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Abstract: Wavelets are relatively new mathematical tools that have proven to be quite

useful for analyzing time series and spatial data. We provide a basic introduction to wavelet

analysis that concentrates on their interpretation in the context of analyzing time series.

We illustrate the use of wavelet analysis on time series related to vegetation coverage in the

Arctic region.

Abbreviations: CWT–Continuous Wavelet Transform, DWT–Discrete Wavelet Transform,

FD–Fractionally Differenced MODWT–Maximal Overlap Discrete Wavelet Transform, MRA–

Multiresolution Analysis.
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1 Introduction

Since their introduction in the geophysical literature in the 1980s (Goupillaud et al. 1984),

wavelets have been become an increasingly popular tool for analyzing time series and spatial

data. Examples of wavelet analysis are in abundance in almost all areas of science and en-

gineering. A recent search on the INSPEC bibliographic database using the word ‘wavelet’

yielded over 20,000 articles written from 1990 and on. A similar search for articles with

‘wavelet’ and ‘vegetation’ uncovered 50 articles, many of which are directly related to veg-

etation monitoring. Some key papers that have applied wavelets in vegetation ecology and

related fields include Bradshaw and Spies (1992), Brunet and Collineau (1994), Csillag and

Kabos (2002), Dale and Mah (1998), Lark and Webster (1999) and Lark and Webster (2001).

It is our contention that wavelet analysis is useful in many more areas related to vegetation

monitoring than what have already been explored in the literature. The purpose of this ar-

ticle is to provide an introduction to wavelet analysis that concentrates on the ideas behind

it in the context of the analysis of time series related to vegetation coverage in the Arctic

region. After a brief description of these series and a discussion of what wavelet analysis can

tell us about them (§2), we discuss the notion of a wavelet (§3) and the basics of wavelet

analysis (§4). We then describe the discrete wavelet transform (§5) and use this transform to

analyze the vegetation coverage series (§6). We conclude with a summary of our key points

and a small discussion (§7).

2 Time Series of Vegetation Coverage

Figure 1 shows time series of four vegetation groups over land between 50◦–90◦ N based on

the modified Köppen classification system (Köppen 1931, Trewartha and Horn 1980). Each

line in the figure represents the coverage of one classification group (defined below) in the
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Arctic region for the period from 1901 to 2000 in units of 106 square kilometers (each series

consists of 100 values in all). Wang and Overland (2004) generated these four time series

based on monthly surface air temperature data assembled by the Climate Research Unit,

University of East Anglia (CRU TS2.0).

The Köppen classification system uses natural vegetation as an expression of climate, and

is based upon annual and monthly means of temperature and precipitation. The classes can

be used as surrogates for different types of vegetation. Köppen classification recognizes five

major groups of climate and lesser subdivisions and characteristics in a quantitative system.

In the modified Köppen classification system (Trewartha and Horn 1980), there are six major

groups, five of which are based on the thermic zones. The sixth is the dry group, which cuts

across the first four thermic zones. These thermic groups have a strong zonal orientation,

and they correspond closely to zonal patterns in vegetation coverage. Over the Arctic region

(50◦–90◦ N), the polar group (fifth in the classification) is further divided into two subgroups,

namely, tundra and perpetual frost. The tundra group is defined as areas over which the

monthly mean temperature of the warmest month is less than 10◦ C, but above freezing.

Perpetual frost covers the area where the maximum temperature in the summer months is

below freezing. Two other groups are also identified in the Arctic region, namely, the boreal

and temperate groups. The boreal group has one to three months of mean temperatures

above 10◦ C, whereas the temperate group has four or more months above 10◦ C. The polar

group is dominated by treeless tundra vegetation. The boreal group is comprised mainly of

boreal coniferous forests. The temperate group consists of broadleaf deciduous forests inland

and temperate evergreen forests over maritime regions.

Wang and Overland (2004) compared the spatial distribution of the tundra group based

on the modified Köppen classification system using temperatures generated by CRU and

NCEP (National Centers for Environmental Prediction) with the circumpolar Arctic Vege-
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tation Map (CVAM Team 2003) and with the spatial map from National Aeronautics and

Space Administration (NASA) satellite Normalized Difference Vegetation Index (NDVI).

They found good agreement among the analyses. They also noted that, since the late 1970s,

there has been a downward linear trend in three time series representing the tundra group.

The first series is based upon Köppen classification using the CRU temperatures; the second,

on a similar classification using the NCEP analysis; and the third, on NDVI values of 0.1

to 0.4. The three slopes are quite similar (−7.6 × 104, −6.8 × 104 and −5.8 × 104 km2/yr,

respectively). These trends represent about a 20% reduction in the coverage of the tundra

group based on the CRU data from 1980 to 2000. Although Köppen classification is not an

actual measurement of area of a given vegetation community, the agreement between the

classified tundra group and satellite NDVI indicates that Köppen classification is a good

approximation to the actual area of coverage in the Arctic region. In addition, the decrease

in coverage by tundra in the last few decades is also supported by photographic comparisons

of several places in the Arctic region (Sturm et al. 2001 and Shiyatov 2003).

The following are examples of questions that a wavelet analysis can potentially address

and that we return to in §6.

1. Are the statistical variations in a given time series homogeneous across time? More

generally, because of their localized nature, wavelets can address questions about other

time-dependent variations such as the presence or absence of a trend.

2. In a given series, are the variations from one year to the next more prominent than

the variations from one decade to the next? This question is typical of others that

wavelets can answer about the dominant factors contributing to the overall variance of

a time series.

3. It is obvious from Figure 1 that the boreal time series is significantly more variable
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than the frost series, but do they have other statistical properties that are significantly

different? Here we exploit the ability of wavelets to compare overall properties of

different time series.

4. How are, say, the boreal and temperate series related on a scale by scale basis (e.g.,

year to year, decade to decade)? This question illustrates that wavelets can provide a

useful covariance analysis; i.e., they can tell us how two time series co-vary on various

scales across time.

3 What is a Wavelet?

In English ‘let’ is sometimes added to the end of a noun to indicate a diminutive version of

the concept; e.g., piglet is a small pig (Milne 1926). To understand the term ‘wavelet,’ we

need to define what is meant by a wave. Let us take a wave to be a real-valued function that

is defined over the entire real axis and that oscillates back and forth about zero, with the

amplitude of the oscillations being relatively the same everywhere. The top plot of Figure 2

shows part of a typical wave, namely, a function that is defined as sin(u) for −∞ < u <∞.

By contrast, the bottom three plots show three different wavelets ψ(·). The top one is the

Haar wavelet, defined by

ψ(H)(u) =



−1/
√

2, −1 < u ≤ 0;

1/
√

2, 0 < u ≤ 1;

0, otherwise.

(1)

The middle wavelet ψ(fdG)(·) is proportional to the first derivative of the probability density

function 1√
(2πσ2)

e−u
2/2σ2

for a normal (Gaussian) random variable with mean zero and vari-

ance σ2, while the bottom wavelet ψ(Mh)(·) is proportional to the second derivative and, for

an obvious reason, is referred to as the ‘Mexican hat’ wavelet. We can deduce from Figure 2
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that the sense in which a wavelet is smaller than a wave is that, whereas a wave has sub-

stantial fluctuations over the entire real axis, a wavelet is zero (or very close to zero) outside

of some finite interval (e.g., (−1, 1] for the Haar wavelet and approximately (−3, 3] for the

other two wavelets). Thus, in contrast to waves, the amplitude of a wavelet damps down as

|u| gets large, and a wavelet is said to have finite width.

Technically three conditions are required for a function ψ(·) to be a wavelet.

1. ψ(·) must integrate to 0; i.e.,
∫ ∞
−∞ ψ(u) du = 0. Intuitively this condition means that

the oscillations undertaken by a wavelet must be balanced above and below zero.

2. ψ2(·) integrates to 1; i.e.,
∫ ∞
−∞ ψ2(u) du = 1. This condition implies that, for every

small ε > 0, there is an interval (−T, T ] of finite width such that
∫ T

−T ψ
2(u) du > 1− ε,

i.e., that
∫ −T
−∞ ψ2(u) du+

∫ ∞
T
ψ2(u) du < ε. Intuitively this condition says that most of

the fluctuations in ψ(·) are contained in some interval of finite width.

3. ψ(·) must be ‘admissible,’ which is a mild technical condition that rules out the use of

certain pathological functions of no practical importance (Mallat 1999).

(For simplicity, we have restricted our definitions to real-valued functions; however, it is

possible to define complex-valued wavelets, and in fact the wavelets that were introduced

first in the geophysical literature are complex-valued (Goupillaud et al. 1984).)

4 What is Wavelet Analysis?

Now that we have defined what a wavelet is, how can we use it to tell us something about

a time series? Suppose we let xt represent the tth value of a time series, where t is an

integer. Suppose further that we regard xt as a sample from a real-valued function x(·)

that is defined over the real axis; i.e., we have xt = x(t∆), where ∆ is the spacing between

adjacent observations (for example, ∆ is one year for the four series shown in Figure 1).
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Merely to facilitate our discussion, let us assume ∆ to be small compare to one (we can

force this to be true for the time series of vegetation groups by taking the time variable to

be measured in centuries, in which case ∆ = 0.01 centuries). Let us now consider what

happens if we multiply x(·) and the Haar wavelet ψ(H)(·) together (as illustrated in Figure 3)

and integrate the resulting function; i.e., we form

W (H) =

∫ ∞

−∞
ψ(H)(u)x(u) du.

The variable W (H) is called a Haar wavelet coefficient.

What does the wavelet coefficient W (H) tells us about x(·)? To address this question, we

can use the definition for ψ(H)(·) in Equation (1) to argue that

W (H) = − 1√
2

∫ 0

−1

x(u) du+
1√
2

∫ 1

0

x(u) du.

Texts on elementary calculus tell us that an integral of the form

1

b− a

∫ b

a

x(u) du

defines the average value of the function x(·) over the interval (a, b]. The integral
∫ 0

−1
x(u) du

can be regarded as the average value of x(·) over the interval (−1, 0], and similarly
∫ 1

0
x(u) du

is its average value over (0, 1]. The width of these intervals is commonly referred to as the

scale associated with W (H). We now see that the Haar wavelet coefficient is proportional to a

difference between two averages, each of unit scale. Thus, if |W (H)| is large, these unit scale

averages of x(·) differ substantially; on the other hand, if W (H) is close to zero, there is not

much difference between these two averages.

Given that we only observe x(·) at the points xt = x(t∆), we can obtain an approximation

to W (H) as follows. For any positive integer K, let

x̄
(K)
t =

1

K

K−1∑
l=0

xt−l;
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i.e., x̄
(K)
t is the average of the K variables xt−K+1, xt−K+2, . . . , xt−1, xt. Now suppose that

K represents the number of samples xt in the interval (−1, 0]. Then we have∫ 0

−1

x(u) du ≈ 1

K∆

K−1∑
l=0

x−l ∝ x̄
(K)
0 ;

i.e., to some degree of approximation, the average value of the function x(·) over the interval

(−1, 0] is proportional to the average x̄
(K)
0 of all the observed values falling in that interval.

Similarly, ∫ 1

0

x(u) du ≈ 1

K∆

K−1∑
l=0

xK−l ∝ x̄
(K)
K ,

from which it follows that W (H) ∝ x̄
(K)
K − x̄

(K)
0 approximately; i.e., the wavelet coefficient is

approximately proportional to a difference between two adjacent averages, each spanning an

interval of unit scale.

While the Haar wavelet of Equation (1) tells us about the difference in averages over

intervals of unit scale centered about the origin, it would be nice to obtain similar information

about averages over other scales centered about arbitrary time points. We can do so by

adjusting the scale of the wavelet and then relocating it. Accordingly, let us define a Haar

wavelet that is associated with an arbitrary scale λ > 0 and location t as follows:

ψ(H)

λ,t(u) ≡
1√
λ
ψ(H)

(
u− t

λ

)
=



− 1√
2λ
, t− λ < u ≤ t;

1√
2λ
, t < u ≤ t+ λ;

0, otherwise.

(2)

Note that ψ(H)

1,0(·) and ψ(H)(·) are identical. It is easy to check that ψ(H)

λ,t(·) integrates to zero

and that its square integrates to unity, so it satisfies two of the basic conditions for a wavelet.

As examples, the left-hand column of Figure 4 shows ψ(H)

1,−1(·), a unit scale wavelet centered

at t = −1, and ψ(H)

2,0(·), a wavelet of scale two centered at the origin. If we now multiply
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ψ(H)

λ,t(·) and x(·) together (as illustrated in the figure), we obtain a wavelet coefficient that

now depends on λ and t:

W (H)(λ, t) ≡
∫ ∞

−∞
ψ(H)

λ,t(u)x(u) du. (3)

Note that W (H)(1, 0) and W (H) are identical. This function of scale and location is known as

the Haar wavelet transform of x(·). The particular value W (H)(λ, t) is called the Haar wavelet

coefficient at λ and t. In analogy to our interpretation of W (H), we can say that W (H)(λ, t) is

proportional to a difference in scale λ averages located just before and after time t. If the

difference between these averages is large, this is reflected in a large magnitude for W (H)(λ, t);

on the other hand, if the difference is small, then |W (H)(λ, t)| will be small. Given samples

xt of x(·), we can approximate W (H)(λ, t) based upon averages of appropriate portions of xt.

In a similar manner we can define wavelet transforms other than the Haar by starting

with a basic wavelet ψ(·) that has unit scale and is centered at the origin. We then define

ψλ,t(·) as in the left-hand portion of Equation (2). The wavelet transform itself is given by

the obvious analog of Equation (3). The interpretation of the resulting wavelet coefficients

W (λ, t) can be deduced from a study of the shape of the basic wavelet ψ(·). For example,

while the Haar wavelet ψ(H)(·) depicted in Figure 2 leads to coefficients that are proportional

to the difference between adjacent averages, it is evident from the plot of ψ(fdG)(·) in this figure

that this wavelet yields coefficients that are proportional to a difference between adjacent

weighted averages. Similarly, the shape of the Mexican hat wavelet ψ(Mh)(·) implies that its

coefficients are proportional to a difference between a weighted average centered about the

origin and two weighted averages occurring before and after it.

The interpretation of wavelet coefficients as the difference between averages is funda-

mental for transforms based upon wavelets similar to those shown in Figure 2. The fact

that we can make this physical interpretation helps explain why the wavelet transform has

proven to be useful for many different types of time series. While average values of time
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series are important, what is more often of scientific interest is how stable such averages are

over time. To cite a well-known example, the study of a possible change in the climate leads

us to determine how much change there has been over time in averages of various climate

indicators. Since an effective way to determine this would be to see how much change there

has been in averages associated with different scales (decades, centuries, etc.), the wavelet

transform emerges as a important tool because of its physical interpretation. (The wavelet

transform can be extended to handle images, in which case the coefficients can be interpreted

as differences between co-located spatial averages.)

In addition to its appealing physical interpretation, let us note two other key properties

of the wavelet transform. The first says that the continuous time series x(·) and its wavelet

transform W (·, ·) are equivalent in the sense that, given either x(·) or W (·, ·), we can recover

the other. The ‘forward’ wavelet transform, i.e., going from x(·) to W (·, ·), is simply a matter

of definition (e.g., Equation (3)). The inverse wavelet transform, i.e., going from W (·, ·) to

x(·), is not immediately obvious, but in fact can be done as follows:

x(t) =
1

Cψ

∫ ∞

0

[∫ ∞

−∞
W (λ, u)

1√
λ
ψ

(
t− u

λ

)
du

]
dλ

λ2
, (4)

where Cψ is a constant depending on just ψ(·). The fact that we can recover x(·) from

its wavelet transform is important because this means that all the information about the

time series must also be contained in W (·, ·) in some manner. We can consider x(·) and

W (·, ·) to be two representations for a single mathematical entity, with W (·, ·) offering a

reexpression of the time domain formulation x(·) in a manner that can bring out certain key

information more succinctly. Another way of stating this equivalence is that knowledge of

how x(·) changes at all scales λ and all time locations t is equivalent to knowing x(·) itself.

The second key property is that the wavelet transform can be used as the basis for an

‘energy’ decomposition of x(·). By definition, the term ‘energy’ is just short-hand for the

quantity
∫ ∞
−∞ x2(t) dt, which we assume to be finite (for certain x(·), this definition would be
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consistent with the notion of energy defined in physics). We can then write∫ ∞

−∞
x2(t) dt =

∫ ∞

0

∫ ∞

−∞

W 2(λ, t)

Cψλ2
dt dλ. (5)

Thus, whereas a plot of x2(t) versus t tells us how the energy in x(·) is distributed with

respect to time, the right-hand integrand above yields an energy distribution across both

scale and time. (The above is the analog of a well-known result in Fourier theory, namely,

that the energy in x(·) can be decomposed across different frequencies in terms of the square

magnitude of the Fourier transform for x(·).)

5 Discrete Wavelet Transforms

The wavelet transform we described in the previous section is usually called a continuous

wavelet transform (CWT) since it is applied to a function x(·) defined over the entire real

axis. In practical applications, we only have a finite number N of sampled values. If we

only have these samples, it is not possible to compute the CWT exactly, but we can resort

to approximations.

Rather than approximating the CWT, an alternative approach is to define a wavelet

transform specifically tailored for sampled values. This approach leads to the discrete wavelet

transform (DWT), but it does require that the samples be of the form xt = x(t∆), where

for convenience we take the integer t to range from 0 up to N − 1; i.e., we need the data

to be collected at equal intervals (if this is not the case, we can resort to an interpolation

method to create a regularly sampled time series). To some degree of approximation, we

can regard the DWT as being formed by taking ‘slices’ through a corresponding CWT, but

it is important to note that the DWT can stand on its own, independent of any connection

to a CWT. The slices are restricted to scales λ that assume the dyadic values 2j−1∆, where

j = 1, 2, . . . , J0. Here J0 is the total number of scales used and is usually dictated by the
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sample size N and/or by the application at hand. Typically J0 is set to a value no greater

than log2(N), so the number of scales that we can meaningfully analyze is restricted by the

amount of data available. It is convenient to define τj = 2j−1 as a standardized dyadic scale,

with the actual physical scale then being given by τj ∆.

The DWT also requires a discretization of the continuous time variable. One choice gives

us N wavelet coefficients on each scale, yielding a version of the DWT called the maximal

overlap DWT (MODWT); however, essentially the same transform goes by several other

names, including the stationary DWT (Nason and Silverman 1995) and the non-decimated

DWT (Bruce and Gao 1996). Let X be an N dimensional vector whose tth element is xt. For

a given J0, the MODWT transforms X into J0+1 new vectors, each of dimensionN . The first

J0 of these are denoted by W̃1, . . . ,W̃J0 and constitute the MODWT wavelet coefficients

associated with (standardized) scales τj, j = 1, . . . , J0. To some degree of approximation,

each element in W̃j can be associated with a CWT wavelet coefficient on scale τj ∆, so the

MODWT wavelet coefficients have the same physical interpretation as the CWT coefficients.

The final vector is denoted by ṼJ0 and contains the so-called MODWT scaling coefficients.

Whereas the wavelet coefficients W̃j are proportional to changes in averages over a scale

of τj, these scaling coefficients are proportional to averages over a scale of τJ0+1. Roughly

speaking, the scaling coefficients are summaries of the information in the CWT at all physical

scales λ greater than or equal to τJ0+1∆.

The MODWT is equivalent to the original time series in the sense that, given the

MODWT coefficients, we can reconstruct X (cf. Equation (4) for the CWT). This leads to

the following additive decomposition, which is known as a multiresolution analysis (MRA):

X =

J0∑
j=1

D̃j + S̃J0 . (6)

In the above, D̃j is an N dimensional vector that depends upon just W̃j and hence is
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constructed using just those MODWT wavelet coefficients that are associated with changes

of averages on a scale of τj. This vector is called a ‘detail series’ and is the part of the MRA

of X that can be attributed to variations on a scale of τj. The final term in the MRA is

S̃J0 , which again is an N dimensional vector, but this depends just on the scaling coefficients

ṼJ0 . The vector S̃J0 is called the ‘smooth series’ because it is associated with averages over

scales 2τJ0 and longer and hence captures the slowly varying portion of X. Thus an MRA

is an additive decomposition that expresses a time series as the sum of several new series,

each of which can be associated with variations on a particular scale.

The MODWT also offers a scale-based decomposition of the energy in X. Recalling that

we took
∫ ∞
−∞ x2(t) dt to be the energy in x(·), let us define ‖X‖2 =

∑N−1
t=0 x2

t to be the energy

in X. The MODWT-based energy decomposition says that

‖X‖2 =

J0∑
j=1

‖W̃j‖2 + ‖ṼJ0‖2 (7)

(cf. Equation (5) for the CWT). Thus the energy in X is preserved in its MODWT coefficients,

and ‖W̃j‖2 represents the contribution to the energy that is attributable to variations on the

scale of τj. This energy decomposition in turn allows us to decompose a well-known measure

of the variability in a time series, namely, the sample variance, defined as

σ̂2
x =

1

N

N−1∑
t=0

(xt − x̄)2 =
1

N

N−1∑
t=0

x2
t − x̄2 =

1

N
‖X‖2 − x̄2

where x̄ = 1
N

∑
t xt is the sample mean of the time series. If we use Equation (7) to substitute

for ‖X‖2 in the above, we obtain the following scale-based decomposition of the sample

variance:

σ̂2
x =

1

N

(
J0∑
j=1

‖W̃j‖2 + ‖ṼJ0‖2

)
− x̄2. (8)

We can use this expression to argue that the contribution to the sample variance due to

variations on a scale of τj is given by 1
N
‖W̃j‖2. We can take this quantity to be an estimator
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for a corresponding theoretical quantity called the wavelet variance, which gives us a scale-

based decomposition of a theoretical variance associated with a population that xt is assumed

to be drawn from. These ideas extend naturally to a scale-based decomposition of the sample

covariance σ̂xy between two time series X and Y:

σ̂xy =
1

N

N−1∑
t=0

(xt − x̄) (yt − ȳ) =
1

N

(
J0∑
j=1

〈W̃x,j,W̃y,j〉 + 〈Ṽx,J0 , Ṽy,J0〉
)

− x̄ȳ, (9)

where 〈X,Y〉 =
∑N−1

t=0 xtyt for any two vectors X and Y, and W̃x,j denotes the scale τj

wavelet coefficients for X and so forth. The contribution to the sample covariance due to

variations on a scale of τj is thus given by 1
N
〈W̃x,j,W̃y,j〉.

It should be noted that the MODWT of X yields J0 + 1 new vectors for a total of

(J0+1)×N values, which are J0×N more than we started with (this expansion is reminiscent

of the CWT, which starts with a function defined over the real axis and returns a ‘larger’

function in the sense of being defined both over the real axis and over all λ > 0). It is in fact

possible to define a DWT consisting of exactly the same number N of coefficients as there are

values in X. This version of the DWT can be obtained from the MODWT by rescaling and

shortening all of its J0 + 1 vectors. It could be called a decimated version of the MODWT,

but it is commonly called just ‘the DWT’ in the literature. Like the MODWT, this DWT

can also be used to define an MRA and to decompose the energy in a time series, but the

MODWT has some technical advantages that recommend its use for time series analyses such

as we describe in the next section. There are, however, important applications in which the

DWT would be the discrete transform of choice, including the compression, fast simulation

and approximate decorrelation of time series (see Percival and Walden 2000 for details).
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6 Wavelet Analysis of Vegetation Coverage Series

Let us now illustrate how the MODWT can be used to address the questions that we posed

about the vegetation coverage series in §2. Figures 5 and 6 shows MRAs for, respectively,

the time series of the boreal and tundra groups based upon a MODWT using the Haar

wavelet. Here we have set J0 = 4 so that we get four detail series D̃1, . . . D̃4 (associated with

changes in averages on scales of 1, 2, 4 and 8 years) and the smooth series S̃4 (associated

with averages over all scales greater than 8 years). If we let D̃j,t and S̃4,t represent the tth

elements of, respectively, D̃j and S̃4, and if we let xt represent the time series for either the

boreal or tundra group, we have

xt =
4∑
j=1

D̃j,t + S̃4,t

for all t, which is just an element-wise reexpression of Equation (6).

A study of these MRAs indicates that the variations at any given scale appear to be

homogeneous across time; i.e., there is little evidence that the statistical characteristics of

the series have changed much over the course of the twentieth century. The MRAs do point

out some localized features of potential interest. For example, the detail series D̃1 for the

boreal data (Figure 5) shows short stretches of decreased variability in the 1920s, 1960s and

1980s, indicating time spans over which there was relatively little year-to-year variability and

inviting us to seek a physical explanation. In retrospect, these features are evident in the

boreal time series itself (bottom plot of the figure) as portions of the series with relatively

smooth variations, but the MRA has nicely brought these to our attention. If we now turn

to the D̃2 series, we see enhanced fluctuations in the early 1940s, pointing out a time span

in which the boreal series tended to have similar values for groups of two years, but with

relatively large shifts between adjacent groups. Again this feature can be seen in X itself

once it has been pointed out to us by the MRA. The fact that the boreal smooth series S̃4 is
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relatively flat is consistent with the plot of X, which shows no obvious long term trends. On

the other hand, if we consider the corresponding tundra smooth series in Figure 6, we see

an overall long term decrease, with an acceleration over the last two decades. This pattern

is evident in the tundra series itself (plotted at the bottom of the figure), but the smooth

series in the MRA offers a nice visual summary of the overall decrease.

The MRAs for the boreal and tundra groups show a decrease in variability in the detail

series as the associated scale increases. We can quantify how much each scale contributions

to the overall variability in a given series via the wavelet variance, which is a population

version of the variance decomposition described by Equation (8). Figure 7 shows a plot of

unbiased MODWT-based wavelet variance estimates versus scales ranging from τ1 ∆ = 1 year

up to τ6 ∆ = 32 years for the four vegetation group time series (details about this estimator

are given in Percival and Walden 2000, Chapter 8). Each wavelet variance estimate is

denoted by an ‘o’, out of which vertical lines emanate above and below. These lines represent

95% confidence intervals for the theoretical wavelet variance. Note that the confidence

intervals associated with the largest scale of τ6 ∆ = 32 years encompass nearly four orders of

magnitude, a reflection of the fact that we really cannot expect to say much about changes

on a scale of 32 years with only 100 years of data.

The wavelet variance estimates in Figure 7 indicate that, for all four series, the dominant

contribution to the sample variance is due to variations at the smallest scale (one year).

Thus the year-to-year variations are more prominent than variations at other scales such as

a decade (this answers one of the questions we posed in §2). The rate of decay of the wavelet

variance versus scale is an indicator of the type of noise process that might be a good model

for the time series. A slope of −1 on a plot of the log of the wavelet variance versus the log

of the scale indicates that the time series might be well modeled by a white noise process or

by some other process that quickly decorrelates; i.e., any two distinct xt’s can be considered
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to be realizations of approximately uncorrelated random variables, with the approximation

rapidly improving as the distance in time between the xt’s increases. For reference, we have

drawn four thick lines with a slope of −1 below the wavelet variance estimates in Figure 7.

There are also thin lines drawn through the wavelet variance estimates themselves. These

represent weighted linear least squares fits to the log of the wavelet variance estimates versus

the log of the scale (Percival and Walden 2000, §9.5). A visual comparison of the thick and

thin lines indicates that, for all four series, the wavelet variance estimates decay at a slower

rate than what is consistent with a rapidly decorrelating process; however, when we take into

account the sampling variability associated with the estimated slopes, we cannot reject the

null hypothesis of white noise for the boreal, temperate and frost group series at a significance

level of 0.05, but we can do so for the tundra series. While the coverage of the frost group

is too small to merit much attention, the fact that this group and the boreal group have

similar rates of decay indicates that, apart from a marked difference in their overall variance,

their other statistical properties are quite similar (this addresses another question posed in

§2). That the time series for the tundra group is qualitatively different from those of the

other three groups is evident in Figure 1, where we can see that that this series has more

prominent large scale (or low frequency) fluctuations than the other series. In fact, the rate

of decay for the tundra group is consistent with what we would expect from a fractionally

differenced (FD) process with a long memory parameter δ = 0.3 (Granger and Joyeux 1980,

Hosking 1981). Details about FD processes are beyond the scope of this article, but suffice

it to say that their physical basis has some interesting implications, namely, that they do

not have a well-defined characteristic scale and that their correlation structure has certain

fractal-like properties (Beran 1994, Percival et al. 2001a). A study of the rate of decay of the

wavelet variance versus scale can give us considerable insight into the correlation structure

of a time series.
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Finally let us consider the relationship between the boreal and temperate time series.

If we compute the sample cross-correlation σ̂xy/(σ̂xσ̂y) between these series, we find that

it is −0.79; i.e., the two series are anticorrelated, which is consistent with the manner in

which they were constructed. Just as we used the MODWT coefficients to decompose the

sample variance across different scales, so can we use them to decompose the sample cross-

correlation across scales by making use of Equation (9). This decomposition is displayed

in Figure 8. We see that, while the two series are in fact anticorrelated to some degree at

all scales, the sample cross-correlation is mainly due to the two smallest scales (addition of

these two components yields 75% of the observed anticorrelation).

7 Summary and Discussion

Wavelets are mathematical tools that allow us to decompose a time series with respect to two

independent variables, namely, time and scale (they can also be used to decompose an image

with respect to location and extent). Both the continuous wavelet transform and the closely

related discrete wavelet transform can be interpreted in terms of differences between (possibly

weighted) temporally adjacent averages of portions of a time series. Both transforms have

two fundamental properties. The first is that, given the transform coefficients, we can

reconstruct the time series perfectly; moreover, in the case of the discrete wavelet transform,

this reconstruction leads to a multiresolution analysis in which the series is reexpressed as

the sum of a new set of time series (details and a smooth), each of which is associated with

variations at a particular scale. A multiresolution analysis can point out local features of

potential interest in a time series. For example, using this type of analysis, we were able to

identify certain decades in the series for the boreal group in which the year-to-year variations

were noticeably smaller than usual.

The second fundamental property is that the energy in a time series is preserved in its
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transform coefficients. This fact leads to a decomposition of the sample variance for a time

series into components that can be associated with different scales. This scale-based analysis

of variance can give us considerable insight into the correlation properties of a time series.

This type of analysis allowed us to note, e.g., that, while the boreal group series is much

more variable than the frost group series overall, they are both consistent with a white

noise hypothesis, implying that some of their other statistical properties are identical. As

a second example, this wavelet-based analysis pointed out that the tundra group series is

unique amongst the four series in having a significantly slower rate of decay of its scale-based

contributions to the sample variance as a function of scale. An extension of this technique

shows that a significant negative cross-correlation between the boreal and temperate time

series is due primarily to year-to-year variations.

This introduction to wavelets has been narrowly focused so that we could concentrate on

certain key concepts. There are many other uses for wavelets beyond what we have briefly

covered here in the study of time series and spatial data related to vegetation monitoring.

Here are three examples.

1. For some time series, use of wavelets centers around the fact that they can approxi-

mately decorrelate highly correlated time series, which in turn can be used to assess

the sampling properties of certain commonly used statistics (Percival et al. 2001b).

2. The time series that we have used here as examples are actually derived from a spatial

database of monthly surface air temperatures. Whereas our present analysis considers

temporal changes, we could also use wavelets to help us identify what regions are most

affected by these changes (this would complement the spatial analysis considered in

Wang and Overland 2004).

3. For spatial data collected in the form of images, the notion of a scale-based decom-
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position of variance leads to an analysis of texture, while there are also ways of using

wavelets to identify the boundaries (edges) between different types of vegetation (Mal-

lat 1999).

In these and other cases, the usefulness of wavelets is due to the fact that they allow a

localized and physically meaningful decomposition tied to the notion of differences between

adjacent averages over different scales.
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Figure Captions

Figure 1. Four vegetation time series based upon Köppen classification. Each series represents

the amount of area (measured in 106 km2) in the Arctic region covered during a given year by a

certain vegetation group (boreal, temperate, tundra and frost). There is one value for each year

from 1901 to 2000.

Figure 2. A wave (top plot) and three wavelets (bottom three plots). The wave is just a sine

function with a period of 2π. The wavelets are, from top to bottom, the Haar wavelet ψ(H)(·),

a wavelet ψ(fdG)(·) based upon the first derivative of the standard Gaussian (normal) probability

density function f(u) = 1√
2π
e−u

2/2 and the Mexican hat wavelet ψ(Mh)(·), which is based upon the

second derivative of f(·).

Figure 3. Product of the Haar wavelet ψ(H)(·) and a time series x(·).

Figure 4. Products of rescaled and relocated Haar wavelets and a time series x(·).

Figure 5. Multiresolution analysis (MRA) for time series of boreal group based upon the Haar

MODWT wavelet transform. The bottom-most curve shows the time series X itself, while the

other five curves show the components of the MRA. Four of these components are detail series,

denoted by D̃j , j = 1, 2, 3 and 4. The values in the vector D̃j represent the portion of X that is

attributable to changes of averages on a scale of 2j−1 years. The fifth component is the smooth

series S̃4, which is the portion of X attributable to averages on a scale of 16 years. An MRA is an

additive decomposition, so we have X =
∑4

j=1 D̃j + S̃4 exactly; i.e., the value in X for, e.g., the

year 1946 is equal to the sum of the five values in the four D̃j ’s and S̃4 for this same year. This

particular MRA employs reflection boundary conditions (Percival and Walden 2000, p. 140).

Figure 6. As in Figure 5, but now for time series of tundra group.

Figure 7. Haar MODWT wavelet variance estimates. In each plot the o’s indicate MODWT-

based unbiased estimates of the Haar wavelet variance for scales τj ∆ equal to 1, 2, 4, 8, 16 and 32
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years. The vertical lines emanating from the o’s give 95% confidence intervals for a corresponding

theoretical wavelet variance. The thin line through the o’s depicts a weighted regression fit to the

log of the wavelet variance estimates versus the log of the scale. Below the o’s on each plot is a

thick reference line with a slope of −1. This slope indicates the rate of decay we would expect

to have for a white noise process. When sampling variability is taken into account, the slopes for

the boreal, temperate and frost groups are not significantly different from −1, whereas that for the

tundra group is significantly greater. A slope exceeding −1 is indicative of a process possessing

‘long memory’ or certain fractal-like properties.

Figure 8. Scale-based decomposition of sample cross-correlation between boreal and temperate

group time series. The sample cross-correlation between these two time series is −0.79; i.e., the

boreal and temperate groups are anticorrelated. The o’s indicate the contribution to this cross-

correlation attributable to scales of 1, 2, 4 and 8 years, along with a composite of scales greater than

8 years. This scale-based decomposition says that the anticorrelation is mainly due to small scale

variations.
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Figure 1: Four vegetation time series based upon Köppen classification. Each series repre-

sents the amount of area (measured in 106 km2) in the Arctic region covered during a given

year by a certain vegetation group (boreal, temperate, tundra and frost). There is one value

for each year from 1901 to 2000.
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Figure 2: A wave (top plot) and three wavelets (bottom three plots). The wave is just a

sine function with a period of 2π. The wavelets are, from top to bottom, the Haar wavelet

ψ(H)(·), a wavelet ψ(fdG)(·) based upon the first derivative of the standard Gaussian (normal)

probability density function f(u) = 1√
2π
e−u

2/2 and the Mexican hat wavelet ψ(Mh)(·), which

is based upon the second derivative of f(·).
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Figure 3: Product of the Haar wavelet ψ(H)(·) and a time series x(·).
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Figure 5: Multiresolution analysis (MRA) for time series of boreal group based upon the

Haar MODWT wavelet transform. The bottom-most curve shows the time series X itself,

while the other five curves show the components of the MRA. Four of these components are

detail series, denoted by D̃j, j = 1, 2, 3 and 4. The values in the vector D̃j represent the

portion of X that is attributable to changes of averages on a scale of 2j−1 years. The fifth

component is the smooth series S̃4, which is the portion of X attributable to averages on

a scale of 16 years. An MRA is an additive decomposition, so we have X =
∑4

j=1 D̃j + S̃4

exactly; i.e., the value in X for, e.g., the year 1946 is equal to the sum of the five values in

the four D̃j’s and S̃4 for this same year. This particular MRA employs reflection boundary

conditions (Percival and Walden 2000, p. 140).
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Figure 6: As in Figure 5, but now for time series of tundra group.

31



  

  

  

  

  

  

  

  

        

     

o

o
o

o

o o

        

     

        

     

        

     

o
o

o
o

o
o

o

o

o
o

o
o

o
o

o o

o

o

boreal temperate tundra frost

101

100

10−1

10−2

10−3

10−4

wavelet
variance

(1012 km4)

100 100 100 100101 101 101 101

τj ∆ (years) τj ∆ (years) τj ∆ (years) τj ∆ (years)

Figure 7: Haar MODWT wavelet variance estimates. In each plot the o’s indicate MODWT-

based unbiased estimates of the Haar wavelet variance for scales τj ∆ equal to 1, 2, 4, 8, 16

and 32 years. The vertical lines emanating from the o’s give 95% confidence intervals for a

corresponding theoretical wavelet variance. The thin line through the o’s depicts a weighted

regression fit to the log of the wavelet variance estimates versus the log of the scale. Below

the o’s on each plot is a thick reference line with a slope of −1. This slope indicates the

rate of decay we would expect to have for a white noise process. When sampling variability

is taken into account, the slopes for the boreal, temperate and frost groups are not sig-

nificantly different from −1, whereas that for the tundra group is significantly greater. A

slope exceeding −1 is indicative of a process possessing ‘long memory’ or certain fractal-like

properties.
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Figure 8: Scale-based decomposition of sample cross-correlation between boreal and temper-

ate group time series. The sample cross-correlation between these two time series is −0.79;

i.e., the boreal and temperate groups are anticorrelated. The o’s indicate the contribution

to this cross-correlation attributable to scales of 1, 2, 4 and 8 years, along with a composite

of scales greater than 8 years. This scale-based decomposition says that the anticorrelation

is mainly due to small scale variations.
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