [1998] used three time-frequency techniques
to examine the variance structure of ENSO; applying them to the SOI, sea surface
temperature series (Nifio 3) and tropical Pacific rainfall index. Interannual variability
of ENSO is contained in a 2-10 year period and not distributed uniformly over time.

The time-frequency patterns are similar for all three time series, particularly between



the SOI and sea surface temperature series. Hendon et al. [1999] investigated the
year-to-year variations of the MJO and its interaction with ENSO. Interannual variation
of the level of MJO activity was observed to occur independently of ENSO, except for

exceptional warm events when MJO activity appeared to be drastically diminished.

1.2. Previous Work on Bivariate Wavelet Techniques

The ability of the DWT to capture variability in both time and scale can provide
insight into the nature of atmospheric phenomena such as the MJO, but we must make
use of the DWTs of two time series in such a way that these bivariate properties can
be brought out. Hudgins [1992] introduced the concepts of the wavelet cross spectrum
and wavelet cross correlation in terms of the CWT. In a subsequent paper, Hudgins
et al. [1993] applied these concepts to atmospheric turbulence. They found the bivariate
wavelet techniques provided a better analysis of the data over traditional Fourier
methods — especially at low frequencies. Liu [1994] defined a cross wavelet spectrum,
equivalent to that of Hudgins [1992], and complex-valued wavelet coherency which was
constructed using the co- and quadrature wavelet spectra. These quantities were used to
reveal new insights on ocean wind waves such as wave group parameterizations, phase
relations, and wave breaking characteristics.

Lindsay et al. [1996] defined the sample wavelet covariance for the DWT and
MODWT along with confidence intervals based on large sample results. They applied
this methodology to the surface temperature and albedo of ice pack in the Beaufort
Sea. Recently, Torrence and Compo [1998] discussed the cross-wavelet spectrum,
which is complex valued, and the cross-wavelet power, which is the magnitude of their
cross-wavelet spectrum, in terms of the CWT. They also introduced confidence intervals
for their cross-wavelet power and compared the SOI with Nifio3 sea surface temperature
readings.

In this paper, we extend the notion of wavelet covariance for the maximal overlap



DWT and define the wavelet cross-covariance and wavelet cross-correlation. The wavelet
cross-covariance is shown to decompose the process cross-covariance on a scale by scale
basis for specific types of non-stationary stochastic processes. Asymptotic normality is

obtained for the MODWT-based estimators of wavelet cross-covariance.

1.3. Outline

The MODWT, a non-decimated variation of the DW'T, is described in Section 2.
In Section 3, the wavelet cross-covariance and cross-correlation are defined in terms of
the MODWT coefficients at a particular scale of the transform. Central limit theorems
are provided for estimators of both quantities based on a finite sample of MODWT
coefficients (for completeness the proofs are provided in a separate technical report:
Whitcher et al. [1999]). Explicit methods for computing approximate 100(1 — 2p)%
confidence intervals are provided in Section 4. Fisher’'s z-transformation is utilized in
order to keep the confidence interval of the wavelet correlation bounded by +1 for small
sample sizes.

In Section 5, we perform a wavelet analysis of covariance with a daily Southern
Oscillation Index and daily station pressure measurements from Truk Island. Spectral
analysis shows two peaks in the magnitude squared coherence between the two time
series around the established MJO range of frequencies, and cross-correlation analysis
provides a complicated correlation structure. A wavelet analysis of variance and
correlation is performed where the data is partitioned into seasons (boreal summer and
winter) and episodes of ENSO activity (warm, cold and other). Hypothesis testing
highlights the differences between these time series across a variety of physical time

scales.
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2. Maximal Overlap Discrete Wavelet Transform

The DWT of a time series X is now a reasonably well-established method for
analyzing its multi-scale features. In this section we provide a brief introduction to a
variation of the orthonormal DWT, called the maximal overlap DWT (MODWT). The
MODWT gives up orthogonality (through not subsampling) in order to gain features
such as translation-invariance and the ability to analyze a time series with arbitrary
sample size. Here, we follow previous definitions of the MODWT by Percival and
Guttorp [1994] and Percival and Mofjeld [1997].

Let {h1} = {h10,...,h11 1} denote the wavelet filter coefficients from a
Daubechies compactly supported wavelet family [Daubechies, 1992, Sec. 6.2] and let
{1} = {G1,0,---,91,.-1} be the corresponding scaling filter coefficients, defined via the
quadrature mirror relationship g, = (—1)’”“51, I—1—m- By definition, the wavelet filter
{h,} is associated with unit scale, is normalized such that 3> h? = 1/2 and is orthogonal

to its even shifts. For any sample size N > L and with h;,, =0 for m > L, let
B N-1
Hyp=Y hime ™™V k=0, ,N-1,
m=0

be the discrete Fourier transform (DFT) of {h,}, and let él,k denote the DFT of {g;}.

Now define the wavelet filter {}Nl]} for scale \; = 277! as the inverse DFT of

j—2

Hj,k: = gl,QJ'—lkmodN HélﬂlkmodNa k= 07 R aN — 1L (1)
=0

The wavelet filter associated with scale A; has length min{N,L;} where L; =
(27— 1)(L — 1) + 1. Also, define the scaling filter {g;} for scale 2); as the inverse DFT

of
J-1

éJ,kzﬂél,ZlkmodNa kZO; ,N_]. (2)

1=0
In order to construct a jth order partial MODWT, we let {X;} = {0, ..., Xn_1}
be the DFT of X (for arbitrary N). The vector of MODWT coefficients Wj, j=1,...,J
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is defined to be the inverse DFT of {ﬁ ;X } and is associated with changes of scale A;.
The vector of MODWT scaling coefficients A 7 is defined similarly by the inverse DFT
of {é 7k} and is associated with averages of scale 2\, and higher. For time series of
dyadic length, the MODW'T may be subsampled and rescaled to obtain an orthonormal
DWT. In practice, a pyramid scheme similar to that of the DWT is utilized to compute
the MODWT; see Percival and Guttorp [1994] and Percival and Mofjeld [1997].

The MODWT coefficients may be interpreted as differences of weighted averages
from the original observations. To better understand this statement let us consider the
Haar scaling (low-pass) filter. For unit scale j = 1, the Haar scaling filter has length two
with values {1/4/2,1/4/2}, and hence, when applied to a time series, yields an output
that is proportional to a simple average of two observations. Applying Equation (2) for
arbitrary 7 and taking the inverse DF'T, we obtain filters whose output are proportional
to simple averages of 2/ observations. For all scales, the corresponding wavelet filter
is orthogonal to the scaling filter: its coefficients have the same magnitudes, but the
first half are negative, thus forming differences of averages each of length 27=!. Using
an accepted measure of ‘equivalent width,” all Daubechies scaling filters {§;,} have the
same width as the Haar [Percival and Walden, 2000, Sec. 4.6]. Since the corresponding
wavelet filters are again orthogonal to the scaling filters, the wavelet coefficients
essentially capture the difference between two weighted averages, each over half the
length of the Haar scaling filter.

The structure of the MODWT utilizes approximate ideal band-pass filters with
pass-band given by the range of frequencies [1/2771,1/27) for scales 1 < j < J. The
accuracy of the approximation improves as the length of the wavelet filter increases.
Inverting the frequency range to produce a period of time, and multiplying by the
appropriate time units At, we obtain the equivalent periods of [27, 271] At days for
scales 1 < 7 < J. In order to help relate wavelet coefficients to the physical processes

they are analyzing, we will give both the wavelet scale and Fourier period when
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discussing results.
Percival and Mofjeld [1997] proved that the MODWT is an energy preserving

transform in the sense that
J —~— o~
IXI7 = IW511>+ [V

This allows for a scale-based analysis of variance of a time series similar to spectral
analysis via the DFT. In a wavelet analysis of variance, the individual wavelet
coefficients are associated with a band of frequencies and specific time scale whereas

Fourier coefficients are associated with a specific frequency only.

3. Wavelet-Based Estimators of Covariance and Correlation

Here we define the basic quantities of interest for estimating association between
two time series using the MODWT. The decomposition of covariance on a scale by scale
basis of the wavelet covariance is shown, and central limit theorems are provided for the

wavelet covariance and correlation.

3.1. Definition and Properties of the Wavelet Cross-Covariance

Let {U:} ={...,U_1,U,,Uy,...} be astochastic process whose dth order backward
difference (1 — B)?U, = Z; is a stationary Gaussian process with zero mean and spectral

density function Sz(-), where d is a non-negative integer. Let
W =l U, = ZhﬂUt Lot=....—1,01,...

be the stochastic process obtained by filtering {U;} with the MODWT wavelet filter
{hj,}. Percival and Walden [2000, Sec. 8.2] showed that if L > 2d, then {Wg?} is a
stationary process with zero mean and spectrum given by S; ¢ (+).

Let {X;}={ .., X 1,X0,Xy,...}and {V;} ={... ,Y_1,Y0,Y7,...} be stochastic

processes whose dxth and dyth order backward differences are stationary Gaussian
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processes as defined above, and define d = max{dyx,dy}. Let Sxy(-) denote their cross
spectrum and, Sx(-) and Sy(-) denote their autospectra, respectively. The wavelet

cross-covariance of {X,,Y;} for scale \; = 27! and lag 7 is defined to be
Y
f}/’T,XY(A ) Cov {Wg t)’ Wg',t—)kq'} y (3)

where {ng)} nd {W } are the scale \; MODWT coeflicients for {X;} and {Y;},
respectively. The MODWT coefficients have mean zero, when L > 2d, and therefore
Yrxy(Aj) = E{W(X W( t+r)- When 7 = 0 we obtain the wavelet covariance between
{X:,Y:}, which we denote as yxy(A;) = 7o xv(];) to simplify notation.

Setting 7 = 0 and Y; to X; or X; to Y}, Equation (3) reduces to the wavelet variance
for X; or Y; denoted as, respectively, v%();) or v3(\;) [Percival, 1995]. The wavelet
variance decomposes the process variance on a scale by scale basis, and the wavelet
cross-covariance give a similar decomposition for the process cross-covariance. To be
precise, let {X,;} and {Y;} be two weakly stationary processes with autospectra given by

Sx(f) and Sy(f), respectively. If we require L > 2d, then for any integer J > 1 we have
X) —(Y
Crxy = Cov{X,, Yy} = Cov {Vgt)a F]tlT} + Z% xv (

where V(Jﬁ) = gy, * X and V(J)’? = gy, * Y; are obtained by filtering {X;} and {Y;}

using the MODWT scaling filter {g,,}, respectively. As J — oo, we have
C’T,XY = Z %,XY()\j)a (4)
7=1

which gives the required decomposition [Whitcher et al. 1999]. If we think of {§,} as a
low-pass filter covering the nominal frequency band [—2~(/+1) 2-(/+1)] this statement
is intuitively plausible since the scaling filter {g,} is capturing smaller and smaller

portions of the cross spectrum as J — oc.
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3.2. Estimating the Wavelet Cross-Covariance

Suppose Xg,...,Xny_1 and Yj, ..., Yy_1 can be regarded as realizations of portions
of the processes {X;} and {Y;}, whose dxth and dyth order backward differences form
stationary Gaussian processes. As before, let d = max{dx, dy}.

Let Wj’t = W, for those indices ¢ where ,I/I\Zj’t is unaffected by the boundary —
this is true as long as t > L; — 1. Thus, if N > L;, we can define a biased estimator

Fr.xv(A;) of the wavelet cross-covariance based upon the MODWT via

NASYwIw) o r=0,. N - 1

I=L;—1 YRENE P
%,XY()‘J') = N Zz L —1-7 W(X)vaJ(ﬁw T=-1... 7_(Nj —1);
0, otherwise,

where Nj = N — L; + 1. The bias is due to the denominator 1/ Nj remaining constant
for all lags, though it disappears at lag 7 = 0. Let us now state the large sample
properties of the wavelet covariance estimator; i.e., ¥xy(A;) = Jo,xv(};) (see Whitcher
et al. [1999] for proofs).

If L > 2d, and suppose {W( ) W( )} is a bivariate Gaussian stationary process

Jt o

with autospectra satisfying f 1257 x(f) < oo and II{% S?y(f) < oo, then
iy () ~ N (3r (), N 185000 (0)) 5 (5)

i.e., the MODWT-based estimator of wavelet covariance is normally distributed with
mean vxy(A;) and large sample variance NflSj,(Xy)(O). The quantity S;xy)(0) is
the spectral density function for {W( )W( )} (the product of the scale \; MODWT
coefficients) at zero frequency. We may generalize to the wavelet cross-covariance by
simply replacing shifting {W( )} with respect to {W } and appealing to the same
result.

Because of the Gaussian assumption, we can obtain an expression for Sj xy)(0) in
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Equation (5) in terms of auto- and cross spectra for large Nj, namely
1/2 1/2
V= S0 = [ LSS / LS (6)
Note carefully that S; xy(f) is the cross spectrum between two series of scale A;
MODWT coefficients whereas S; xy)(f) is the autospectrum for the product of
scale \; MODWT coefficients. The result in Equation (5) allows us to easily construct

approximate confidence intervals for the MODWT-based estimator of the wavelet

covariance.

3.3. Wavelet Cross-Correlation
We can define the wavelet cross-correlation for scale A\; and lag 7 as

git

(X) 77(Y)
Cov {W W, t+7’} Texy (A

_ )
R e )

Since this is just a correlation coefficient between two random variables, —1 <

p'r,XY()\j) =

prxy(A;) < 1 for all 7,j. The wavelet cross-correlation is roughly analogous to its
Fourier counterpart — the magnitude squared coherence — but it is related to bands

of frequencies (scales). Just as the cross-correlation is used to determine lead/lag
relationships between two processes, the wavelet cross-correlation will provide a lead/lag

relationship on a scale by scale basis.

3.4. Estimating the Wavelet Cross-Correlation

Since the wavelet cross-correlation is simply made up of the wavelet cross-covariance
for {X;,Y;} and wavelet variances for {X,;} and {Y;}, the MODWT estimator of the

wavelet cross-correlation is simply

prxy(Nj) = 7{#(8\) (7)
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where 7, xy();) is the wavelet covariance, and 0% ();) and 73 ();) are the wavelet
variances. When 7 = 0 we obtain the MODWT estimator of the wavelet correlation
between {X,,Y:}, denoted as pxy()\;) for simplicity.

Large sample theory for the cross-correlation is more difficult to come by than for
the cross-covariance. Brillinger [1979] constructed approximate confidence intervals for
the auto and cross-correlation sequences of bivariate stationary time series. We use
his technique to establish a central limit theorem for the MODWT estimated wavelet
cross-correlation in Whitcher et al. [1999]. To simplify notation the following gives
a central limit theorem for the wavelet correlation (7 = 0) but easily generalizes to
arbitrary lags.

Let L > 2d, and suppose {W; t), W( )} is a bivariate Gaussian stationary process

with square integrable autospectra, then
Py ) ~ N (v ), N 1Ry ) (8)

i.e., the MODWT-based estimator pxy(\;) of the wavelet correlation is asymptotically

normally distributed with mean pxy();) and large sample variance given by

5 1
Rj = Var{pxy(/\j)} ~ ﬁ E {PTX p’T Y( ) + pT,XY()\j)p’T,YX()\j)
Jr=—(N;~1)

— 2p0,xv (Aj)[pr,x (Aj)pry x(Aj) + pry (Aj) pry x (A))]
+ P(Q),XY(/\j)[%Pz,X()‘j) + p?,xy(&') + %Pz,y(/\j)] b

where p; x(\;) = {W(X W] t+|T|}/[2)\ v%()\;)] is the scale \; wavelet autocorrelation
for the process {X;}.

4. Confidence Intervals for Wavelet Estimators

With central limit theorems for both the wavelet cross-covariance and cross-

correlation, we may now explicitly construct an approximate confidence interval (CI) for
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the estimators. For the wavelet cross-correlation, a nonlinear transformation is utilized
in order to bound it between +1 and reduce the computational complexity of its large
sample variance. Without loss of generality, we provide the following Cls for lag 7 = 0.
We may generalize the results presented here for arbitrary lag by simply replacing
{fVIZ(f)} and {W( )} with { } where t =L; +7—1,..., N — 1 and w thT} where
t=L;—1,.,N—7—1forr >0 or {W'} where t = L; —1,..,N +7 — 1 and
{W(HT} where t =L, —7—1,..,N —1for 7 <0.

4.1. Wavelet Cross-covariance

The formula for an approximate 100(1 —2p)% CI of the scale \; MODWT estimator
of the wavelet cross-covariance 7, xy(J;), starting from Equation (6), is provided; see
also Lindsay et al. [1996]. We make use of the periodogram and the cross-periodogram
to help estimate quantities of interest under the assumption of 7 = 0. First, we use the
periodogram §(.p) v () of {W(X)} as the estimator of S; x(-), and similarly for §(.p)(-) of
{W(Y }. Next, we define the biased estimator of the autocovariance sequence associated
with the scale \; MODWT coefficients of {X,} by

N—-1—|m]|

0 = Z W)

Sjm,x = J I+|m|’

A similar definition applies to {égp,r)ny}, the biased estimator of the autocovariance
sequence associated with the scale A\; MODWT coefficients {W](t sz} Second, we use
the cross-periodogram :S”\J(p ))cy() of {vaj(f) } and {ﬁé{p }, as the estimator of S; xy(-), and
the corresponding biased estimator of the cross covariance sequence associated with the

scale \; MODWT coefficients by

ow — (X)N(Y)
j m, XY — Z W ],l—|—m7
where the summation goes from | = L; —1,... ,N —m — 1 for m > 0 and from

Il=Lj—m~—1,... ,N—1form <0.
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We can use Parseval’s relation to develop an estimate of the large sample variance
for the MODWT-based estimator of the wavelet cross-covariance (Equation (6))
using the autocovariance and cross-covariance sequences of the MODWT'T coefficients.
Specifically, the integral of the product of the periodograms is determined from the

autocovariance sequences of {W( )} and {W( )} via
Y 50 1y ) @) )
/_1/25p (f>S],pY(f) df _SJOXéij +2 Z S]Z,)mXA]I,)m Y>»

and the integral of the squared cross periodogram from the cross covariance sequence of

(W WY via

7t
2 [ aw) 2 = » 12
[ B o= X (6]
m:—(Nj—l)

Hence, an estimate for the large sample variance of the MODWT estimator of the

wavelet cross-covariance is given by

5 §(p3XA(p3Y LA RE B =S VPR
V= e ngmx Sjox+5 > [Cj,o,XY} : (9)
m=—(N;—1)

The estimator ﬁj is unbiased when 7 = 0 [Whitcher, 1998]. Under the assumption
that the spectral estimates are close to the true values, an approximate 100(1 — 2p)%

confidence interval for vxy()\;) is

. _ V. B v
xy () = @7H(1 —p) ﬁjj, Fxy (Aj) + @711 - p) ﬁz ,

where ®~!(p) is the p x 100% percentage point for the standard normal distribution.

Empirical evidence from the wavelet variance suggests that Nj = 128 is a large enough
number of wavelet coefficients for such large sample theory to be a good approximation.
We adopt this current rule of thumb when constructing approximate CIs for the wavelet

covariance.
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4.2. Wavelet Cross-correlation

We now use the large sample theory developed in Section 3.4 to construct an
approximate CI for the MODWT estimator of the wavelet cross-correlation. Given
the non-normality of the correlation coefficient for small sample sizes a nonlinear
transformation, Fisher’s z-transformation, is sometimes required in order to produce a
sample correlation coefficient which is approximately Gaussian distributed and whose

shape is independent of the true correlation coefficient [Kotz et al. 1982, Volume 3|. Let

14+p

h(p) = %log <ﬂ) = tanh ™ (p)

define the transformation. For the estimated correlation coefficient p, based on n
independent samples, /n — 3(h(p) — h(p)) has approximately a N(0,1) distribution.
An approximate 100(1 — 2p)% CI for pxy(A;) based on the MODWT is therefore

{tanh h[ﬁxym—% . tanh h[ﬁxy(/\j)]—{-Lj_%:? }

where f\?’j = N; — L) and L) = [(L —2)(1 —277)] is the number of DWT coefficients
associated with scale A\;. We are using the number of wavelet coefficients as if pxy (\;)
had been computed using the DW'T because, under the assumptions of Fisher’s
z-transformation, the denominator should consist of the number of independent samples
used in constructing the correlation coefficient. If the autospectra and cross spectrum
of the two processes {X;,Y;} are slowly varying over each octave band of the DWT,
the assumption of uncorrelated DWT coefficients is justified; see McCoy and Walden
[1996] and the references contained therein. This property simply does not hold for the
MODWT coefficients because of their lack of downsampling. If an equivalent degrees
of freedom argument were available for the wavelet cross-covariance, as was used when

establishing Cls for the wavelet variance based on the MODWT [Percival, 1995], this

could be used instead of ]Vj.
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5. Application to Atmospheric Time Series
5.1. Introduction

The relationship between ENSO events and the MJO is a topic that could benefit
by using wavelet techniques, which explore the time-varying structure of variability
across wavelet scales. To investigate how these two atmospheric phenomena interact, we
analyze two time series. The first one is the Southern Oscillation Index (SOI) [Walker,
1928], which is an indicator of ENSO. The conventional SOI is defined to be the
difference between monthly averages of the station pressure series from climate stations
at Darwin, Australia (130.8°E, 12.4°S) and Tahiti, French Polynesia (149°W, 14°S).

We deviate slightly from the usual definition of the SOI by dealing with a daily
version of it (this daily version has the same large scale properties as more common
definitions of the SOI, but it allows us to explore small scale properties of possible
interest). We obtained daily pressure readings from Darwin and Tahiti starting in
1 June 1957 and continuing through 31 December 1992 (N = 12,998) and differenced
them; see Figure 1 for the individual series. The distance of the stations from the
equator is apparent in the strong annual component in each station pressure series.
The measurements in the summer and winter of 1983 appear to be lower for the Tahiti
station pressure and significantly suppressed for the Darwin station pressure than those
in adjacent years. This approximately corresponds to a large ENSO event in the early
1980s.

This daily SOI contains a variety of time-scales associated with atmospheric
phenomena. Low frequency fluctuations (interannual time scale) are known to be
strongly correlated with ENSO activity. The series probably contains, but is not
limited to, energy associated with large-scale westward propagating 6-30 day equatorial
Rossby waves [Krishnamurti and Ardanuy, 1980; Kiladis, 1998], the global 5-day wave
[Madden and Julian, 1972] and the MJO. We would like to quantitatively analyze the
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interannual variability of this series of station pressure differences over a wide range of
frequencies; see also Gambis [1992].

We also obtained daily station pressure (SP) readings from Truk Island (7.4°N,
151.8°W) as an indicator of the MJO. This series also exists from 1 June 1957 to
31 December 1992; see Figure 1. Unlike the Darwin and Tahiti station pressure series,
there is no apparent annual trend given its close proximity to the equator. Missing values
in all time series were replaced by one-step-ahead predictions from an ARIMA(3,1,0)

model applied to the series [Jones, 1980].

5.2. Time-Domain and Spectral Analysis

Here we analyze the SOI and Truk Island SP series using standard time and
frequency domain techniques. The cross-correlation sequence is typically estimated
by utilizing the biased estimates of the autocovariance sequences for {X,;} and {Y;},
and their cross-covariance sequence. The estimated cross-correlation sequence for the
SOI and Truk Island SP series is shown in Figure 2. The maximum occurs at a lag
of +1 days. We also observe the characteristic broad-band peak commonly found in
atmospheric time series from this region, with a approximate range of 35-55 day lags.

A bivariate spectral analysis of these data (Figure 3) provides some insight into
the possible relationship between ENSO events and the MJO. A Parzen smoothing
window was applied to the periodogram with the window parameter chosen such that
the spectral window bandwidth was 0.0081 day ', as in Madden and Julian [1971]. The
lag window co-spectrum between the SOI and Truk Island SP series exhibits a large
peak at the lower frequencies, which include the annual and inter-annual cycles, and
two distinct peaks (centered at approximately 36.6 day and 61.3 day periods) in the
frequency range of the MJO.

We can test, at the « level of significance, the null hypothesis of zero mean squared

coherence (MSC) by checking the estimated MSC, on a frequency by frequency basis,
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against 1 — a*®~? and rejecting if the estimated MSC exceeds it [Koopmans, 1974,
p. 284]. The parameter v is the number of equivalent degrees of freedom associated
with the spectral estimates; v & 189 using Table 269 in Percival and Walden [1993].
We see that both peaks are significant at the 5% and 1% levels for a broad range of
frequencies. This agrees with previous studies on the large-scale structure of the MJO;
see, e.g., Kiladis and Weickmann [1992], Hendon and Salby [1994] and Bantzer and
Wallace [1996].

5.3. Wavelet Analysis of Variance/Covariance

Daily measurements allow us to apply the MODWT and analyze the wavelet
sub-series which correspond to band-pass filtered series with approximate pass-band
1/27+1 < |f| < 1/27. Although a large annual cycle is observed in the daily SOI
series, it is unnecessary to remove any semi-annual components due to the approximate
band-pass nature of the MODWT which should be roughly captured in wavelet scale \;
(128-256 day periods) or annual components which should be captured in the wavelet
scale \g (256-512 day periods). To investigate this, we looked at the product of the
squared gain function of the LA(8) wavelet filter — the Daubechies compactly supported
least asymmetric wavelet filter with eight non-zero coefficients — and the periodogram of
the Truk Island SP series and daily SOI (not shown). No significant influence was found
by the annual cycle for the Truk Island SP series. Several frequencies corresponding
to the annual cycle are prominent in wavelet scale Ag (which captures 256-512 day
periods) and also in wavelet scale \; (periods of 128-256 days) where it accounts for
approximately 27% of the variance. Wavelet scales A\g and A\g (64-128 and 512-1024 day
periods) are only slightly affected by the annual cycle where it accounts for less than 1%
and 6% of the variance, respectively. The semi-annual cycle exerts even less influence
over its adjacent wavelet scales. A similar argument was made when band-pass filtering

atmospheric time series in Anderson et al. [1984] for MJO time scales. The MJO is
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known to occur with periods of around 30-60 days. We therefore expect to see it in
wavelet scale A5 — associated with changes of 16 days, an approximate pass-band of
1/64 < |f| <1/32 and 32-64 day periods.

A partial MODWT (J = 10) was applied to each series using the Daubechies least
asymmetric wavelet filter of length L = 8 — which we denote by LA(8). Figures 4 and 5
give the MODWT coefficients for the Truk Island SP series and daily SOI, respectively.
Each wavelet and scaling coefficient vector has been circularly shifted in order to obtain
an approximate zero-phase filter, allowing us to align features across scales; see Percival
and Mofjeld [1997] for more details. For the Truk Island SP series, we observe only a
slight annual trend in the Ws series and the large disruption in the early 1980s appears
to primarily affect wavelet scales A7 through Ajp (128-2048 day periods). The \7\75
series, associated with periods in the range of the MJO, appears to fade in-and-out in
amplitude with no apparent pattern. The daily SOI wavelet decomposition exhibits
a strong annual trend where the disturbance in the early 1980s affects the wavelet
scales \g through Ajy (256-2048 day periods). Again, the wavelet scale A5 — associated
with the MJO — exhibits numerous bursts over the length of the time series.

If we are to investigate a possible lead/lag relationship between the two series, then
the wavelet cross-correlation must be estimated for various lags. Figure 6 shows the
estimated wavelet cross-correlation between the daily SOI and Truk Island SP series.
Different ranges of lags were used depending on the period of oscillations captured by
the wavelet coefficients — with the first three wavelet scales displayed on lags +60,
wavelet scales A\ through A¢ on lags £120 and wavelet scales A\; through \;y on lags
+240. Lower wavelet scales do not exhibit cross-correlations significantly different from
zero for larger lags. Confidence intervals (dotted lines) were computed from Section 4.2.
The large positive peak in the first five vectors of wavelet coefficients is at a lag of 1 day
for wavelet scales \; and Ay (2-4 day and 4-8 day periods, respectively), a lag of 2 days

for wavelet scale A3 (8-16 day periods), a lag of 4 days for wavelet scale \; (16-32 day
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periods) and zero days for wavelet scale A5 (32-64 day periods).

There is an obvious asymmetry in the wavelet cross-correlation for wavelet scales A4
and higher (periods of 16 days and longer). The analysis here was performed so that at
a lag of +1 day, the daily SOI time series leads the Truk SP series. As already noted
for wavelet scale A5 (32—-64 day periods), the largest positive cross-correlation occurs at
lag zero. The largest negative cross-correlation is at a lag of 20 days, approximately
half the period of the MJO, and the second largest positive cross-correlation occurs at
a lag of 41 days, approximately a full period of the MJO. Even though the daily SOI
consists of a difference between two stations with different spatial locations, there is still
a strong 40 day oscillation which is correlated (and in phase) with the Truk Island SP
series. It is also interesting to note that the wavelet cross-correlation for the first three
wavelet scales is essentially an odd function. In contrast, the wavelet cross-correlation
for wavelet scales A\g (64-128 day periods) and A7 (128-256 day periods) are essentially
even functions. Patterns in higher scales (lower frequencies) correspond to the annual
and inter-annual trends.

Although direct comparison between Figure 6 and Figure 2 is not appropriate,
because the wavelet correlation does not decompose the correlation between two
stationary processes, the wavelet covariance does decompose the covariance between two
time series. Since the wavelet correlation is simply the wavelet covariance standardized
at each scale, the shape of each wavelet cross-correlation is the same even though the
magnitudes are off. Hence, we may make a rough comparison between the two, keeping
in mind the facts just stated.

The first obvious difference is the fact that usual cross-correlation is positive for all
negative lags. Looking at Figure 6, we see that the wavelet cross-correlation for scales Ag
(512-1024 day periods) and Ajo (1024-2048 day periods) are all positive and contribute
to this feature, whereas for positive lags they are close to zero and allow the wavelet

scale \g (256-512 day periods), which captures the annual frequency, to dominate.
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The two dips on either side of the peak at a lag of +1 days is the superposition of
the first six scales in Figure 6. The subsequent peak around a lag of +40 days is a
result of the anti-correlation for wavelet scales A5 (32-64 day periods) and Ag (64-128
day periods) reducing the annual cross-correlation component (wavelet scale Ag) for
smaller lags. This leads to a different interpretation than what is seen by looking at the
usual cross-correlation sequence. The correlation structure, when applied to all scales
simultaneously, results in a quite complex looking cross-correlation sequence. When
broken up with the wavelet transform a few simple, yet distinct, patterns appear which

may be associated with known atmospheric phenomena.

5.4. Investigating Seasonal Variation in the Madden—Julian Oscillation

Up to this point in the analysis, we have largely ignored an important feature of
the DWT, its ability to extract information which is local in time. With respect to
these data, the question of whether or not the MJO changes over time is of particular
interest. Variations in the data could have (at least) two potential meanings: that
the strength of the MJO is changing over time or that the frequency of the MJO is
changing over time. The first type of change would produce a pattern of increasing and
decreasing coefficients for the time-varying wavelet variance; i.e., the squared wavelet
coefficients at the same scale (recall that the MJO should be captured in the wavelet
scale A5 coefficients — associated with 3264 day periods). The second type of change
would not only produce differing magnitudes of the time-varying wavelet variance, but,
if the change in frequency was large enough, a shift of large coefficients from one scale to
another. Madden and Julian [1994] investigated the latter type of change, with respect
to the MJO at Truk Island, using univariate spectral methods.

Let us investigate the possibility of a changing MJO over time by computing the
time-dependent wavelet variance v7()\;), where ¢ denotes time in days, for the Truk

Island SP series and daily SOI individually. Averaging over all time-dependent wavelet
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variances within each season, we may obtain seasonal wavelet variances for both series;
denoted as D2()\;) where s € {summer, winter}. Figure 7 shows the seasonal wavelet
variance for the daily SOI and Truk Island SP series. Approximate confidence intervals
were computed using the conservative formula 7; for the equivalent degrees of freedom
as given in Percival [1995]. The Truk Island SP series exhibits increased wavelet variance
in the winter (defined to be November—April) across wavelet scales Ay to A7 (periods
of 16-256 days). The daily SOI also exhibits increased wavelet variance in the winter
across wavelet scales A4 to \g (Fourier periods of 16-128 days).

Figure 8 shows the estimated seasonal wavelet correlation ps(\;) between the daily
SOI and Truk Island SP series at a lag of zero days. The seasonal wavelet correlation
appears to be significantly different from zero (in fact, positive) for all wavelet scales
except A7 (128-256 day periods) during the winter. In the summer, the seasonal wavelet
correlation is positive for small wavelet scales A\; to A3 (2-16 day periods), slightly
negative for the wavelet scale A\; (16-32 day periods), not significantly different from
zero for wavelet scales A5 to A7 (32-256 day periods) and positive for all periods longer
than 256 days. When comparing summer and winter seasonal wavelet correlations,
they are significantly different for wavelet scales A4 to Ag — corresponding to periods of
16-128 days. Restricting ourselves to less than the annual periods, the winter wavelet
correlation is strongest within 32-64 day oscillations with a value of pyinger(As) = 0.38
and approximate 95% CI [0.30, 0.46].

Figure 9 gives the estimated seasonal wavelet cross-correlation p.s(A;) between the
Truk Island SP series and the daily SOI with approximate 95% ClIs given by the dotted
lines. To compute p,s(A;), the seasonal wavelet cross-correlations for each individual
year were treated as independent and averaged together. The number of displayed lags
is as in Figure 6. The summer and winter wavelet cross-correlation sequences are almost
identical for periods of 2-8 days and differ only slightly for 8-16 day periods. A striking

feature is seen for longer period wavelet scales where pr winter(A1); Prawinter(A5) and
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Prwinter(A6) show a strong pattern of the daily SOI leading the Truk Island SP series.
While this is not as apparent in j- symmer (A1) and Pr summer(As), it is a complete reversal
of the pattern for p; summer(As) Where the Truk Island SP series leads the daily SOI!
When the time-dependent wavelet variance was plotted (not shown here), the most
extreme years for the winter wavelet variance 02, ,..(\s) — periods of 32-64 days —
appeared to be 1961, 1986 and 1992 for the daily SOI and for the Truk Island SP series,
1959, 1974, 1978 and 1990. These extreme years for the Truk Island SP series before
1990 agree with results from Anderson et al. [1984].
It is evident, from the analysis presented here, that a seasonal pattern exists
in the Madden—Julian oscillation — even in locations close to the equator [Madden,
1986; Anyamba and Weare, 1995]. Although multiscale patterns in the SOI were
identified by Gambis [1992] through use of the CWT, we provide the ability to perform

hypothesis tests between estimated variances and correlations associated with specific

physical time scales.

5.5. Investigating ENSO Variation of the Madden—Julian Oscillation

We have already seen how the association between the daily SOI and SP series
collected at Truk Island, for wavelet scales associated with the MJO, exhibits different
characteristics between summer and winter seasons. Now we propose to quantitatively
analyze the same association between different episodes of ENSO activity.

The conventional SOI, computed via monthly differences between Tahiti and
Darwin, is a measure of the strength of the trade winds, where high SOI (pressure
difference from East to West) is associated with La Nifa conditions and low SOI
(pressure difference from West to East) is associated with El Nino conditions. To
construct a useful indicator of ENSO activity from the data presented here, the wavelet
smooth (Ss) from a multiresolution analysis (J = 8) of the daily SOI was extracted; see

Percival and Mofjeld [1997] for more details on a MODWT multiresolution analysis.
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This series represent all periods greater than 512 days. The sample mean was removed
and the series was then inverted in order to agree with the conventional SOI taken from
the NCEP-CPC website!; see Figure 10. Let us define this ‘low frequency’ wavelet-based
indicator of ENSO activity via SOl r = —gg + 878, where X is the sample mean. There
is excellent agreement between the SOI,r and the conventional SOI, our wavelet-based
indicator being much smoother. We see the large El Nino events of 1981-1982 and
1986-1987, with a subsequent La Nina event in 1988-1989.

Another measure of ENSO activity is available from a subjective classification
procedure using reanalyzed sea surface temperatures produced at NCEP-CPC and
UKMO, provided on a quarterly time scale. These data are also available from the
NOAA-CPC website?. The points agree with the large deviations of the SOI,p, but
disagree when the deviations are moderate; e.g., 1962, 1967-1968, 1981 and 1984-1985.

Kiladis and Diaz [1989] provides a list of year Os for warm and cold events, over the
period 1877-1988, based on the conventional SOI and an SST anomaly index for the
eastern equatorial Pacific. Year 0 of a warm event is defined to be the year in which the
SOI changes sign from positive to negative and eastern equatorial Pacific SST anomalies
become strongly positive. For the period coinciding with this study (1957-1988), warm
events were found to begin in 1957, 1963, 1965, 1969, 1972, 1976, 1982 and 1986. These
events agree with the SOI, , which is based solely on the low-frequency content of daily
station pressure differences between Darwin and Tahiti. Cold events were documented
to start in 1964, 1970, 1973, 1975 and 1988. The cold events do not agree exactly with
the SOl r, but do agree very well with the subjective classification from NCEP-CPC
and UKMO.

Figure 11 gives the wavelet variance for the Truk Island SP series partitioned into

ftp:/ /ftp.ncep.noaa.gov/pub/cpc/wd52dg/data/indices /soi

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.html
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warm, cold, and other (not warm nor cold) episodes. The top plots uses the classification
from NCEP-CPC while the bottom plots uses the SOI,r (Figure 10). A threshold of

+0.5 was used to define the three episodes; i.e.,

Ss: < —0.5 = warm event day;
—05 < S, < 05 = “other” day; (10)

Sg: > 0.5 == cold event day.
The general shape of each plot (top and bottom) is quite similar, but the relation
between warm, cold and other wavelet variances differs substantially. Under the
NCEP-CPC classification, the wavelet variance for warm episodes is significantly greater
than cold events only in the first three wavelet scales (2-16 day periods). Under the
wavelet-based classification, the wavelet variance for warm episodes is significantly less
than both cold and other episodes for wavelet scales A\, and A5 (16-64 day periods).
The “warm” wavelet variance inverts this property, becoming greater than the wavelet
variances for cold and other episodes for periods greater than 128 days (although only
significantly for 128-256 day periods).

The wavelet variance for the daily SOI, partitioned into warm, cold, and other
episodes, is given in Figure 12. As was observed with the Truk Island SP series, the
general shape of the wavelet variance across scales does not vary drastically whether
using the NCEP-CPC or the wavelet-based classification (Equation (10)). We observe
the wavelet variance for cold episodes to be less than either the warm or other episodes
for wavelet scales A3 to A\g (8—-128 day periods), although only significantly different for
periods of 16-64 days, under the NCEP-CPC classification. The “cold” wavelet variance
then is greater than the wavelet variance for warm episodes for wavelet scales A7
and Ag (128-512 day periods). These comparisons are similar under the wavelet-based
classification of episodes, but do not appear to be statistically significant.

Figure 13 provides the wavelet correlation between daily SOI and the Truk Island SP

series under different episodes of ENSO activity. We will concentrate on comparisons
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under the wavelet-based classification of ENSO activity given by Equation (10); bottom
plot of Figure 13. For a large range of wavelet scales, the wavelet correlation between

these two series is not significantly different from zero for warm ENSO episodes (Fourier
periods of 8-32 days and 64-512 days). Even under wavelet scale A5 (3264 day periods),
which should capture the MJO, the “warm” wavelet correlation fyarm(As) = 0.12 with
an approximate 95% CI of [0.02,0.21]. This agrees with previous studies which indicate
the suppression of the MJO during El Nino events [Anyamba and Weare 1995; Hendon
et al. 1999]. We also note the rather large correlation between the daily SOI and Truk
Island SP series for 256-512 day periods under cold episodes (feoa(Ag) = 0.76 with an

approximate 95% CI of [0.62,0.86]) while under warm episodes the wavelet correlation

is almost zero (fyaerm(As) = 0.03 with an approximate 95% CI of [—0.26,0.30]).

The wavelet cross-correlation between the daily SOI and Truk Island SP series,
partitioned into warm, cold, and other episodes, is given in Figure 14. The first two
wavelet scales (corresponding to 2-4 and 4-8 day periods) are very similar in pattern
between the three ENSO episodes, only slightly increased in magnitude during La
Nina (cold) events. For larger wavelet scales, all three episodes (warm, cold and
other) differ from each other in shape and magnitude. When comparing these wavelet
cross-correlation sequences associated with ENSO episodes to the global wavelet
cross-correlation in Figure 6, the periods marked as “other” are most similar to the
global estimates. When comparing j..(As) for e € {cold, warm,other}, the cold and
other wavelet cross-correlations are similar around lag zero, while the warm wavelet
cross-correlation looks nothing like the other two (exhibiting its largest coefficient
around 7 = 80). While p; other(As5) exhibits the usual pattern with a large positive
correlation at 7 = 0 and a large negative correlation around 7 = 20, p; coa(A5) exhibits
a very small negative correlation at 7 = 20 and prwarm(As) is reduced in magnitude
and translated to the left. The wavelet cross-correlations for scale A\g show a variety of

patterns, again with p, oher(Ag) matching closely to the global wavelet cross-correlation
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in Figure 6.

6. Summary and Conclusions

We have introduced a new analysis technique for bivariate Gaussian time series
which utilizes a non-decimated version of the DWT — the maximal overlap DWT. Both
stationary and certain non-stationary processes are easily handled by this methodology.
As is the case with the wavelet variance, natural estimators of the covariance and
correlation between two time series are defined as alternatives to the Fourier-based
cross spectrum and magnitude squared coherence. The wavelet covariance and wavelet
correlation are generalized to the wavelet cross-covariance and wavelet cross-correlation,
respectively, which also decompose their classical counterparts on a scale by scale
basis. Thus, complicated patterns of association between time series are broken down
into several much simpler patterns — each one associated with a physical time scale.
With any good statistical analysis a measure of variability is also required. We provide
approximate confidence intervals for our wavelet estimators and therefore allow for
straightforward statistical hypothesis testing.

A major advantage to wavelet techniques is their ability to decompose a time series
locally both in frequency and time. We utilize this property to investigate behavior of
the MJO with respect to seasons (boreal summer and winter) and also ENSO activity
(El Nino, La Nina and other periods). We find significantly higher variability during
boreal winter in both the Truk Island SP series and SOI for periods corresponding
to with MJO, agreeing with the qualitative results of Gambis [1992], and suppression
of variability during boreal summer, agreeing with Madden [1986] and Anyamba and
Weare [1995]. Correlation between the Truk Island SP series and daily SOI for periods
of 32-64 days was found to be quite strong and significantly different from zero in
boreal winter, while it was not significantly different from zero in boreal summer and

cross-correlations between the two series are also stronger in the boreal winter. Gutzler
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[1991] found increased climatological variance in the boreal summer versus winter of
band-pass filtered anomalies (31-66 day periods) of surface zonal winds at Truk Island,
and negative correlations in boreal summer between interannual variations of the SOI
and band-pass filtered anomalies of surface zonal winds. Similar statements to the ones
in this paper are not available from Gutzler [1991] since measures of variability in the
estimates (e.g., approximate confidence intervals) were not provided.

After classifying our time series into El Nifio and La Nifia events, we found
significantly lower variance in the 32-64 day filtered Truk Island SP series during El
Nino events which agrees with Hendon et al. [1999] where MJO activity was noted to
diminish during exceptional warm events. Gutzler [1991] found no correlation between
seasonally averaged 31-66 day band-pass filtered variance in the upper troposphere
and the SOI. The wavelet correlations we found for all events are significantly different
from zero, but they are not significantly different from each other. This disagrees with
the finding that the ratio of the observed points belonging to El Nifio events to the
number of high-frequency events was higher than expected by chance as discussed in
Gambis [1992]. Even though the correlations are not significantly different between
ENSO periods, the interesting feature here is that the wavelet cross-correlations for
specific Fourier periods do exhibit marked change in their structure. Figure 14 shows
an almost symmetric lead /lag relation between the Truk Island SP series and daily SOI
measurements for 32-64 day periods during La Nina events whereas the daily SOI leads
the SP series with a large negative correlation at a positive lag around half the period
of the MJO is apparent in El Nifio and other periods. Higher frequency events, such as
those associated with changes spanning 2-8 days, are very similar between El Nifio and
La Nifia events, with only a slight increase in magnitude of correlations during La Nina
events.

Although the time series used here only capture large spatial-scale features of the

MJO and SOI, still several interesting features were observed and statistically tested



33

through our methodology. The application provided here hopefully gives a indication of
the potential use of wavelet estimators in the atmospheric sciences.
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7. List of Figures

1.

Station pressure series for Truk Island (7.4°N, 151.8°W); Darwin, Australia (12.4°S,
130.9°E); and Tahiti, French Polynesia (17.5°S, 149.5°W). The “staggered” look
of the Truk Island series prior to 1971 is the result of rounding to the nearest

millibar.

Estimated cross-correlation sequence (ccs) for the daily SOI and Truk Island SP
series for lags up to +240 days. The dotted lines represent asymptotic 95%

confidence intervals for the ccs.

Estimated lag window co-spectrum and magnitude squared coherence (msc)
between the daily SOI and Truk Island SP series. A Parzen lag window, with
spectral window bandwidth 0.0081 day ™', was applied to the periodogram. The
dotted and dashed lines correspond to the 5% and 1% levels of significance test for

non-zero msc, respectively.

. MODWT coefficients for the Truk Island SP series using the LA(8) wavelet filter.

The wavelet coefficient vectors Wl,wz, .. ,Wlo are associated with variations
on scales of 1,2,...,1024 days and the scaling coefficient vector \N/'lo is associated

with variations of 2048 days or longer.

MODWT coefficients for the daily SOI using the LA(8) wavelet filter. The wavelet

and scaling coefficients have the same interpretation as in Figure 4.

Wavelet cross-correlation between the daily SOI and Truk Island SP series for the
first 10 wavelet scales. Approximate 95% confidence intervals (dotted lines) were
computed from Section 4.2. The range of lags is +60 for wavelet scales Aq, ... , A3,

4120 for scales A4, ..., A\g and +240 for scales A7, ..., Aqp.

Seasonal wavelet variance for the Truk Island SP series and daily SOI, partitioned
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11.
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into “summer” (May-October) and “winter” (November—April). Periods (in days)

are displayed on the upper axis.

Seasonal wavelet correlation between the Truk Island SP series (top plot) and
daily SOI (bottom plot), partitioned into “summer” (May—October) and “winter”

(November—April). Periods (in days) are displayed on the upper axis.

Seasonal wavelet cross-correlation between the Truk Island SP series and daily

SOI. The left column of plots gives the “summer” (May—October) values while the
right column gives the “winter” (November—April) values for the first six wavelet
scales, corresponding to — from bottom to top — periods of 1-2 days, 2—4 days, 4-8
days, 8-16 days, 16-32 days and 32—64 days. The x-axis covers +60 days for the
first (bottom) three wavelet scales and +120 days for the last (top) three wavelet

scales.

Wavelet-based indicator of ENSO activity. The solid line in both plots

was computed by extracting the wavelet smooth (58) from the MODWT
multiresolution analysis (J = 8) of the daily SOI. The dotted line in the top plot
is the conventional SOI from the NOAA-CPC website. The points in the bottom
plot indicate cold (La Nina) and warm (El Nifio) events, denoted by +1 and —1
respectively. The data comes from a subjective classification procedure using
reanalyzed sea surface temperatures produced at NCEP-CPC and UKMO (also
available from the NOAA-CPC website).

Wavelet variance for the Truk Island SP series, partitioned into El Nino (warm),
La Nifa (cold) and “other” episodes. Classifications were made according to
the NCEP-CPC definitions of these events (top plot) and wavelet-based ENSO
indicator (bottom plot); cf. Figure 10. Periods (in days) are displayed on the

upper axis.
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Wavelet variance for the daily Southern Oscillation Index, partitioned into El Nifio
(warm), La Nifia (cold) and “other” episodes. Classifications were made according
to the NCEP-CPC definitions of these events (top plot) and SOI.p (bottom plot);

cf. Figure 10. Periods (in days) are displayed on the upper axis.

Wavelet correlation between the Truk Island SP series and daily SOI, partitioned
into El Nifio (warm), La Nifia (cold) and “other” episodes. Classifications were

made according to the NCEP-CPC definitions of these events (top plot) and the
SOI.r (bottom plot); cf. Figure 10. Periods (in days) are displayed on the upper

axis.

Wavelet cross-correlation between the Truk Island SP series and daily SOI,
partitioned into El Nifio (warm), La Nifia (cold) and “other” episodes.

Classifications were made according to the SOI, p; cf. Figure 10.
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