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Abstract

Time-varying fractionally differenced (TVFD) processes can serve as useful models for cer-

tain time series whose statistical properties evolve over time. The spectral density function

for a TVFD process obeys a power law whose exponent can be time dependent. In contrast

to locally stationary or locally self-similar processes, the power law exponent for a TVFD

process is not restricted to certain intervals, which is of practical importance for modeling

time series of, e.g., atmospheric turbulence. In this paper we construct a uniform repre-

sentation for Gaussian TVFD processes that allows the power law exponent to evolve in

an arbitrary manner. Even though this representation in general involves a time-dependent

linear combination of an infinite number of random variables from a Gaussian white noise

process, we demonstrate that simulations with exactly correct statistical properties can be

achieved based upon two well-known approaches, each of which involves a finite portion of

a white noise process. The first approach is based on the modified Cholesky decomposition,

and the second, on circulant embedding. For either approach, the resulting algorithm for

generating simulations of a TVFD process can be simply described as ‘cutting and pasting’

pieces of simulations from several different FD processes, all created from a single realization

of a white noise process. Use of these exact methods will ensure that Monte Carlo studies

of the statistical properties of estimators for TVFD processes are not adversely influenced

by imperfections arising from the use of approximate simulation methods.

Keywords: Circulant Embedding; Gaussian Process; Locally Self-Similar Process; Locally

Stationary Process; Power Law Process; Time Series Analysis



1 Introduction

Let {Xt : t ∈ Z
∗} be a discrete parameter Gaussian (i.e., normally distributed) stochastic

process with zero mean, where Z
∗ = {0, 1, 2, . . .} is the set of all nonnegative integers. We

say that {Xt} obeys a power law at low frequencies if it possesses a spectral density function

(SDF) SX(·) such that

lim
f→0

SX(f)

C|f |α = 1, (1)

where α can be any real-valued number, while C > 0; i.e., SX(f) ≈ C|f |α at low frequencies.

Well-known examples of such a process are fractional Gaussian noise, for which −1 < α < 1,

and discrete parameter fractional Brownian motion, for which −3 < α < −1 (Mandelbrot

and van Ness, 1968; Sinai, 1976; Flandrin, 1989; Beran, 1994). When α > −1, a process

satisfying Equation (1) is stationary; when α ≤ −1, the process is nonstationary, but its

backward difference of order d ≡ 
(1 − α)/2�, i.e.,

X
(d)
t ≡ (1 −B)dXt ≡

d∑
k=0

(
d

k

)
(−1)kXt−k, t ∈ Z

∗, (2)

is a stationary process. In the above, 
x� is the largest integer less than or equal to x; B is

the backward shift operator (hence (1−B)Xt = Xt −Xt−1, B
2Xt = Xt−2 and so forth); and

we take Xt to be zero when t ≤ −1. When −1 < α < 0, Equation (1) is a viable definition

for a stationary long memory process (Beran, 1994, p. 42).

Processes satisfying Equation (1) have proven to be useful as models for time series

collected in areas such as geophysics, oceanography, atmospheric science, astronomy, eco-

nomics and electrical engineering; however, they suffer from the limitation that their statis-

tical properties are invariant over time and hence cannot suitably describe certain physical

phenomena. Because of this limitation, there has been considerable recent interest in pro-

cesses that locally obey a power law; i.e., we assume that {Xt} possesses a time-varying
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SDF such that SXt(f) ≈ Ct|f |αt over a certain range of frequencies, where the level Ct and

the power law exponent αt are now allowed to change over time. Two processes that fit into

this framework are locally stationary processes (Priestley, 1965; Dahlhaus, 1996; Dahlhaus,

1997; Mallat et al., 1998; Carmona et al., 1998; Mallat, 1999) and locally self-similar pro-

cesses (Gonçalvès and Flandrin, 1993; Flandrin and Gonçalvès, 1994; Wang et al., 2001).

These two classes of processes have served as successful models for some time series, but

both have the disadvantage of restricting αt to be in a certain range; i.e., locally stationary

and locally self-similar processes require, respectively, αt > −1 and −3 < αt < −1 for all t.

These restrictions are not reasonable for certain time series. For example, in fitting locally

self-similar processes to a geophysical time series, Wang et al., 2001, obtained estimates of

αt outside of the allowable range (−3,−1) and commented that these estimates were not

compatible with the assumed model. In a recent analysis of an aerothermal turbulence time

series, Constantine et al., 2001, found evidence that αt varied between 0 and −2, a range

that cannot be fully achieved by either locally stationary or locally self-similar processes

alone.

To circumvent restricting the range of αt, we consider in this paper a time-varying

fractionally differenced (TVFD) process. Fractionally differenced (FD) processes were in-

troduced by Granger and Joyeux, 1980, and Hosking, 1981, and obey Equation (1) with

α allowed to be any real-valued number. Thus, in contrast to locally stationary or locally

self-similar processes, a TVFD process has no restrictions on αt. The definition of a TVFD

process generally involves a moving average of an infinite number of random variables (RVs)

from a Gaussian white noise process {εt} with zero mean and unit variance. Because it in-

volves an infinite sum, this definition cannot be directly used for generating exact realizations

from TVFD processes. We consider two equivalent formulations for a TVFD, both of which
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involve only a finite number of RVs from {εt}. Both formulations permit the generation of

exact realizations, thus ensuring that, if we conduct a Monte Carlo experiment to determine

the properties of a statistic formed from a TVFD process, our results will reflect the correct

properties of the statistic rather than inaccuracies in the simulation process (see Wood and

Chan, 1994, for further discussion on the meaning and importance of exact realizations).

The remainder of this paper is organized as follows. In §2 we review the definition of

an FD process, after which we define a TVFD process in §3 and consider two methods for

generating exact realizations from such a process (§3.1 and §3.2). We note in §3.3 that both

methods can be described very simply as ‘cutting and pasting’ together simulations from

different FD processes, each created from the same set of Gaussian white noise deviates.

We then give some examples of realizations from TVFD processes in §4, followed by some

concluding comments in §5.

2 Definition of Fractionally Differenced Processes

As before, let {Xt : t ∈ Z
∗} be a discrete parameter Gaussian stochastic process with zero

mean. We say that {Xt} is a stationary FD process if it has an SDF given by

SX(f) ≡ σ2
ε

[4 sin2(πf)]δ
, |f | ≤ 1

2
, (3)

where σ2
ε > 0 and δ < 1/2 are the FD parameters. The parameter δ determines the shape of

the SDF, while σ2
ε merely controls its level. Using the small angle approximation sin(x) ≈ x,

we see that

SX(f) ≈ σ2
ε

|2πf |2δ

at low frequencies, so an FD process obeys Equation (1) with α = −2δ. When δ = 0, we

have SX(f) = σ2
ε , which is the SDF for a white noise process. When δ = 0,−1,−2, . . ., the
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autocovariance sequence (ACVS) {sX,τ} for an FD process is given by

sX,τ = σ2
ε

sin(πδ)Γ(1 − 2δ)Γ(τ + δ)

πΓ(1 + τ − δ)
, τ ∈ Z, (4)

where Z is the set of all integers; when δ = 0,−1,−2, . . ., the ACVS is given by

sX,τ = σ2
ε

(−1)τΓ(1 − 2δ)

Γ(1 + τ − δ)Γ(1 − τ − δ)
, 0 ≤ |τ | ≤ −δ, (5)

whereas sX,τ = 0 for |τ | > −δ. For all δ < 1/2, we can write

sX,0 = σ2
ε

Γ(1 − 2δ)

Γ2(1 − δ)
, (6)

while the remainder terms of its ACVS can be computed using the recursion

sX,τ = sX,τ−1
τ + δ − 1

τ − δ
, τ = 1, 2, . . . (7)

(for negative lags τ , recall that sX,−τ = sX,τ ). For any δ < 1/2, the corresponding partial

autocorrelation sequence (PACS) is given by

φt,t ≡
δ

t− δ
, t ∈ Z

+, (8)

where Z
+ ≡ {1, 2, . . .} (the results above are discussed in Granger and Joyeux, 1980, for the

case −1 < δ < 1/2 and in Hosking, 1981, for the case −1/2 < δ < 1/2; see the appendix for

a discussion on the extension of these previous results to all δ < 1/2).

For δ ≥ 1/2 we say that {Xt : t ∈ Z
∗} is a nonstationary FD process if the dth order

backward difference {X(d)
t } of Equation (2) is a stationary FD process with parameter δ(s) ≡

δ−d, where d ≡ 
δ+1/2� ∈ Z
+, and −1/2 ≤ δ(s) < 1/2. Since the squared gain function for

a first order backward difference is given by 4 sin2(πf), we can use the theory of linear filters

to argue that the SDF for a nonstationary FD process is given by Equation (3) (Yaglom,

1958). In what follows, we make the further assumption that {Xt} can be expressed in terms
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of a stationary process {X(d)
t } via d successive cumulative summations; i.e., with X

(0)
t ≡ Xt

we can write

X
(k−1)
t ≡

t∑
l=0

X
(k)
l , k = d, d− 1, . . . , 1. (9)

For example, when d = 2, we start with the stationary FD process {X(2)
t } with parameter

δ(s) and cumulatively sum it to obtain {X(1)
t }, which in turn we sum to get the nonstationary

FD process {Xt} with parameter δ = δ(s) + 2:

X
(1)
t =

t∑
l=0

X
(2)
l and Xt =

t∑
l=0

X
(1)
l , t ∈ Z

∗. (10)

This manner of expressing {Xt} in terms of its associated stationary process {X(d)
t } is

consistent with Equation (2) if we recall that Xt is defined to be zero for all t ≤ −1.

3 Definition and Simulation of TVFD Processes

If {Xt : t ∈ Z
∗} is a stationary zero mean Gaussian FD process (i.e., δ < 1/2), we can

express the process as an infinite weighted moving average of a Gaussian white noise process

{εt : t ∈ Z} with zero mean and unit variance, namely,

Xt =
∞∑

k=0

σε
(−1)kΓ(1 − δ)

Γ(k + 1)Γ(1 − δ − k)
εt−k ≡ σε

∞∑
k=0

ak(δ)εt−k (11)

(Granger and Joyeux, 1980, and Hosking, 1981). By cumulatively summing a stationary FD

process an appropriate number of times, we can obtain a corresponding representation for a

nonstationary FD process; however, the weights in the moving average will now necessarily

depend on t. For example, suppose 1/2 ≤ δ < 3/2, and suppose we use δ(s) = δ − 1 in

place of δ on the right-hand side of Equation (11) to form the stationary FD process {X(1)
t }.

If we then cumulatively sum this process to form a nonstationary FD process {Xt} with
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parameter δ, we obtain

Xt =
t∑

l=0

X
(1)
l = σε

t∑
l=0

∞∑
k=0

ak(δ − 1)εl−k.

If we let

at,k(δ) ≡
k∑

l=max{0,k−t}
ak(δ − 1),

1

2
≤ δ <

3

2
,

we can now write

Xt = σε

∞∑
k=0

at,k(δ)εt−k. (12)

For FD processes with δ ≥ 3/2, we can obtain a representation similar to the above if

we define at,k(δ) appropriately. If we further define at,k(δ) = ak(δ) when δ < 1/2, then

Equation (12) gives us a representation for all FD processes.

We can define a time-varying FD process by allowing the parameters δ and σ2
ε in Equa-

tion (12) to change over time; i.e., we define such a process via

Xt(βt) ≡ σε,t

∞∑
k=0

at,k(δt)εt−k. (13)

where βt ≡ [δt, σ
2
ε,t]

T . If we make the restriction δt < 1/2 for all t, then {Xt(βt)} can

be an example of a locally stationary process (Whitcher and Jensen, 2000); if we require

1/2 < δt < 3/2 for all t, it can be an example of a locally self-similar process (Wang et al.,

2001).

Let us now turn to the question of how to generate a realization from a finite portion

X0(β0), X1(β1), . . . , XN−1(βN−1) of a TVFD process. Direct use of Equation (13) poses a

problem because of the infinite summation. One strategy would be to truncate the summa-

tion to, say, M terms, yielding

Xt(βt) ≈ σε,t

M−1∑
k=0

at,k(δt)εt−k;
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however, it is unclear what choice of M yields a sufficiently accurate approximation (this

is particularly true when δt is slightly less than 1/2 because of the slow decay of the

weights). Rather than seeking an approximation based upon Equation (13), we instead

consider two well-known alternative schemes that allow us to generate exact realizations.

Both schemes are based upon forming linear combinations of a finite number of RVs from

a white noise process such that the resulting RVs have the same multivariate distribution

as X0(β0), X1(β1), . . . , XN−1(βN−1). The first scheme is based on a modified Cholesky

decomposition (§3.1) and yields RVs of the form

σε,t

t∑
k=0

bt,k(δt)εk, t = 0, 1, . . . , N − 1;

the second is a circulant embedding scheme (§3.2) and yields

σε,t

2N−1∑
k=0

ct,k(δt)εk, t = 0, 1, . . . , N − 1.

3.1 Modified Cholesky Decomposition Approach

Let us first review the use of the modified Cholesky decomposition for generating a time series

of length N that can be regarded as a realization from a portion X ≡ [X0, X1, . . . , XN−1]
T

of a stationary FD process with parameters δ < 1/2 and σ2
ε > 0 (Hosking, 1984). Given the

PACS of Equation (8), we can recursively compute

φt,k ≡ φt−1,k − φt,tφt−1,t−k for t = 2, . . . , N − 1 and k = 1, . . . , t− 1.

The coefficients {φt,k : k = 1, . . . , t} can be used to form the best linear predictor X̂t of Xt,

given Xt−1, . . . , X0; i.e., the predictor

X̂t ≡
t∑

k=1

φt,kXt−k, t = 1, . . . , N − 1,
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is such that the mean squared prediction error σ2
t ≡ E{(Xt − X̂t)

2} is minimized over all

possible linear combinations of Xt−1, . . . , X0. Define an N × N lower triangular matrix

L−1 whose first row (indexed by k = 0) is given by [1, 0, . . . , 0], while the remaining rows

k = 1, . . . , N − 1 are given by

[ − φk,k,−φk,k−1, . . . ,−φk,1, 1, 0, . . . , 0︸ ︷︷ ︸
N−1−k zeros

].

The matrix L−1 is taken to be the inverse of the matrix L, which itself must also be lower

triangular. Note that multiplication of the tth row of L−1 times X yields Xt − X̂t, i.e,

the prediction error (when t = 0, we define X̂0 ≡ 0). We can express the mean squared

prediction error σ2
t as σ2

εγ
2
t , where

γ2
t ≡ Γ(1 − 2δ)

Γ2(1 − δ)

t∏
n=1

(1 − φ2
n,n) for t = 0, . . . , N − 1

(when t = 0, we interpret the product in the above to be unity). Define D to be an N ×N

diagonal matrix whose diagonal elements are γ2
0 , γ

2
1 , . . . , γ

2
N−1. The vector of prediction errors

L−1X is multivariate Gaussian with a mean vector of zeros and with a covariance matrix

given by σ2
εD; i.e., the prediction errors are pairwise uncorrelated, but are not identically

distributed since they have different variances σ2
εγ

2
t . If we let εN ≡ [ε0, ε1, . . . , εN−1]

T be an

N dimensional vector containing N independent and identically distributed Gaussian RVs

with zero mean and unit variance and if we let D1/2 denote the matrix whose elements are

the square roots of the corresponding elements of D so that D1/2D1/2 = D, then σεD
1/2εN

d=

L−1X, and hence σεLD
1/2εN

d= X, where ‘ d=’ stands for ‘has the same distribution as.’ We

can thus use σεLD
1/2εN to generate a portion of a realization from a stationary FD process

using just N RVs from a white noise process despite the fact that the representation for Xt

in Equation (11) formally involves an infinite number of white noise RVs.

Let Lt,k denote the (t, k)th element of L. Because L is lower triangular, the element Lt,k
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must be zero outside of the choice of indices t = 0, . . . , N − 1 and k = 0, . . . , t. We can thus

write

Xt
d= σε

t∑
k=0

bt,k(δ)εk, t = 0, 1, . . . , N − 1, (14)

where

bt,k(δ) ≡ Lt,kγk for δ < 1/2. (15)

Note that the above depends on the tth row of L, say, rT
t . We can obtain this row by solving

the equation L−T rt = it, where L−T denotes the transpose of L−1, and it is a vector, all of

whose elements are zero except for the tth element, whose value is one. Since L−T is upper

triangular, we can efficiently solve for rt using a back substitution scheme (see, e.g., §2.3 of

Press et al., 1992).

Let us now turn to the case of a nonstationary FD process {Xt} with parameters 1/2 ≤

δ < 3/2 and σ2
ε . By definition, the first difference X

(1)
t = Xt − Xt−1 of this process yields

a stationary FD process with parameters δ − 1 and σ2
ε . We can thus simulate a portion of

{Xt} by cumulatively summing {X(1)
t } as per Equation (9):

Xt =
t∑

l=0

X
(1)
l , t = 0, 1, . . . , N − 1.

Since X
(1)
t has the same distribution as the RV on the right-hand side of Equation (14) after

we replace δ with δ − 1, we obtain

Xt
d= σε

t∑
l=0

l∑
k=0

bl,k(δ − 1)εk ≡ σε

t∑
k=0

bt,k(δ)εk, (16)

where

bt,k(δ) ≡
t∑

j=k

bj,k(δ − 1) when 1/2 ≤ δ < 3/2. (17)

The important fact to note is that Equation (14) for the stationary case and Equation (16)

for the case of a nonstationary FD process with stationary first differences both involve a

finite linear combination of a sequence ε0, . . . , εt of independent standard Gaussian RVs.
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We can generalize this scheme to handle nonstationary FD processes with δ ≥ 3/2. Thus,

if Xt is an FD process with parameters 3/2 ≤ δ < 5/2 and σ2
ε , we can write

Xt =
t∑

l=0

X
(1)
l

d= σε

t∑
k=0

bt,k(δ)εk, where now X
(1)
t =

t∑
l=0

X
(2)
l ,

and

bt,k(δ) ≡
t∑

j=k

bj,k(δ − 1) for 3/2 ≤ δ < 5/2. (18)

Since 1/2 ≤ δ − 1 < 3/2, the weights in the right-hand side of the above can be computed

using Equation (17). Processes with δ ≥ 5/2 can be handled in an analogous manner.

We can now define a set of RVs that has the same distribution as a TVFD process

{Xt(βt)} with parameter vector βt = [δt, σ
2
ε,t]

T such that δt < 5/2 (this range for δt will

cover most cases of practical interest, but we can obviously extend the definition to expand

the upper range of δt if so desired). We have

Xt(βt)
d= σε,t

t∑
k=0

bt,k(δt)εk, (19)

where bt,k(δt) is defined as in Equations (15), (17) or (18) when, respectively, δt < 1/2,

1/2 ≤ δt < 3/2 or 3/2 ≤ δt < 5/2.

3.2 Circulant Embedding Approach

Let us now review the circulant embedding scheme for generating a realization from a portion

X of a stationary FD process with parameters −1 ≤ δ < 1/2 and σ2
ε > 0 (Davies and Harte,

1987; Wood and Chan, 1994; Dietrich and Newsam, 1997; Chilès and Delfiner, 1999). First,

we use Equation (6) with σ2
ε replaced by unity and then Equation (7) to generate an ACVS

{sX,τ} out to lag τ = N . Second, we compute the real-valued sequence

Sk ≡
N∑

τ=0

sX,τe
−i2πfkτ +

2N−1∑
τ=N+1

sX,2N−τe
−i2πfkτ , k = 0, 1, . . . , N, (20)
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where fk ≡ k/(2N). Note that the above can be obtained from the discrete Fourier transform

(DFT) of the following sequence of length 2N :

sX,0, sX,1, . . . , sX,N−2, sX,N−1, sX,N , sX,N−1, sX,N−2, . . . , sX,1.

In order for the circulant embedding approach to work, it is required that Sk be nonnegative

for k = 0, 1, . . . , N . Results in Gneiting, 1998, and Craigmile, 2002, show that this is true

for FD processes such that −1/2 ≤ δ < 1/2. Lemma 4.2 in Craigmile, 2002, can easily

be extended to handle −1 ≤ δ < −1/2 by noting that Equations (6) and (7) hold for all

δ. For δ < −1, some of the Sk can be negative. For example, when N = 2, we have

S0 ∝ 2(1 + δ)/[(1− δ)(2− δ)], which is negative for all δ < −1. Third, let ε0, . . . , ε2N−1 be a

set of 2N independent standard Gaussian RVs, and construct the following complex-valued

sequence:

Yk ≡



σεε0
√

2NS0, k = 0;

σε(ε2k−1 + iε2k)
√
NSk, 1 ≤ k < N ;

σεε2N−1

√
2NSN , k = N ;

Y∗
2N−k, N < k ≤ 2N − 1;

(here the asterisk denotes complex conjugation). Finally, we use the inverse DFT to con-

struct the real-valued sequence

Yt =
1

2N

2N−1∑
k=0

Yke
i2πfkt, t = 0, . . . , 2N − 1.

We now have

[Y0, Y1, . . . , YN−1]
T d= X;

i.e., we can regard a realization from the first N values of the Yt sequence to be a realization

from a portion of an FD process.
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Let Y , Y and ε be vectors of dimension 2N containing, respectively, the Yk, Yt and

εk sequences. We can then write Y = σεG(δ)ε, where G(δ) is a 2N × 2N complex-valued

matrix that depends just upon δ through Sk. Let F be a 2N × 2N complex-valued matrix

expressing the inverse DFT so that Y = FY . Since Y and ε are real-valued, we have both

Y = σεFG(δ)ε and Y = σεF
∗G∗(δ)ε, where F ∗ is the matrix whose values are the complex

conjugates of the corresponding elements in F , and G∗(δ) is similarly defined. We can thus

write

Y = σεC(δ)ε, where C(δ) ≡ FG(δ) + F ∗G∗(δ)

2
,

and C(δ) is necessarily real-valued. If we let ct,k(δ) denote the (t, k)th element of C(δ), then

we have

Xt
d= σε

2N−1∑
k=0

ct,k(δ)εk. (21)

The equation above is analogous to Equation (14), which is the key to using the modified

Cholesky decomposition to simulate stationary FD processes. In order to handle nonstation-

ary FD processes with the circulant embedding approach, we can use the same construction

as in the case of the modified Cholesky decomposition; i.e., we need only create a certain

number of cumulative sums of an appropriate stationary FD process. With appropriate

definitions for ct,k(δ) when δ > 1/2, this construction expands the range of δ over which

Equation (21) holds. The extension to TVFD processes is based upon

Xt(βt)
d= σε,t

2N−1∑
k=0

ct,k(δt)εk, (22)

which is the analog of Equation (19).
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3.3 ‘Cut and Paste’ Interpretation of Simulation Methods

The simulation of a TVFD process via either the modified Cholesky decomposition or circu-

lant embedding techniques can be accomplished by ‘cutting and pasting’ simulations from

several different FD processes. Let us focus on the circulant embedding approach, although

a similar argument can be made for the modified Cholesky decomposition method. To illus-

trate, we use Equation (22) with σε,t set to unity to generate a particular realization from a

TVFD process, namely,

xt(δt) ≡
2N−1∑
k=0

ct,k(δt)ek, t = 0, . . . , N − 1,

where the e0, . . . , e2N−1 represent a single realization from a Gaussian white noise process

with zero mean and unit variance. Let us assume that δt takes on J different values, δ(j),

j = 0, . . . , J − 1, where necessarily 1 ≤ J ≤ N . Suppose we generate

xt(δ
(j)) ≡

2N−1∑
k=0

ct,k(δ
(j))ek, t = 0, . . . , N − 1,

for j = 0, . . . , J−1. Then the simulated series {xt(δ
(j))} is a realization from an FD process

with parameter δ = δ(j). Let Ij, j = 0, . . . , J − 1, be the set of indices t such that δt = δ(j)

(note that these sets are disjoint and that their union is {0, 1, . . . , N − 1}). To construct

xt(δt), we need only ‘cut’ the values xt(δ
(j)), t ∈ Ij, from the jth simulated FD process and

then ‘paste’ all J sets of such cuts together; i.e., xt(δ
(j)) becomes xt(δt) for t ∈ Ij. To handle

the more general case where σε,t is not always unity, we only need multiply xt(δ
(j)) by σε,t

prior to pasting the series together.

4 Examples

Four examples of typical realizations from TVFD processes are shown in Figure 1. Each

simulated series is of length N = 1024 and was constructed using the circulant embedding
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method (comparable realizations can be obtained using the modified Cholesky decomposi-

tion). For a series of this length, this method requires 2048 independent deviates from a

standard Gaussian distribution. All four time series shown in the figure were created using

the same set of 2048 deviates.

Each plot in Figure 1 consists of two panels. The upper panel shows how δt was varied

from t = 0 to 1023. In example (a) in the upper left-hand plot, we varied δt linearly from

0 up to 0.4 so that it is always contained in the stationary range for an FD process (i.e.,

δ < 0.5). The plot in the lower panel clearly shows the spectral properties of the process

evolving with time. This series is comparable to a realization from a locally stationary

process.

In example (b), we set δt = 0.48 for the first half of the series and δt = 0.52 for the second

half. Since the boundary between the stationary and nonstationary FD processes occurs at

δ = 0.5, this series starts out as stationary but then transitions into a nonstationary FD

process with stationary first differences. Visually, there is little difference in the properties of

the process before and after the mid-point of the series. This demonstrates that realizations

of short segments from FD processes near the stationary/nonstationary boundary are quali-

tatively similar. This example was created by simulating one FD process with δ = 0.48 and

a second with δ = 0.52 using the same 2048 independent standard Gaussian deviates, after

which the first 512 simulated deviates from the first simulation were pasted together with

the last 512 simulated deviates from the second simulation. Because of its transition across

stationary/nonstationary boundary, this series cannot be considered to be a realization from

either a locally stationary or locally self-similar process.

In example (c), we set δt = 5/6 for the first half of the series and δt = 1 for the second half.

The associated power laws are α = −5/3 (corresponding to that of Kolmogorov turbulence)

14



and α = −2 (corresponding to that of a random walk or Brownian motion process). For

plotting purposes, we set σ2
ε = 0.16 here rather than using unity as in the three other

examples. This series is an example of a realization from a locally self-similar process.

For the final example (d), we varied δt according to a crude piecewise linear approximation

to variations observed in a set of aerothermal turbulence measurements (Constantine et al.,

2001). Here δt starts out in the stationary region, then evolves into a nonstationary region

that is intended to mimic Kolmogorov turbulence (i.e., δ = 5/6), after which it returns to

the stationary region.

5 Concluding Remarks

We have presented two exact schemes for simulating TVFD processes. Both schemes are

well known in the context of simulating stationary FD processes and can be readily extended

to simulate nonstationary FD processes via cumulative sums. Here we have shown that the

simple device of using the same set of Gaussian white noise deviates to create simulated

series with different values of δ and then ‘cutting and pasting’ the different simulations

together yields exact simulations of TVFD processes.

Although use of either scheme yields exact simulations of a TVFD process and thus

eliminates one source of potential error in Monte Carlo studies of, e.g., estimators of δt,

the two methods do have some strengths and weaknesses. First, while the scheme based

upon the modified Cholseky decomposition can handle any δ, the one based upon circulant

embedding requires δ ≥ −1. In our experience, this is not a serious limitation for the

circulant embedding method: the case δ < −1 corresponds to time series that are highly

antipersistent, which rarely arise in real-world processes. Second, if we ignore the effort

required to obtain the weights bt,k(δt) and ct,k(δt) (usually negligible when conducting a
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Monte Carlo study involving many simulated series from the same TVFD process), then the

computational burden of the modified Cholesky decomposition method is O(N2), whereas

the burden for the circulant embedding method is O(J ·N · log(N)), where J is the number

of distinct values assumed by δt. If J is small compared to N , then the circulant embedding

method is much faster to use; on the other hand, if J = N as in example (a) shown in

Figure 1, than the method based upon the modified Cholesky decomposition is faster to

use. Both methods are thus worth implementing.

Finally, we note that the discussion in §3 can be adapted to define many other classes of

processes with time-varying properties. For example, the right-hand side of Equation (11)

can be generalized easily to other parameterized weighted summations of white noise (e.g.,

autoregressive processes). If the parameters are allowed to vary over time, then we can

create exact simulations via the modified Cholesky decomposition approach (which will

always work) or the circulant embedding method (which will work subject to verification

that Sk ≥ 0 in Equation (20)).
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Figure 1: Four examples of time series simulated from TVFD processes. The upper panel in

each plot shows the sequence δt, t = 0, . . . , 1023, used to generate the simulated time series in

the lower panel. All four simulated series were created using the circulant embedding method

on the same set of 2048 independent deviates from a standard Gaussian distribution.
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Appendix

Granger and Joyeux, 1980, and Hosking, 1981, prove some basic results about the the ACVS

and PACS for stationary FD processes under the restriction that −1 < δ < 1/2. Here we

give a theorem and a remark that extend these results to all stationary FD processes (i.e.,

δ < 1/2).

Lemma 1: If {Xt} is any FD process with δ < 1/2 such that δ = 0,−1,−2, . . ., then its

ACVS is given by Equation (4).

Proof: The desired result follows if we can show that, for any nonnegative integer d, Equa-

tion (4) is true when δ ∈ [−1/2−d, 1/2−d), δ = −d. Granger and Joyeux, 1980, established

that this equation is true for −1 < δ < 1/2, δ = 0, so the result holds for d = 0. We claim

that, if the result is true for some d ≥ 0, then it must be true for d + 1 also, which would

establish the lemma by induction. To see that this claim is true, suppose {Yt} is an FD

process with −1/2 − d ≤ δ′ < 1/2 − d, δ′ = −d, and let Xt ≡ Yt − Yt−1. Then {Xt} is an

FD process with δ ≡ δ′ − 1. i.e., −1/2 − (d + 1) ≤ δ < 1/2 − (d + 1), δ = −(d + 1). The

ACVS {sX,τ} of {Xt} is related to the ACVS {sY,τ} of {Yt} as follows:

sX,τ = cov {Xt, Xt−τ} = cov {Yt − Yt−1, Yt−τ − Yt−τ−1} = 2sY,τ − sY,τ+1 − sY,τ−1.

Using the induction hypothesis, Equation (4) and δ′ = δ + 1, we have

sX,τ = −σ2
ε sin(πδ)Γ(−1 − 2δ)

π

(
2Γ(τ + δ + 1)

Γ(τ − δ)
− Γ(τ + 2 + δ)

Γ(τ + 1 − δ)
− Γ(τ + δ)

Γ(τ − 1 − δ)

)
.

Use of the relationship Γ(x + 1) = xΓ(x) along with some algebra shows that the above

reduces to Equation (4), thus establishing the lemma.

Lemma 2: If {Xt} is an FD process with parameters δ = −d and σ2
ε > 0, where d is any

nonnegative integer, then the nonzero portion of its ACVS {sX,τ} is given by Equation (5).
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Proof: When δ = 0, an FD process reduces to a white noise process {σεεt} with mean zero

and variance σ2
ε , for which sX,0 = σ2

ε and sX,τ = 0 for τ = 0, so the lemma holds in this case.

If δ = −d for some positive integer d, the FD process is the dth order backward difference

of {σεεt}:

Xt = σε(1 −B)dεt = σε

d∑
k=0

(
d

k

)
(−1)kεt−k.

For τ > d, we have sX,τ = 0; on the other hand, when 0 ≤ τ ≤ d, the ACVS is given by

sX,τ = σ2
ε

d∑
j=0

d∑
k=0

(
d

j

)(
d

k

)
(−1)j(−1)kE{εt−jεt+τ−k} = σ2

ε (−1)τ
d−τ∑
j=0

(
d

j

)(
d

τ + j

)
.

Equation 2 of §0.156, Gradshteyn and Ryzhik, 1980, shows that the right-hand side reduces

to Equation (5), as required.

Theorem: If {Xt} is an FD process with δ < 1/2, then its ACVS {sX,τ} is given by

Equations (6) and (7).

Proof: Suppose first that δ is not an integer. Then Equation (4) holds, which reduces to

Equation (6) when τ = 0. Use of Equation (4) and the relationship Γ(x+1) = xΓ(x) readily

give Equation (7).

Now suppose that δ = −d, where d is a nonnegative integer. Then Equation (5) holds.

Letting τ = 0 yields

sX,0 = σ2
ε

(
2d

d

)
= σ2

ε

Γ(1 + 2d)

Γ2(1 + d)
= σ2

ε

Γ(1 − 2δ)

Γ2(1 − δ)
,

which is in agreement with Equation (6). Since sX,τ = 0 when 1 ≤ τ ≤ d, we can write

sX,τ

sX,τ−1

= −(d− τ + 1)!(d + τ − 1)!

(d− τ)!(d + τ)!
=

τ − d− 1

τ + d
=

τ − δ − 1

τ − δ
,

which is in agreement with Equation (7). Finally, when τ = d + 1, this equation yields

sX,d+1 = sX,d
d + 1 + δ − 1

τ − δ
= 0.
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When τ > d+ 1, use of Equation (7) correctly yields sX,τ = 0, as required. This establishes

the theorem.

Remark: When {Xt} is an FD process with −1/2 < δ < 1/2, Hosking, 1981, established

that its PACS {φt,t} is given by Equation (8) using a proof by induction. Based upon the

fact that Equations (4) and (5) give the ACVSs for all stationary FD processes, it is possible

to use his proof to establish Equation (8) for all δ < 1/2,
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