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Abstract

The discrete wavelet transform (DWT) approximately decorrelates a fractionally di�erenced

(FD) process, allowing for simple maximum likelihood estimation of the FD process parameters

using the wavelet coeÆcients. In previous work we have established limit theorems for the

parameters based on a model where scales are uncorrelated and two simple models for within-

scale correlation, namely, white noise and a �rst order autoregressive (AR) process. Here we

assess the adequacy of these simple models for handling between- and within-scale correlations.

We compare the performance of these simple models for estimating the FD process parameters

against procedures that use longer wavelet �lters (to reduce between-scale correlations) and use

AR models of higher order (to more precisely model within-scale correlations).

1 Introduction

Time series collected in areas such as atmospheric sciences, geosciences and hydrology often exhibit

a long range dependence, i.e., slowly decaying auto-correlations or, equivalently, a spectral density

function (SDF) that is proportional to jf j� at low frequencies for some � < 0. A convenient model

for such series is a fractionally di�erenced (FD) process (5; 6). Speci�cally, for d 2 [�1
2 ;

1
2) and

�2� > 0, fXtgt2Z is an FD(d; �2� ) process if its SDF is given by

SX(f) = �2� j2 sin(�f)j�2d f 2 [�1
2 ;

1
2 ]: (1)
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d is known as the di�erence parameter and �2� is the innovation variance. When d = 0, fXtg is a

white noise (i.e. uncorrelated) process. Extending this model by letting d � 1
2 in equation (1), we

obtain a class of non-stationary FD processes that are stationary if we di�erence bd+ 1
2c times.

Given a time series that is a realisation of a portion fXtgN�1
t=0 of a stationary FD process, McCoy

and Walden (9) extended earlier work by Wornell (13) to obtain e�ective approximate maximum

likelihood (ML) estimators of the FD parameters d and �2� . The basis of their scheme was to formu-

late the likelihood function in terms of the discrete wavelet transform (DWT) of fXtg by making

use of the assumption that the DWT of a Gaussian FD process yields approximately independent

deviates. In previous work (10; 3), we extended the McCoy and Walden estimator to handle both

stationary and non-stationary FD processes observed in the presence of a trend; i.e., the observed

time series is taken to be a realisation of

Yt = Tt +Xt t = 0; : : : ; N � 1: (2)

Here fTtg is a deterministic polynomial trend of order K, and fXtg is a realisation of a Gaussian

FD(d; �2� ) process. As with the McCoy andWalden scheme, the key assumption behind this extension

is the independence of certain wavelet coeÆcients across and between scales. In this paper we re-

examine this assumption. After a review of background material in Section 2, we argue in Section 3

that the correlation between scales can be made arbitrarily small by increasing the length of the

wavelet �lter. This increase in �lter length, however, does not help reduce the correlation within

scales, so we consider in Section 4 modelling this correlation using autoregressive (AR) models whose

coeÆcients are scale-dependent but are solely determined by d. We conclude that a �rst order AR

model is adequate for modelling the correlation structure within scales.

2 De�nitions and Background on Wavelet CoeÆcients

For an even integer L, let fhlgL�1
l=0 denote a Daubechies (4) wavelet �lter. By de�nition this �lter

has squared gain function

H1;L(f) � 2 sinL(�f)
PL=2�1

l=0

�L=2�1+l
l

�
cos2l(�f): (3)

Associated with the wavelet �lter we de�ne the scaling �lter by gl � (�1)l+1hL�1�l (with a squared

gain function of G1;L(f) = H1;L(
1
2 � f)). Assume for convenience that N = 2J for some integer J ,
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and let Nj � N2�j . The level j wavelet coeÆcients can be computed using the level j wavelet �lter

fhj;lgLj�1
l=0 :

Wj;k =
PLj�1

l=0 hj;lX2j(k+1)�l�l mod Nj�1
j = 1; : : : ; J; k = 0; : : : ; Nj � 1

where Lj � (2j � 1)(L� 1) + 1 and fhj;lg has squared gain function

Hj;L(f) � H1;L(2
j�1f)

Qj�2
k=0 G1;L(2kf): (4)

These coeÆcients are associated with changes in averages on scale �j � 2j�1 and with times spaced

�j � 2j units apart. In practice we use the pyramid algorithm (Mallat (8)) to calculate these DWT

coeÆcients eÆciently (see Percival and Walden (11)). Since the DWT handles �ltering operations

periodically, the �rst Bj � d(L � 2)(1 � 2�j)e wavelet coeÆcients are explicitly a�ected by the

circularity assumption. We call these coeÆcients the boundary dependent (BD) coeÆcients. We call

the remaining Mj � Nj � Bj which are una�ected by boundaries the boundary independent (BI)

coeÆcients. Let M �PJ
j=1Mj .

In Craigmile et al. (3) we noted that the BI wavelet coeÆcients are una�ected by the polynomial

trend ifK � L
2 , and thus we can estimate the parameters of fXtg via Gaussian likelihood using these

coeÆcients (if L
2 � bd � 1

2c). We further assumed that the BI wavelet coeÆcients are uncorrelated

between scales, and either a white noise or AR(1) model was a good �t for these coeÆcients on each

level. We now investigate this further.

3 Between-Scale Decorrelation

Let (Ww)j;k denote the BI wavelet coeÆcients (j = 1; : : : ; J; k = 0; : : : ;Mj). From chapter 9 of

Percival and Walden (11) we have that

Cov((Ww)j;k; (Ww)j0;k0) = 21�2d�2�
R 1

2
0 cos(2�f(2j(k + 1)� 2j

0

(k0 + 1)))

�Hj;L(f)H
�
j0;L(f) sin

�2d(�f) df;

where Hj;L(f) is the Fourier transform of fhj;lg and denotes � the complex conjugation operator. An

extension of Theorem 3.2 in Craigmile et al. (3) shows that this integral is �nite for d < L+1
2 . Hj;L(f)

corresponds to an approximate band-pass �lter with pass-band [2�(j+1); 2�j ] (see, e.g., Daubechies
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(4)). This approximate �lter has a squared gain function given by H1;bp(f) � 2j1[2�(j+1);2�j ](f).

Lai (7) de�nes the following squared gain function

H1;I(f) �

8>>>>><>>>>>:
0; f 2 [0; 14);

1; f = 1
4 ;

2; f 2 (14 ;
1
2 ];

and shows that H1;L(f) ! H1;I(f) as L ! 1 for all f 2 [0; 12 ]. Thus if we de�ne Hj;I(f) �
H1;I(2

j�1f)
Qj�2

k=0H1;I(
1
2 � 2kf), we have Hj;L(f)! Hj;I(f) as L!1 for all f 2 [0; 12 ] and j � 1.

Hj;I(f) di�ers from H1;bp(f) on a countable set of points and thus an integral involving either of

these two squared gain functions will be the same. By the spectral representation theorem we can

therefore see that the BI wavelet coeÆcients at di�erent scales are asymptotically uncorrelated for

large L, since the pass-bands of these squared gain functions do not intersect. (see Craigmile (2) for

additional details).

Lai (7) also proves that convergence of H1;L(f) is monotone in the following sense. For all even L,

H1;L(
1
4) = 1,

H1;L(f) � H1;L+2(f) � H1;I(f); f 2 [0; 14);

H1;L(f) � H1;L+2(f) � H1;I(f); f 2 (14 ;
1
2 ]:

For j > 1 this translates into

Hj;L(f) � Hj;L+2(f) � Hj;I(f); f 2 [2�j ; 12 ]

meaning that the side lobe behaviour of Hj;L(f) reduces with increasing L. Also the decorrelation

between higher and lower scales is rapid with increasing L because there is less intersection of the

squared gain functions. Figure 1 illustrates this decay for a number of wavelet �lter lengths and

j = 1; : : : ; 4.

See Tew�k and Kim (12) for a related discussion on the correlation structure of a DWT of fractional

Brownian motion.
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4 An AR(p) wavelet model

We now consider the within-scale dependence. On level j we can write the lag � auto-covariance as

�2��j;� (d) � R 1
2

�
1
2

ei2�f�Sj(f) df; (5)

where we de�ne the SDF of the level j BI wavelet coeÆcients by

Sj(f) � �2� 2
�j�2dP2j�1

k=0 Hj;L(2
�j(f + k)) sin�2d(2�j(f + k)): (6)

In Craigmile et al. (3) we showed that, if we assume that the BI wavelet coeÆcients are either a

portion of a white noise or AR(1) process, then the estimate of d is asymptotically normal, and the

estimate of �2� follows a scaled chi-squared distribution. Both estimates are consistent. Since we

can approximate any continuous SDF by an AR(p) SDF for large enough p (Anderson (1)), a better

approximation is given by supposing that the BI wavelet coeÆcients f(Ww)j;k : k = 0; : : : ;Mj � 1g
are a portion of an AR(p) process, i.e.,

(Ww)j;k =
Pp

r=1 �r;p(j; d)(Ww)j;k�r + Zj;k (k = p; : : : ;Mj � 1) (7)

where fZj;k � i.i.d. N(0; �(j; d)�2� ) : j = 1 : : : J; k = 0; : : : ;Mj � 1g. Figure 2 illustrates this for

an FD(0.25,1) process analysed using an wavelet �lter with L = 8. The top left panel shows the

SDF of the process along with the approximate band-passes that correspond to the �rst �ve wavelet

levels. The top middle panel shows the actual SDF of the BI wavelet coeÆcients (equation 6) and

the right-hand panel is the SDF if we assume that that the BI coeÆcients are uncorrelated per each

wavelet level. If we assume the AR(p) model as above for p = 1; 2; 5 we have an SDF given in

the lower panels of �gure 2. The SDF looks better for higher p, but not by too much (the AR(1)

approximation is very good as it stands). We now employ the Levinson-Durbin (LD) recursions.

Let �1;1(j; d) � �1(j; d)=�0(j; d), P0(j; d) � �0(j; d) and P1(j; d) � �0(j; d)(1 � �21;1(j; d)). Then for

s > 1

�s;s(j; d) = P�1
s�1(j; d)

�
�s(j; d) �

Ps�1
r=1 �r;s�1(j; d)�s�r(j; d)

�
;

�r;s(j; d) = �r;s�1(j; d) � �s;s(j; d)�s�r;s�1(j; d) (r = 1; : : : ; s� 1);

Ps(j; d) = �0(j; d) �
Ps

r=1 �r;s(j; d)�r(j; d) = Ps�1(j; d)(1 � �2s;s(j; d)):
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The Yule-Walker equations show that Pp(j; d) = �(j; d). Letting Mjp � Mj � p, the likelihood for

one wavelet level (j = 1 : : : J) is

l(j; d; �2� ) � �Mj

2

�
log(2��2� )

�� 1
2 [Mjp log(Pp(j; d)) +

Pp�1
k=0 log(Pk(j; d))]

� 1
2�2�

"Pp�1
k=0

(~Z
(k)
j;k

(d))2

Pk(j;d)
+
PMj�1

k=p

Z2
j;k

Pp(j;d)

#
where

~Z
(k)
j;k (d) �

8><>: (Ww)j;0; k = 0;

(Ww)j;k �
Pk

r=1 �r;k(j; d) (Ww)j;k�r; k = 1 : : : p� 1;

and hence assuming that wavelet levels are uncorrelated

lN (d; �
2
� ) �

PJ
j=1 l(j; d; �

2
� ): (8)

Maximising with respect to �2� yields the ML estimate

b�2�;N;p(d) = 1
M

PJ
j=1

"Pp�1
k=0

(~Z
(k)
j;k

(d))2

Pk(j;d)
+
PMj�1

k=p

Z2
j;k

Pp(j;d)

#
: (9)

The pro�le likelihood with respect to d is

lN (d; b�2�;N;p(d)) � �M
2

h
log(2�b�2�;N;p(d)) + 1

i
�1

2

PJ
j=1

h
Mjp log(Pp(j; d)) +

Pp�1
k=0 log(Pk(j; d))

i
: (10)

We maximise this expression to obtain d̂N;p. Now let �̂T � (d̂N;p; b�2�;N;p(d)) denote the vector of

estimates. We can extend the results of Craigmile et al. (3) as follows (see (2) for a proof).

Theorem 4.1 For a di�erentiable function g(�), let �1(g(x)) � [ @@y g(y)jy=x]=g(x). Suppose that

equation (7) holds. For d < L+1
2 , as N !1

(a) (�̂ � �)!p 0;

(b)
p
N(�̂ � �)!d N(0;��1(�));

(c)
p
N(d̂N;p � d)!d N(0; �2d;p),

where

2�(�) �

264 P
j �

2
1(Pp(j; d)) 2

�j ��2
�

P
j �1(Pp(j; d)) 2

�j

��2
�

P
j �1(Pp(j; d)) 2

�j ��4
�

375 ;
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and �2d;p � 2[
P

j�
2
1(Pp(j; d)) 2

�j � (
P

j �1(Pp(j; d)) 2
�j)2]�1.

For the same range of d and any N , b�2�;N;p(d) =d M
�1�2��

2
M .

Table 1 shows �2d;p for various values of �lter length L (L =1 refers to using the ideal wavelet �lter

Hj;I(f)) and di�erence parameter d under di�erent AR(p) wavelet models (p = 0 refers to the white

noise wavelet model of Craigmile et al. (3)). We analyse to J=6. In general, keeping L �xed, the

asymptotic variance decreases with increasing d (especially for shorter values of L). It also decreases

with increasing L for stationary d < 1
2 , but increases with L for non-stationary d � 1

2 . The limit

variance only changes slightly for L = 2 as we increase p. For L > 2 there is little change in the

asymptotic variance with p � 1. In fact Monte Carlo studies to estimate d for various samples sizes,

�lter lengths and values of the di�erence parameter showed that an AR(1) model in this case was

suÆcient. An AR(p) (p > 1) gave no improvement to estimation.

5 Conclusions

In this paper we have further examined the estimation of the parameters of a trend contaminated

FD process using the DWT. We have demonstrated that as we increase the �lter length we can

decorrelate between wavelet scales and decrease side-lobe behaviour. By extending the white noise

and AR(1) wavelet models to the AR(p) (p > 1) case, we do not improve the estimation of d from

that of the AR(1) model. Clearly these results give an attractive framework in which to model other

short and long dependent processes.
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d

L p 0 0.25 0.50 0.75 1.00

2 0 1.260 1.036 0.896 0.781 0.664

2 1 1.260 1.052 0.906 0.767 0.664

2 2 1.260 1.055 0.908 0.762 0.664

2 5 1.260 1.056 0.912 0.754 0.664

4 0 1.060 0.982 0.921 0.867 0.816

4 1 1.060 1.005 0.960 0.909 0.839

4 2 1.060 1.004 0.963 0.916 0.836

4 5 1.060 1.004 0.963 0.917 0.829

8 0 0.991 0.956 0.923 0.893 0.864

8 1 0.991 0.977 0.965 0.952 0.934

8 2 0.991 0.975 0.963 0.953 0.937

8 5 0.991 0.975 0.964 0.953 0.937

1 0 0.944 0.931 0.919 0.906 0.894

1 1 0.944 0.944 0.945 0.944 0.944

1 2 0.944 0.944 0.944 0.944 0.944

1 5 0.944 0.944 0.945 0.945 0.945

Table 1: Calculation of �2d;p for various �lter lengths, L, (L = 1 refers to using the ideal wavelet

�lter Hj;I(f)), AR(p) wavelet model (p = 0 refers to the white noise model of Craigmile et al. (3))

and di�erence parameter d.
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Figure 1: Squared gain functions for various �lter lengths, L, and j = 1; : : : ; 4 (L =1 denotes the

ideal wavelet �lter). For example, with j = 3 the side-lobes for f > 1
4 decrease with increasing L.
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Figure 2: Going from left to right, top to bottom, plots show the SDF of a FD(0.25,1) process

(dotted vertical lines indicate the approximate bandpasses for the �rst �ve wavelet levels), the SDF

of the BI wavelet coeÆcients with L = 8, and the SDF assumed in the white noise and AR(p) models

for p = 1; 2; 5.
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