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Extraction of tsunami source parameters via inversion of
DART r© buoy data
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Abstract The ability to accurately forecast potential hazards posed to coastal com-
munities by tsunamis generated seismically in both the near and far field requires
knowledge of so-called source parameters, from which the strength of a tsunami can be
deduced. Seismic information alone can be used to set the source parameters, but the
values so derived reflect the dynamics of movement at or below the seabed and hence
might not accurately describe how this motion is manifested in the overlaying water
column. We describe here a method for refining source parameter estimates based on
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seismic information by making use of data from Deep-ocean Assessment and Reporting
of Tsunamis (DART r©) buoys. The method involves using this data to adjust precom-
puted models via an inversion algorithm so that residuals between the adjusted models
and the DART r© data are as small as possible in a least squares sense. The inversion
algorithm is statistically based and hence has the ability to assess uncertainty in the
estimated source parameters. We describe this inversion algorithm in detail and apply
it to the November 2006 Kurl Islands event as a case study.

Keywords Tsunami forecasting · Tsunami source estimation · DART r© data
inversion · 2006 Kuril Islands tsunami

1 Introduction

Tsunamis have been recognized as a potential hazard to United States coastal commu-
nities since the mid-twentieth century when multiple destructive tsunamis caused dam-
age to the states of Hawaii, Alaska, California, Oregon, and Washington. The National
Oceanic and Atmospheric Administration (NOAA) responded to these disasters with
the establishment of two Tsunami Warning Centers responsible for providing warnings
to the United States and her territories. In addition, the agency assumed the leadership
role in the area of tsunami observations and research and has been measuring tsunamis
in the deep ocean for many decades. The scale of destruction and unprecedented loss of
life following the December 2004 Sumatra tsunami prompted a strengthening of efforts
to address the threats posed by tsunamis, and, on 20 December 2006, the United States
Congress passed the “Tsunami Warning and Education Act.” Central to the goal of
protecting United States coastlines is a “tsunami forecasting capability based on mod-
els and measurements, including tsunami inundation models and maps . . . .” To meet
this congressionally mandated forecasting capability, the NOAA Center for Tsunami
Research has developed the Short-term Inundation Forecast for Tsunamis (SIFT) ap-
plication (Gica et al. 2009; Titov 2009). This application is designed to rapidly and
efficiently forecast tsunami heights at specific coastal communities.

At each community, estimates of tsunami wave arrival time and amplitude are pro-
vided by combining real-time tsunami event data with numerical models. Several key
components are integrated within SIFT: deep-ocean observations of tsunamis collected
in real-time, a basin-wide pre-computed propagation database of water level and flow
velocities based on potential seismic unit sources, an inversion algorithm to estimate
parameters associated with unit sources based upon the deep-ocean observations, and
high-resolution tsunami forecast models developed for specific at-risk coastal commu-
nities. As a tsunami wave propagates across the open ocean, Deep-ocean Assessment
and Reporting of Tsunamis (DART r©) buoys observe the passage of the wave and relay
data related to its arrival time and amplitude in real or near-real time for use with
SIFT. The SIFT application uses the reported observations to refine an initial assess-
ment of the magnitude of the tsunami that is based purely on seismic information. The
refinement is done by comparing observations from the DART r© buoys to models in
the pre-computed propagation database via an inversion algorithm.

In this article we focus on the inversion algorithm that combines data from DART r©

buoys with precomputed models, yielding refined estimates of the source parameters.
We begin with an overview of the SIFT application (Section 2), after which we describe
the data collected by the DART r© buoys (Section 3). We then discuss the precomputed
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models for the DART r© data in Section 4 in preparation for a detailed description of
the inversion algorithm in Section 5, which also includes an illustration of the use of
the algorithm on the 15 November 2006 Kuril Islands event. The inversion algorithm
is based upon a statistical model, and hence we are able to assess the uncertainty in
the resulting source parameter estimates. In Section 6 we use the parameter estimates
and their associated uncertainties to compare the strength of the tsunami as assessed
by source parameters set using seismic information and by those estimated using the
inversion algorithm. We conclude the main body of the paper with a discussion of
potential extensions and refinements to the SIFT application in Section 7 and with
our conclusions in Section 8 (Appendix A gives some technical details on assessing the
uncertainty in the estimated source parameters).

2 Short-term Inundation Forecast for Tsunamis (SIFT)

The SIFT application exploits the fact that the ocean acts as a low-pass filter, allowing
long-period phenomenon such as tsunamis to be detected by measurement of pressure
at a fixed point on the seafloor (Meinig et al. 2005). The strategy behind SIFT is to
assess the potential effect of a tsunami by combining pressure measurements collected
in real time with models, thus refining an initial assessment based purely on seismic
data available soon after an earthquake. SIFT is an operational system that must
provide its assessments in a timely manner. Given that computations concerning wave
generation, propagation, and inundation must be done under time constraints, SIFT
makes use of a pre-computed propagation database containing water elevations and
flow velocities that are generated by standardized earthquakes located within “unit
sources,” which are strategically placed along ocean basin subduction zones (Gica et
al. 2010). Within SIFT, model time series are extracted from the numerical solution to
the propagation of tsunami waves throughout the ocean basin as generated at the unit
sources. Dynamics of these tsunami waves in the open ocean allow them to be linearly
combined to mimic observed data.

An inversion algorithm is used to extract source parameters that adjust the am-
plitudes of the pre-computed models from each unit source using deep-ocean measure-
ments collected by DART r© buoys. These parameters, once determined by the inversion
algorithm, provide the boundary conditions under which previously developed inun-
dation models are run to provide forecasts of incoming tsunami waves at threatened
coastal communities. These models are run independent of one another in real-time
while a tsunami is propagating across the open ocean. The models provide an estimate
of wave arrival time, wave height, and inundation following tsunami generation. Each
inundation model has been designed and tested against historical events to perform
under very stringent time constraints, given that time is generally the single limit-
ing factor in saving lives and property. A total of seventy-five community inundation
models are scheduled for completion at the end of federal fiscal year 2012.

3 Bottom pressure measurements from DART r© buoys

A DART r© buoy actually consists of two separate units, namely, a surface buoy and
a bottom unit with a pressure recorder. These units communicate with each other via
acoustic telemetry, and the surface buoy in turn communicates with the outside world
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via transmissions to a satellite. The bottom pressure recorder internally measures water
pressure integrated over nonoverlapping 15-sec time windows, so there are 60 × 4 =
240 measurements every hour. We associate each window with an integer-valued time
index n. For simplicity we adopt the convention that n = 0 corresponds to the 15-
sec time window during which a particular tsunami-generating earthquake of interest
commenced. The actual time associated with the nth time window is tn = a + n ∆ (in
hours), where a is a fixed offset, and ∆ = 1/240

.
= 0.004167 hours. In what follows, it is

convenient to set a = 0 so that tn is the elapsed time from the 15-sec window containing
the earthquake event. We denote the internal measurements by xn, where n < 0 (or
n > 0) is the index for a measurement recorded before (or after) the earthquake.

The internally recorded xn measurements only become fully available when the
bottom unit is lifted to the surface for servicing (about once every two years). Normally
the buoy operates in a monitoring mode in which the bottom unit packages together
one measurement every 15 minutes (a 60 fold reduction in data) over a 6-hour block
for transmission up to the surface buoy once every 6 hours. We refer to measurements
from this monitoring mode as the “15-min stream.” Let nl, l = −1,−2, . . ., represent
the indices associated with the portion of the 15-min stream that occurs just prior to
the n = 0 measurement (the measurement x0 itself might or might not be available).
Typically we have nl − nl−1 = 60, but this need not be true for all l due to data
drop-outs. Also note that n−1 itself need not be a multiple of 60 since the earthquake
can occur anywhere within the 15-min reporting cycle.

The bottom unit switches out of monitoring mode into a rapid reporting mode
either automatically if a seismic event is detected by a DART r© buoy or when forced
to do so by an operator at a tsunami warning center sending a signal via satellite
to the surface buoy, which then sends an initiating signal to the bottom unit. When
in rapid reporting mode, the bottom unit transmits to the surface buoy either a full
reporting of the 15-sec data (the “15-sec stream”) or a reporting of 1-min averages,
i.e., the average of four consecutive xn values (the “1-min stream”). The index for a
1-min average is the index associated with the most recent 15-sec time window used in
forming the average:

x̄nl =
1
4

3X

k=0

xnl−k.

Let nl, l = 0, 1, . . ., represent the indices associated with the data that are available
after (and possibly including) the n = 0 measurement. Ignoring the occurrence of drop-
outs, we have nl − nl−1 = 1 when dealing with just the 15-sec stream; by contrast,
if both x̄nl−1 and x̄nl are from the 1-min stream, then nl − nl−1 = 4. Currently the
inversion algorithm uses the 1-min stream primarily, but it can make use of additional
measurements from the 15-sec or 15-min streams when available and as needed.

Figure 1 shows an example of the 15-min and 1-min data streams as recorded by
DART r© buoy 21414 before and after the 15 November 2006 Kuril Islands earthquake.
Note that there is a gap between the two streams. This gap is due to drop-outs in the 15-
min stream, which disappeared temporarily more than an hour before the earthquake
and did not reappear again until more than 12 hours later (well after the tsunami had
passed by this buoy). Even if portions of the 15-min stream had not been lost, the data
available for use with the inversion algorithm during the critical time period following
the earthquake might well have been limited to what is shown in the figure due to
the fact that the 15-min stream is transmitted in 6-hour blocks once every 6 hours.
Thus, assuming that the last value shown in the figure for the 15-min stream was in a
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Fig. 1 Data from DART r© buoy 21414 recorded before and after 15 November 2006 Kuril
Islands earthquake. The black dots show the 15-min stream, while the black curve is the 1-min
stream. Time is in hours from the earthquake (a negative/positive time is before/after the
earthquake).

6-hour block transmitted soon after it was recorded, the portion of the 15-min stream
that would have filled in the gap would not have been scheduled for transmission until
almost 5 hours after the earthquake.

The data in Fig. 1 have a prominent tidal component that must be removed prior
to use of the inversion algorithm described in Section 5. Detiding must be done nearly
in real time and is not a simple matter. We have explored approaches based on har-
monic models, Kalman filtering/smoothing, empirical orthogonal functions and low-
order polynomial fits (Percival et al. 2010). In what follows, we assume that data xn

from the 15-sec or 15-min streams or data x̄n from the 1-min stream have been suit-
ably detided. We denote the detided data by dn and d̄n. (We detided the data using a
Kalman filter/smoother in all the examples presented below.)

4 Models for DART r© buoy data

The purpose of the inversion algorithm is to use models to estimate the tsunami source
strength and associated confidence limits from observed DART r© data. Formulation of
these models is discussed in detail in Titov et al. (1999) and Gica et al. (2008), from
which the following overview is extracted. Seventeen tsunami source regions are de-
fined along portions of the Pacific and Indian Oceans from which earthquake-generated
tsunamis are likely to occur (there are also source regions defined for the Atlantic Ocean
and Caribbean Sea). Each source region is divided up into a number of “unit sources.”
For example, the Aleutian-Alaska-Canada-Cascadia source region consists of 130 unit
sources, each of which has an area of 100× 50 km2 (see Fig. 3 below). A database has
been constructed containing precomputed adjustable models that predict what would
be observed at a given DART r© buoy from the beginning of an earthquake event and
onwards. This prediction is based under the assumption that the earthquake was lo-
cated in a particular unit source and was of moment magnitude MW = 7.5 from a
reverse thrust of appropriate strike, dip and depth (this corresponds to a coseismic slip
of 1 m along the fault in the down-dip direction with a rigidity of 4.0×1011 dynes/cm2;
Section 5.2 has more details about the unit sources). The fault movement is assumed
to be instantaneous and results in a vertical ground displacement, as computed by the



6

elastic model of Gusiakov (1978) and Okada (1985), that generates the tsunami for
the unit source. The database thus has a precomputed model for each pairing of a
particular buoy and particular unit source.

Each adjustable model was constructed with a 15-sec time step, but, to save space in
the database, was subsampled down to a discrete grid of times with a 1-min spacing.
In general, the times used in a precomputed model might or might not correspond
to the times at which the DART r© buoy data were actually collected relative to the
start of the earthquake. To facilitate matching the observed data with an adjustable
model, we use cubic splines to interpolate the model. Let g(t) represent the spline-
interpolated model at an arbitrary time t for a particular unit source and DART r©

buoy. The adjustable model value corresponding to a measurement xnl from that buoy
over a 15-sec time window associated with the elapsed time tnl is just g(tnl). A 1-min
average x̄nl consists of an average of xnl−3, xnl−2, xnl−1 and xnl , so its associated
adjustable model is an average of g(tnl−3), g(tnl−2), g(tnl−1) and g(tnl).
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Fig. 2 Adjustable model for DART r© buoy 21414 from an earthquake presumed to have
originated in unit source a12 in the Kamchatka–Kuril–Japan source region. The black dots
indicate the model values stored in the database at 1-min intervals. The black curve is a cubic-
spline interpolation of the model outside of the values in the database. The circles show the
spline-interpolated values at the times associated with the 1-min stream transmitted from the
buoy during the 15 November 2006 Kuril Islands tsunami event. Time is in hours since the
earthquake.

Figure 2 shows an example of a spline-interpolated adjustable model g(t) (black
curve), which is based upom values precomputed at 1-min intervals and stored in the
database (black dots). This model is for DART r© buoy 21414 for an earthquake orig-
inating from unit source a12, which is in the Kamchatka–Kuril–Japan source region
(see Fig. 3 below). During the 15 November 2006 Kuril Islands event, this buoy trans-
mitted a 1-min stream x̄nl at times tnl . These times did not coincide exactly with
those of the precomputed model. The circles in the plot show the spline-interpolated
values g(tnl) versus tnl , each of which would be the adjustable prediction for a single
(unavailable) 15-sec average xnl (the corresponding prediction for the available x̄nl

would be the average of g(tnl) and three values associated with times occurring 15, 30
and 45 seconds earlier). As the example shows, the cubic spline interpolation provides
accurate estimates of the model values at the times of the DART r© observations.
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5 Inversion algorithm for extracting source parameters

The purpose of the inversion algorithm is to use data collected by DART r© buoys
(after appropriate detiding) to estimate how large an earthquake-generated tsunami is.
As noted in the previous section, the inversion algorithm depends upon a database of
precomputed models. There is a model in the database for every pairing of a particular
unit source with a particular buoy. This model predicts what would be observed at
the buoy if an earthquake with a moment magnitude MW = 7.5 were to originate
from a selected unit source. The inversion algorithm adjusts the precomputed model
to account for the fact that an actual earthquake rarely has a magnitude exactly equal
to 7.5. The adjustment takes the form of a multiplicative factor, which we denote by
α and refer to as the source parameter. A value for the parameter α that is greater
than unity means that the earthquake has a magnitude greater than 7.5; conversely, a
value less than unity indicates an earthquake with a magnitude less than the standard
one. The inversion algorithm estimates α by matching the precomputed model and
the detided data from the buoy via a least squares procedure. As discussed below, the
algorithm takes into account the possibilities that the earthquake might be attributable
to more than just a single unit source (so that the adjustments take the form of a
vector α of multiplicative factors) and that more than one buoy might have collected
data relevant to a particular event. In Section 5.1 we present the inversion algorithm
under the simplifying assumptions that we know (1) the unit sources associated with
the earthquake and (2) the portions of the detided buoy data that are relevant for
assessing the tsunami event (we pay particular attention to assessing the effect of
sampling variability on our estimates of α). Proper selection of the unit sources and
of the relevant data is vital for getting good results from the inversion algorithm. We
discuss source selection in Section 5.2 and data selection in 5.3. (For earlier related
work on inversion algorithms, see Johnson et al. (1996) and Wei et al. (2003).)

5.1 Estimation of α and assessment of sampling variability

Suppose that we have selected one or more unit sources to explain the tsunami event
along with relevant subsets of the detided DART r© data. Let J ≥ 1 represent the
number of buoys whose data are to be used in the inversion algorithm, and let K ≥ 1
be the number of unit sources. Let dj be a column vector of length Nj that contains
the detided data from the jth buoy, where j = 1, . . . , J (this can consist of an arbitrary
mixture of data from the 15-min, 1-min and 15-sec streams). Let gj,k, k = 1, . . . , K, be
a vector of length Nj containing the adjustable model that predicts how the tsunami
from a moment magnitude MW = 7.5 earthquake from the kth unit source would be
recorded at the jth buoy. The overall model for the data from the jth buoy is taken
to be a linear combination of the models associated with the K unit sources; i.e., we
write

dj = α1gj,1 + · · · + αKgj,K + ej ,

where αk is the source parameter for the kth unit source, and ej is a vector of Nj

error terms that accounts for the mismatch between the idealized overall model and
the observed data. We can rewrite the above as

dj = Gjα + ej , (1)
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where Gj is an Nj ×K matrix whose kth column is gj,k, while α is a column vector
of length K containing α1, . . . , αK . The models for the data from the individual buoys
can be stacked together to form a model for the data from all the buoys, namely,

d = Gα + e, (2)

where d ≡
£
dT

1 , . . . ,dT
J

§T
is a column vector of length N ≡ N1 + · · · + NJ formed by

stacking the individual dj on top of one another (here and elsewhere, the superscript

“T” denotes the transpose of a vector or a matrix); G ≡
£
GT

1 , . . . , GT
J

§T
is an N ×

K matrix formed in a similar manner by stacking the Gj together; and e is an N -
dimensional column vector of errors whose nth element is en.

While the data d and their models G are known, the K source parameters in α are
not, so we need some way of determining them. Typically the amount of data N from
all the buoys is much greater than the number of unit sources K. Since there are more
equations N in (2) than unknowns K, we must resort to some additional criterion to
find an appropriate α. One reasonable – and time-honored – criterion is to find the
vector such that the sum of squares of the error terms is as small as possible; i.e., we
want α to be such that

kek2 = kd−Gαk2 is minimized, (3)

where kek is the Euclidean norm of the vector e:

kek2 =

NX

n=1

e2
n.

This least squares estimator, say α̂, is the solution to the so-called normal equations:

GT Gα = GT d. (4)

There are K equations and K unknowns in the above, so we can determine a unique
estimator α̂ for α as long as GT G can be inverted. Although GT G is typically invertible,
there is no guarantee that it is such, and numerical problems might prevent a routine
that banks upon invertibility from coming up with a stable solution. Because of these
considerations, we solve (4) using a singular value decomposition, which, when GT G
is invertible, yields a numerically stable α̂ and, when GT G has a rank lower than K,
leads to a solution corresponding to the application of the so-called Moore–Penrose
generalized inverse.

A potential complication with the solution to (4) is that the estimated α̂k in α̂
might be a mixture of positive and negative values. This introduces the possibility that
prominent random fluctuations in the data that cannot be handled by a model from
a single unit source are being matched by a combination of models with α̂k’s that
essentially cancel one another out, even though each |α̂k| might be large. A mixture of
positive and negative values for α̂k is difficult to reconcile with the physics of earthquake
generation. To prevent such a mixture, we can alter the least squares criterion such
that we seek α such that

kek2 = kd−Gαk2 is minimized subject to the constraints α ≥ 0, (5)

i.e., αk ≥ 0 for k = 1, . . . , K. This minimization problem is a special case of Prob-
lem 10.1.1 of Fletcher (1987), and the method we use to solve it is a variation of
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Algorithm 10.3.4 in that same reference. Nonnegativity constraints are appropriate for
the great majority of tsunamigenic earthquakes in subduction zones, which are the pri-
mary source of major trans-ocean tsunamis; however, exceptions do occur, as discussed
in Section 7.

The constrained least squares procedure can result in some α̂k being set to zero,
which in effect removes the corresponding unit sources from our model for the data. If
we were to entertain a reduced model made up of just the unit sources in our original
model for which α̂k > 0, the unconstrained least squares estimate for each unit source
in the reduced model will be identical to the corresponding constrained least squares
estimate in the original model. Accordingly, if need be, we redefine G by eliminating
any unit sources for which α̂k = 0 originally, and redefine K to be the number of
remaining unit sources. The end result of the constrained least squares procedure is
thus a model that can be fit using unconstrained least squares. The corresponding
fitted model is

d = Gα̂ + r, (6)

where α̂ > 0, and r contains the residuals, i.e., the observed errors r = d − Gα̂.
Conditional upon the selected model, these residuals can be examined to assess the
sampling variability in the estimates α̂ using statistical theory, the details of which
are given in Appendix A. Since α is of length K, this assessment takes the form of a
K×K covariance matrix Σ for α̂. The kth diagonal element of Σ gives us the variance
of α̂k, while the (k, l)th off-diagonal element is the covariance between α̂k and α̂l.

As an example, we consider the Kuril Islands event of 15 November 2006 (see
Horrollo et al., 2008, and Kowalik et al., 2008, for additional analyses of this event).
Portions of the data received from J = 11 buoys during the event are shown (after
detiding) as gray circles in the bottom panel of Fig. 3. The locations of the buoys are
shown in the upper panel. The displayed data for four of the buoys (21414, 46413,
46408 and 46402) were fit to a model involving K = 3 unit sources (denoted as a12,
a13 and a14 – the rectangles representing their locations are shaded in dark gray in the
insert in the upper panel). The curves in the bottom panel depict the fitted models at
all eleven buoys. The fitted models and data are in reasonably good agreement, which
demonstrates the efficacy of the procedure in modeling this event over a rather large
geographic area. The estimated source parameters and their covariance matrix are

α̂
.
=




5.88
4.23
2.29



 and Σ
.
=




0.188 0.137 0.165
0.137 0.253 0.256
0.165 0.256 0.597



 . (7)

The square roots of the diagonal elements of Σ give the standard errors of the corre-
sponding elements of α̂. We can form approximate 95% confidence intervals (CIs) for
the unknown source parameters α by multipling the standard errors by 1.96 and then
adding and subtracting the resulting products from the estimates α̂. This procedure
yields 95% CIs of [5.03, 6.73] for α1 (source a12), [3.25, 5.22] for α2 (a13) and [0.78, 3.81]
for α3 (a14). Note that none of these CIs traps zero. Had the kth such interval done
so, we would be unable to reject the null hypothesis that the unknown αk is equal to
zero at the 5% level of significance. Since the CIs indicate that none of the unknown
αk’s are likely to be zero, we can deem all three source parameters to be significantly
different from zero with level of significance of 0.05.

The results shown in Fig. 3 are based upon using data from the first four DART r©

buoys to observe the Kuril Islands event. Figure 4 shows the effect on the estimated
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Fig. 3 Locations (upper panel) of six unit sources (a12, a13, a14, b13, z13 and y13) in the
Kamchatka–Kuril–Japan (KKJ) source region and eleven DART r© buoys (21414, 46413, . . . ,
46412), along with detided data from these buoys (gray circles, lower panel) and fitted models
(solid curves) for the Kuril Islands event of 15 November 2006. The fitted models are based
upon unit sources a12, a13 and a14 and data from four buoys (21414, 46413, 46408 and 46402).
The unit sources b13, a13, z13 and y13 were selected using seismic information only, while a12,
a13 and a14 were selected through a trial-and-error process involving an examination of sums
of squares of residuals for various combinations of unit sources. Because the data for buoys
46419 and 46405 arrived at approximately the same time, the data and models for these have
been displaced displaced 5 cm upwards (for 46419) and downwards (for 46405). (Although
the earthquake emanated from the KKJ source region, ten of the eleven DART r© buoys were
positioned close to the Aleutian–Alaska–Canada–Cascadia source region. Additional buoys
have been deployed since 2006, some now close to the KKJ source region. The reader can go
to http://www.ndbc.noaa.gov/dart.shtml to see where buoys are currently deployed.)

source parameters caused by using a differing number of buoys. We start by using data
from the first buoy to see the tsunami event (21414) and then add in one buoy at a
time in the order dictated by the arrival times of the tsunami event. The estimated αk

are fairly stable across time, with the width of the 95% CIs decreasing markedly upon
addition of the next two buoys (46413 and 46408) and then gradually after that, up
until the addition of the last four buoys (46419, 46405, 46411 and 46412). The fact that
the CIs increase upon adding these final buoys can be traced to a misalignment in time
between the models and observed data, as is evident in the bottom panel of Fig. 3. For
a variety of reasons (including inadequate bottom depth (bathymetry) information,
assumed wave dynamics, limited spatial resolution in the model and issues related to
finite difference approximations to the equations of motion), any mismatch in propa-
gation time between actual and modeled tsunamis will tend to increase with distance
from the unit source. The recent deployment of addition DART r© buoys ensures that
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Fig. 4 Estimated source parameters α̂ and associated 95% confidence intervals (CIs) versus
number of buoys used in the least squares fit. The source parameters α̂1, α̂2 and α̂3 (corre-
sponding to unit sources a12, a13 and a14) are depicted by, respectively, open circles, solid
circles and open squares.

most earthquake-generated tsunamis will be observable with near-field buoys, thus re-
serving far-field buoys more for confirmatory use rather than actual determination of
the source parameters during a tsunami event, as we have done in this example. Fig-
ure 4 also suggests that use of two or three near-field buoys suffices to get good αk

estimates. Adding more buoys does not lead to a marked improvement in the statistical
properties of α̂k, so there is no operational need to wait for additional data to arrive
before proceeding with use of the estimated source parameters to drive inundation
models for coastal communities.

5.2 Selection of sources

Selection of the unit sources to be used in the inversion algorithm is an iterative process
commencing with preliminary estimates of the epicenter and moment magnitude MW

for an earthquake with the potential for generating a tsunami. These estimates are
provided by seismic networks and are available shortly after the occurrence of an earth-
quake and prior to the arrival of any relevant DART r© data. We use these estimates to
predetermine unit sources and their associated source parameters αk as follows. First,
we select K based upon the size of MW as indicated by Table 1. Second, we select
K unit sources using an algorithm that picks sources close to the epicenter, but in
a pattern suggested by studies of past events. Third, we equate expressions for the
seismic moment M0 (which depends upon the unitless MW ) and an inversion-derived
tsunami magnitude TM (which depends upon the coseismic slip Sk, measured in cm):

M0 = 101.5(MW +10.7) and TM = µLW

KX

k=1

Sk, (8)

where µ is the earth’s rigidity (taken to be 4.0 × 1011 dynes/cm2); L and W are the
length and width of each unit source measured in cm (the unit sources represent an
area of 100× 50 km2, so L = 107 cm and W = L/2); and both M0 and TM have units



12

criteria K

MW ≤ 7.8 1
7.8 < MW ≤ 8.1 2
8.1 < MW ≤ 8.3 4
8.3 < MW ≤ 8.5 6

MW > 8.5 8

Table 1 Initial determination of number K of unit sources contributing to an earthquake
event based solely on the moment magnitude MW .

of dynes · cm. If we assume S1 = S2 = · · · = SK and equate TM with M0, we obtain

Sk =
M0

µKLW
for all k. (9)

Finally, we set the dimensionless αk by dividing Sk by a reference value S0:

αk =
Sk

S0
. (10)

For the unit source dimensions and rigidity chosen above, a reference value of S0 =
100 cm corresponds to MW = 7.5.

As an example of this procedure, suppose we take the epicenter for the Kuril Islands
event to be 46.592◦ N and 153.266◦ E and MW to be 8.3, as is currently listed on a
USGS Web page [23]. Table 1 says to set K = 4, and the rule αk = Sk/S0 with
S0 = 100 cm in conjunction with Equation (9) yields αk

.
= 3.95 for k = 1, 2, 3 and

4. The epicenter of the earthquake is in unit source a13, and the algorithm picks b13,
z13 and y13 in addition to a13 as the four unit sources (see Fig. 3, where the epicenter
is indicated by an asterisk in the rectangle representing a13, with the rectangles for
b13, z13 and y13 being shaded in light gray). The solid curve in Fig. 5(a) shows the
resulting model for what would be observed at buoy 21414 (Fig. 3 shows the location
of this buoy). This model at time t takes the form

3.95
°
g1,1(t) + g1,2(t) + g1,3(t) + g1,4(t)

¢
,

where g1,k(t) is the spline-interpolated model for the kth unit source and buoy 21414
(indexed as j = 1). In principle this model would have been available soon after the
earthquake and prior to the arrival of the tsunami at any of the DART r© buoys. The
actual data recorded at buoy 21414 are indicated by circles and asterisks.

Once sufficient DART r© data become available, we can use the inversion algorithm
with the initial selection of unit sources to obtain estimates α̂ of the source parameters
– these estimates are refinements of the initial determination based on seismic infor-
mation alone. Because of the nonnegativity constraints, it is possible that some, say
K0, of the source parameters will be set to zero, so that only K − K0 unit sources
are retained in the model. An examination of the CIs for the remaining coefficients
might recommend dropping additional unit sources whose corresponding α̂k’s are not
significantly different from zero. The solid curve in Fig. 5(b) is the model that results
from using the subset of data from buoy 21414 (indicated by the gray circles in the
bottom panel of Fig. 3) to obtain the least squares estimates α̂k. Here K0 = 2 of the
coefficients were set to zero, thus eliminating unit sources z13 and y13 from the model,
while retaining b13 and a13; however, the 95% CIs for the αk’s corresponding to b13



13

************************************
*
*
*

**
*
**
****
*
*
*
**
*******

*
*
**

*
*
*
**

*
*

1.5 2.0 2.5 3.0

 

−4

−2

0

2

4

6

8

da
ta

 &
 m

od
el

s 
(c

m
) (a)

************************************
*
*
*

**
*
**
****
*
*
*
**
*******

*
*
**

*
*
*
**

*
*

1.5 2.0 2.5 3.0

hours since earthquake

(b)

************************************
*
*
*

**
*
**
****
*
*
*
**
*******

*
*
**

*
*
*
**

*
*

1.5 2.0 2.5 3.0

 

(c)

Fig. 5 Three models for 15 November 2006 Kuril Islands tsunami at the location for buoy
21414 (solid curves), along with actual observations (gray circles and asterisks). In plot (a),
the source parameters αk for the model are based on Equations (9) and (10), which require
knowledge of the epicenter and the moment magnitude of the earthquake; in plot (b), the same
unit sources are used as in (a), namely, b13, a13, z13 and y13, but the αk’s are now determined
by a least squares fit with nonnegativity constraints to the portion of the data observed at
buoy 21414 indicated by the circles; and in plot (c), a different set of unit sources is used,
namely, a12, a13 and a14, with the αk’s set in the same manner as for plot (b). The asterisks
in each plot indicate data observed at the buoy, but not used in the least squares fits.

and a13 indicate that neither coefficient is significantly different from zero. The match
between the models and the observed data is poor in both Fig. 5(a) and (b). By con-
trast, Fig. 5(c) shows that we can get a much better match with a different set of unit
sources, namely, a12, a13 and a14 (as used in Figs. 3 and 4). This set was selected by
trial and error from amongst all the units sources close to the epicenter. The interface
for the SIFT application is designed to make it easy for an operator to experiment with
various models by facilitating the addition (or removal) of unit sources.

5.3 Selection of data from buoys

The purpose of the inversion algorithm is to estimate the source parameters α, which
are part of the input needed to forecast the potential dangers of a tsunami to coastal
communities. Once we have an appropriate selection of unit sources, the inversion
algorithm estimates α based upon whatever selection of DART r© buoy data we hand
to it. It might seem obvious we would want to use as much data as possible since
statistical theory would seem to suggest that, as the amount of data increases, the
variability in α̂ should tend to decrease, leading to a better estimate of α. There are,
however, at least two reasons for entertaining smaller amounts of data. First, warnings
to coastal communities must be provided in a timely manner – there is no luxury during
a tsunami event of waiting for all possible relevant data to arrive from a DART r© buoy.
Second, empirical evidence suggests that models and data are not equally well matched
across time. The quality of the match is time-dependent, suggesting that we focus on
particular segments of the data for purposes of fitting the model. Here we illustrate
these points by considering the effect of data selection on the estimation of α for the
15 November 2006 Kuril Islands tsunami.

Figure 6(a) shows the detided data (as circles and asterisks) obtained from buoy
21414 during the Kuril Islands tsunami event. The (subjectively determined) beginning
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Fig. 6 Effect of estimating α using different segments of data. Plot (a) shows detided data
from buoy 21414 observed during the 15 November 2006 Kuril Islands event (circles and
asterisks, with the former indicating data comprising the first full wave), along with a fitted
model involving unit sources a12, a13 and a14 and the data indicated by the circles. The
curves in plot (b) shows the parameter estimates α̂ as we increase the amount of data that the
estimates are based upon by one data value at a time (the estimates for a12, a13 and a14 are
given by, respectively, the solid, dotted and dashed lines). The two vertical dotted lines in (a)
indicate the smallest segment of data used to estimate α (eleven data values in all) – these
estimates are indicated by the left-most portions of the curves in (b). The curve in plot (c)
shows the R2 statistic, which is the percentage of the sample variance of the data explained
by the model. The vertical dotted lines in plots (b) and (c) indicate the α̂ and R2 values
associated with the fit involving the first full wave.

of the event as observed at this buoy is indicated by the left-hand vertical dotted line.
The data increase monotonically for a while, but then start to decrease. The right-hand
line marks the time just following the crest of the first full tsunami wave (i.e., just after
the so-called quarter-wave point). The two vertical lines delineate eleven data values.
The left-most portions of the curves in Figs. 6(b) and 6(c) show results obtained by
using the inversion algorithm with these eleven values to fit a model based upon unit
sources a12, a13 and a14, while the remaining parts of the curves show what happens
when we increase the amount of data going into the algorithm one value at a time.
The solid curve in Fig. 6(b) indicates the estimate α̂1 for a12, whereas the dotted and
dashed curves show, respectively, the estimates α̂2 for a13 and α̂3 for a14. The curve in
Fig. 6(c) shows the so-called R2 statistic, which is the percentage of the sample variance
of the data explained by the model (this is the squared correlation – expressed as a
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percentage – between the observed data and the fitted model). As we keep giving the
algorithm one more data value to work with, the change in α̂ caused by addition of
a new value tends to become smaller, indicating that, after a certain point in time,
adding more data doesn’t drastically change α̂. The amount of variance explained
by the model is relatively stable at the beginning, after which it starts to decrease
markedly. The vertical dotted lines in Figs. 6(b) and 6(c) indicate the values for a fit
involving the entire first full wave, as determined subjectively from an examination of
the data (the circles in Fig. 6(a) denote this first full wave). Use of data from the first
full wave gives us estimates of α that do not differ markedly from those obtained with
more data, with an associated R2 statistic that is close to the maximum value.

This Kuril Islands tsunami event is one in which the very first wave is the largest
when observed at buoy 21414. This is because there is an unobstructed path for the
tsunami to propagate from the source of the event to this buoy (see Fig. 3). For this case,
we are thus better off just using the data up to the first complete wave to estimate
α since the data and the model disagree substantially beyond that point; i.e., the
explanatory power of the model decreases beyond the first complete wave observed at
the buoy. There are other situations in which later waves can be larger, in which case
it would be desirable to use a longer stretch of the data for estimating the parameters
α. The interface for the SIFT application makes it easy for an operator to select the
data to be used in the inversion algorithm.

6 Confidence limits for inversion-derived tsunami and moment magnitudes

The primary use for the estimated source parameters α̂ is to provide boundary condi-
tions for inundation models for coastal regions (Bernard et al. 2006; Bernard and Titov
2007; Tang et al. 2009). The α̂ can also be used for other purposes, one of which is to
provide a check that the size of the tsunami event is consistent with the moment mag-
nitude. This check is made by backing out an estimate of the moment magnitude from
α̂ and comparing it to the seismically determined MW , per the following procedure.

In view of Equations (8) and (10), a natural estimator of the inversion-derived
tsunami magnitude TM is

bTM = µLWS0

KX

k=1

α̂k.

Equating the seismic moment M0 with this tsunami magnitude in turn leads to an
estimator of the moment magnitude MW based on bTM :

bMW =
2
3

log10

°bTM

¢
− 10.7.

Standard least squares theory (Draper and Smith 1998) says that the variance of bTM

is given by
var{bTM} = µ2L2W 2S2

01
T Σ1,

where 1 is a vector of length K, all of whose elements are unity, while, as before, Σ is
the K ×K covariance matrix for α̂. A Taylor series expansion of log10(bTM ) about the
true TM leads to the approximation

var{ bMW } = log2
10(e)

4 var{bTM}
9T 2

M

.
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Substitution of bT 2
M for T 2

M in the denominator gives us a means of assessing the

sampling variability in bTM , which is needed to determine if any observed difference
between bMW and MW is statistically significant, given the sampling variability in
bMW . Assuming a normal distribution, we can express this variability in terms of an
approximate 95% confidence interval:

h
bMW − 1.96

√
var{ bMW }, bMW + 1.96

√
var{ bMW }

i
.

As an example, let us reconsider the 15 November 2006 Kuril Islands tsunami, for
which MW = 8.3. Using α̂ and Σ as given in Equation (7), we obtain bMW

.
= 8.23,

while the square root of var{ bMW } is 0.034. An approximate 95% CI is thus [8.16, 8.3],
which just barely traps the value MW = 8.3; however, if we also take into account
potential rounding error in the latter, there is little evidence that bMW is significantly
different from MW .

While the inversion-derived bMW and the seismically determined MW are consistent
in this example, in other cases bMW could be significantly smaller or larger than MW .
There are at least three explanations for the case bMW > MW . First, the initial estimate
of MW might have been low because it was based on too short a set of seismic waves
(e.g., slower – but more energetic – waves arrived after MW had been determined).
Second, a slowly rupturing earthquake can produce less energetic seismic waves for the
same vertical ground displacement that generates the tsunami, resulting in a tsunami
earthquake, as defined by Kanamori (1972; see Okal 2009). Third, a coseismic landslide
can occur that generates an additional tsunami near the earthquake. On the other hand,
if bMW < MW , a rare possibility is that MW was overestimated from a short set of
seismic waves, but a more likely explanation is that the earthquake mechanism (e.g.,
strike-slip) is different from the one assumed in SIFT (a reverse thrust fault event),
producing a smaller vertical ground displacement and hence a smaller tsunami. This
case is of practical importance because of the potential need to cancel an initial warning
that was issued based on the seismically determined MW .

7 Discussion

While the current version of the SIFT application is fully functional, here we discuss
some possible extensions to the software that might impact upcoming versions.

The SIFT application is capable of estimating tsunami source parameters in near
real time, but there is a need to provide operators with help in its use during a tsunami
event. As discussed above, two critical elements in successful use of the SIFT applica-
tion are choosing a set of appropriate unit sources and selecting appropriate subsets
of DART r© buoy data. Currently these choices depend upon experienced operators,
but, for operators with limited experience and as potential guidance for experienced
operators under time constraints during a tsunami event, it is desirable to look for
ways to automate the selection procedures. The problem of selecting unit sources is
closely related to the topic of variable selection in linear regression analysis, for which
there is a considerable literature that we can draw upon for ideas. Complicating factors
are the dynamic nature in which the data arrive, the potential desire to have spatially
coherent unit sources, the correlated nature of the errors and the possible interplay
between selecting unit sources and subsetting the DART r© data. The problem of se-
lecting appropriate subsets of DART r© buoy data is related to the topic of isolating
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transients, for which wavelets and other techniques for extracting a signal from a time
series with nonstationary behaviour can be looked to for guidance. How best to auto-
matically select unit sources and to subset the DART r© data are subjects of ongoing
research.

A complicating factor we have not discussed is contamination of the DART r© buoy
data from seismic noise. While the November 2006 Kuril Islands tsunami event and
many others are relatively free from such noise, there are cases where seismic noise
is co-located in time with the tsunami event itself in the DART r© data. How best to
eliminate this noise is also the subject of ongoing research.

Another complication is that a tsunami can arise from an earthquake whose epi-
center falls outside the set of all predefined unit sources. This happened with the 29
September 2009 Samoa event, which – after the event – prompted the addition of new
unit sources to the database. In such a case, the current strategy within SIFT is to pick
unit sources whose distance from the epicenter is as small as possible. For the Samoa
event, it was possible to get good fits to data from individual buoys using this strategy,
but not to data from combination of buoys. This occurrence points out the need for
a fail-safe option within the SIFT application for an operator to be able to set up
new unit sources on the fly. Currently implementation of this option faces substantial
technical challenges due to the amount of time needed to compute the models.

As discussed in Section 5.1, there is a need to impose nonnegativity constraints
on the estimated source parameters as per Equation (5). These constraints prevent
a mixture of positive and negative estimates, which would be difficult to interpret
physically. The assumption behind these constraints is a reverse thrust mechanism for
the earthquake, which is the most common occurrence for major subduction zones. An
earthquake can, however, be caused by a normal, or thrust, mechanism, for which we
would then want to entertain nonpositivity constraints; i.e., in contrast to Equation (5),
we now seek α such that

kek2 = kd−Gαk2 is minimized subject to the constraints α ≤ 0.

The SIFT application currently gives the operator the option of imposing nonnegativ-
ity, nonpositivity or no constraints, with nonnegativity constraints being the default.
It might be possible to provide guidance in selecting between nonnegativity and non-
positivity constraints from an analysis of the initial seismic waves from an earthquake,
but the feasibility of doing so needs further research.

The primary use for the source parameters that the inversion algorithm produces
is to provide initial conditions for models that forecast inundation in particular coastal
regions. Currently the forecasts of wave heights and runup in areas likely to be im-
pacted by a tsunami do not take into account the uncertainty in the source parameter
estimates. Research is needed to determine how this uncertainty impacts these forecasts
and how best to present this uncertainty to managers in charge of issuing warnings to
coastal communities.

Finally we note that the automated system in the current version of the SIFT
application is intended to handle events with moment magnitudes MW at or below
8.5. For larger magnitude earthquakes (the 26 December 2004 Indian Ocean tsunami
being a prime example), an operator at a tsunami warning system can manually match
a set of sources to the DART r© data that extend over large distances along a fault zone.
Development is underway to enhance the capability of the automated system to work
for these larger events, but there are a number of technical issues to overcome (e.g.,
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the timing of the contribution from the sources needs to be adjusted when the sources
are widely spread apart).

8 Summary and Conclusions

The SIFT application is a tool developed at the NOAA Center for Tsunami Research to
provide a capability for estimating source parameters during an on-going tsunami event.
These source parameters are needed in a timely manner as input to inundation models
that can forecast the effect of tsunamis at various coastal communities. While the
source parameters can be set initially based solely on seismic information, experience
has shown that these initial settings can be improved upon substantially by estimating
the parameters based upon DART r© buoy data collected during the on-going event.
The SIFT application is designed to compute these refined estimates soon after the
DART r© data become available by making use of a database of precomputed models.
These geophysically-based models predict what would be observed at each buoy given
a standardized earthquake emanating from a set of unit sources. The refined estimates
of the source parameters are computed within SIFT via an inversion algorithm, which
relates the data to the geophysically-based models via a linear regression model. With
suitable nonnegativity or nonpositivity constraints, this statistical model allows for
physically interpretable source parameter estimates, along with an assessment of their
sampling variability. The model is formulated in a manner flexible enough to allow for
arbitrary combinations of the different types of data reported by the DART r© buoys
(either pressure measurements integrated over 15-sec time windows or 1-min averages
of four such measurements).

We demonstated the efficacy of the inversion algorithm by applying it to data from
the 15 November 2006 Kuril Islands event. This example shows that estimates of the
source parameters based upon data from a single buoy produces a much better match
to the observed DART r© buoy data than what is provided by parameters set using just
seismic information (see Fig. 5). These refined estimates in principle would have been
available no more than 2.5 hours after the occurrence of the earthquake generating the
tsunami. Use of data from an additional one to three buoys (available within 3 to 4
hours after the earthquake) produces estimates of the source parameters with sampling
variabilities that are not substantially improved upon by using data from distantly
located buoys (see Fig. 4). Operationally this finding suggests that there is no need to
wait for the tsunami to pass by more than a couple of buoys in the hope of getting
better estimates of the source parameters. Models for the data fit using four buoys
were able to predict quite well the pattern – but not the exact timing – of the tsunami
as it passed by distantly located buoys, demonstrating the ability to model tsunami
events on ocean-wide scales based on just four freely adjustable source parameters (see
Fig. 3). Finally the fact that we can assess the sampling variability in the estimated
source parameters allows us to say whether the strength of the generating event as
determined by the inversion algorithm is significantly different statistically from the
seismically determined moment magnitude MW (see Section 6, where we showed that,
for the Kuril Islands event, the two ways of assessing the strength gave comparable
results when sampling variability was taken into account).

While work is in progress to add more functionality to the SIFT application, it has
already proven to be a valuable tool for assessing the potential hazards of tsunamis to
coastal communities, in part due to the inversion algorithm that is the focus of this
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article. Pending successful completion of the ongoing research described in Section 7,
future versions of the SIFT application will have features that should make it easier
for operators to specify the input required for successful use of the inversion algorithm.

Appendix A

Here we assess the statistical properties of the least squares estimator for α. To do
so, let us reconsider the model (1) for the data from a single buoy. The vector dj

potentially consists of a mixture of 15-sec and 1-min measurements. To deal with this
possibility, we can create a vector d̃j by conceptually replacing each 1-min measurement
with the four unobserved 15-sec values that were averaged to form it. For example, if
dj = [x15, x̄20, x̄24]

T , then d̃j = [x15, x17, x18, x19, x20, x21, x22, x23, x24]
T , and dj

and d̃j are related by dj = Γjd̃j , where

Γj =




1 0 0 0 0 0 0 0 0
0 1

4
1
4

1
4

1
4 0 0 0 0

0 0 0 0 0 1
4

1
4

1
4

1
4



 .

Let eNj be the length of the vector d̃j . In a similar manner, augment Gj to obtain eGj ,
and consider the model

d̃j = eGjα + ẽj ,

where ẽj is a vector of random variables (RVs) that obeys a multivariate normal
(MVN) distribution with zero mean and a covariance matrix given by, say, Vj . Under
the assumption that the variance for all the error terms is the same, say, σ2

j , we can

express Vj as σ2
j Φj , where Φj is an eNj × eNj matrix whose diagonal elements are all

unity. Then we have

dj = Γjd̃j = Γj eGjα + Γj ẽj = Gjα + ej

where ej = Γj ẽj is MVN with zero mean and a covariance matrix given by ΓjΦjΓ
T
j σ2

j
(cf. Equation (1)). Standard least squares theory (Draper and Smith 1998) says that
the least squares estimator for α in the model above has a covariance matrix given by

Σj = (GT
j Gj)

−1GT
j ΓjΦjΓ

T
j Gj(G

T
j Gj)

−1σ2
j .

By stacking together the models for d̃j for j = 1, . . . , J , we obtain

d̃ = eGα + ẽ.

Here d̃ is related to d of Equation (2) via d = Γ d̃, where

Γ =





Γ1 0 · · · 0
0 Γ2 · · · 0
...

...
. . .

...
0 0 · · · ΓJ





(here and elsewhere, the zeros need to be interpreted as matrices of appropriate dimen-
sions, all of whose elements are zero). Pending more research, we make the simplifying
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assumption that the errors associated with two different buoys are uncorrelated so that
the covariance matrix for ẽ is given by

V =





σ2
1Φ1 0 · · · 0
0 σ2

2Φ2 · · · 0
...

...
. . .

...
0 0 · · · σ2

JΦJ




. (11)

Then we have

d = Γ d̃ = Γ eGα + Γ ẽ = Gα + e,

where e = Γ ẽ is MVN with zero mean and a covariance matrix given by ΓV ΓT

(cf. Equation (2)). The least squares estimator α̂ for α in the model above has a
covariance matrix given by

Σ = (GT G)−1GT ΓV ΓT G(GT G)−1.

Since G and Γ are known, we need only specify V to be able to compute the
desired Σ; i.e., we need to set Vj = σ2

j Φj for each j. To do so, we regard the RVs
in ẽj as being extracted from a stationary first-order autoregressive AR(1) process
with variance σ2

j and AR(1) parameter φj satisfying |φj | < 1. If we take the indices

associated with d̃j to be ñ1, ñ2, . . . , ñeNj
, then the (p, q)th element of Φj is φ

|ñp−ñq|
j .

In practice we can estimate σ2
j and φj based upon the residuals rj = dj −Gjα̂ from

the least squares fit. One approach for doing so is to make the simplifying assumption
that rj obeys the same multivariate normal distribution as Γ ẽj and to estimate σ2

j and
φj using the maximum likelihood (ML) method. The likelihood function for a given
σ2

j and φj can be evaluated using a state-space formulation (Jones 1980; Durbin and
Koopman 2001), in which the state equation is dictated by an AR(1) process, while
the observation equation handles the underlying AR(1) process and what is observable
from a mixture of 15-sec and 1-min measurements. The ML estimators are obtained
by embedding the evalution of the likelihood function in a nonlinear optimatization
proceduce.

The above approach for determining the covariance matrix for the least squares
estimator α̂ works for an estimator based on an arbitrary mixture of 15-sec and 1-
min measurements, but it can be simplified considerably if we assume that each Nj-
dimensional vector dj consists of stretch of 1-min averages with no missing values, as
is the case occurring most often in practice (Percival et al. 2009). With this additional
assumption, we can dispense with the Γj matrices and formulate a statistical model
directly in terms of the model d = Gα + e. The least squares estimator α̂ for α now
has a covariance matrix given by

Σ = (GT G)−1GT V G(GT G)−1,

where V has a structure analogous to Equation (11), but with the (p, q)th element of

the Nj ×Nj matrix Φj being given by φ
|p−q|
j . We can then estimate φj via

φ̂j =
rT
j,(f)rj,(l)

rT
j rj

,
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where rj,(f) consists of all of rj except for its first element, and rj,(l) has everything

but the last element. An approximately unbiased estimator of σ2
j is given by

σ̂2
j =

Nj(1− φ̂j)
2rT

j rj/(Nj − 1)

Nj(1− φ̂j)2 − 1 + φ2
j + 2φj(1− φ

Nj

j )N−1
j

.

We use this simplified approach to obtain the statistical properties of α̂ reported in
this paper.
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