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Abstract. In metrology experimentalists often measure quantities with respect to an
independent variable that is ordered such as time, depth or distance along a line. Time
series analysis is the study of the statistical properties of such ordered measurements.
Here we briefly introduce two important techniques in time series analysis, namely,
spectral analysis and wavelet analysis, both of which can be of value in understanding
metrological data.

1. Introduction

The spectral analysis of a time series is one of the oldest and most widely used
analysis techniques in the physical sciences. The basic idea behind spectral analysis
is to decompose the variance of a time series into a number of components, each one
of which can be associated with a particular frequency. Although the basic ideas and
concepts behind spectral analysis are quite old (two early references are Stokes, 1879, and
Schuster, 1898), the current wide-spread use and interest in the subject arose because
of three important events in late 1950s and mid 1960s: the publication of the influential
exposition by Blackman and Tukey (1958); the rediscovery of the fast Fourier transform
algorithm (Cooley and Tukey, 1965); and the increasing availability of powerful electronic
computers which allowed practictioners to carry out the necessary computations. Today
spectral analysis is an ‘industry standard’ in the physical sciences and can be readily done
on general purpose computers using software in a variety of forms (several vendors also
offer special purpose hardware – known as ‘spectrum analyzers’ – which can collect time
series and perform spectral analysis nearly in real-time).

By contrast, wavelet analysis of a time series is relatively new and not very widespread.
The basic idea behind wavelet analysis is to decompose the variance of a time series into
a number of components, each one of which can be associated with a particular scale
at a particular time. The subject of wavelets is currently a ‘hot topic’ in mathematics
and signal processing and formally dates back to just the early 1980s. In some aspects,
however, this subject represents a synthesis of older ideas from many different areas.
The current interest in wavelets is motivated by the discovery of both many new elegant
mathematical results and efficient algorithms for computing the wavelet transform.

Since both spectral analysis and wavelet analysis of a time series are analysis of vari-
ance techniques, there are a number of interesting comparisons and contrasts between the
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Figure 1. Two time series (plot a) and their discrete energy spectra (plot b). The small

solid squares in (a) indicate the 16 values of the time series {x(1)
t } plotted versus its time

index t for t = 1, . . . , 16. These squares are connected by thick lines merely to aid the
eye in following the series. The two thin lines define a second series of 16 values, namely

{x(2)
t }, that differs only from {x(1)

t } in that x
(2)
14 = −x(1)

14 . The discrete energy spectra

{S(fl)} plotted versus Fourier frequency fl are shown in plot (b) for {x(1)
t } (thick curve)

and for {x(2)
t } (thin). Both spectra consist of 9 points connected by lines.

two subjects. This paper is intended to be a brief introduction to both subjects with an
emphasis on ideas rather than details. More extensive tutorial introductions to spectral
analysis can be found in Koopmans (1983), Brillinger (1974), Kay and Marple (1981),
Jones (1985), De Marchi and Lo Presti (1993) and Percival (1994), while tutorials on
wavelets are given in Strang (1989), Rioul and Vetterli (1991), Section 13.10 of Press
et al. (1992), Strang (1993), Meyer (1993), Strichartz (1993) and Tewfik et al. (1993).
There are numerous books on spectral analysis, including Jenkins and Watts (1967),
Koopmans (1974), Bloomfield (1976), Priestley (1981), Kay (1988) and Percival and
Walden (1993). The book by Daubechies (1992) discusses the mathematical side of
wavelets, while Vaidyanathan (1993) presents the subject from a signal processing point
of view (also, the March, 1992, issue of the IEEE Transactions on Information Theory is
devoted to wavelet transforms and multiresolution signal analysis and contains a wealth
of interesting material).

2. Orthogonal Transformation of Time Series

Both the spectral analysis and the wavelet analysis of a time series can be viewed
in terms of an orthogonal transformation, so let’s briefly review the ideas behind such a
transformation. Let x1, x2, . . . , xN represent a time series of N observations (two such
series with N = 16 values are shown in Figure 1(a)). Let gj(·) for j = 1, 2, . . . , N be a
set of real-valued functions such that

N∑
t=1

gj(t)gk(t) =

{
1, if j = k;
0, otherwise.

(1)

We can then analyze our time series with respect to the basis provided by the gj(·)’s by



    

computing the transform coefficients χj defined as

χj =
N∑
t=1

xtgj(t), j = 1, 2, . . . , N. (2)

Given the transform coefficients, we can then reconstruct (‘synthesize’) our time series
from the χj ’s using

xt =
N∑
j=1

χjgj(t). (3)

Let us define the ‘energy’ in our time series as
∑N

t=1 x
2
t . Note that x2

t is just the
contribution to the energy at time t so that a plot of x2

t versus t gives us a decomposition
of energy with respect to time. A fundamental identity (known as Parseval’s theorem) is
that

N∑
t=1

x2
t =

N∑
j=1

χ2
j . (4)

The above identity states that the energy of our time series is preserved in the transform
coefficients χj and can be decomposed with respect to the squares of these coefficients.
While there are an uncountable number of possible orthogonal transformation for a time
series, our ability to make any sense out of the energy decomposition provided by arbi-
trary χj ’s is limited. The key to a meaningful analysis is to pick a transformation such
that the χj ’s have some physical interpretation so that the energy decomposition with
respect to these χj ’s tells us something interesting about our time series. Two orthogonal
transformations that do so are the Fourier transform (providing the basis for spectral
analysis) and the wavelet transform. We discuss the former in the next section and the
latter in Section 5.

3. The Fourier Transform

The Fourier transform of a time series is an orthogonal transformation in which the
gj(·)’s are ‘stretched’ and normalized versions of the trigonometric functions cos(t) and
sin(t). Stretching is accomplished by introducing the notion of angular frequency 2πf
to produce cos(2πft) and sin(2πft). In order that the orthogonality conditions of Equa-
tion (1) be satisfied, we must choose our frequencies carefully. A choice that works is the
set known as the Fourier frequencies, namely, fl ≡ l/N for l = 0,, . . . , N/2 (for simplicity,
we assume that N is an even integer in what follows). We can now define the gj(·)’s as

gj(t) =




√
2/N cos ([j + 1]πt/N), j = 1, 3, . . . , N − 3;√
2/N sin (jπt/N), j = 2, 4, . . . , N − 2;

cos (πt)/
√
N, j = N − 1;

cos (0 · t)/√N = 1/
√
N, j = N .

The χj ’s we obtain via (2) can then be used to give a Fourier synthesis of our time series
using (3).

As an example, the thick curves in the 16 plots of Figure 2 show χjgj(t) versus t

for the 16 point time series {x(1)
t } shown in Figure 1(a) (for plotting purposes, we let t
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Figure 2. Fourier synthesis of {x(1)
t } (thick curves) and {x(2)

t } (thin curves).

vary continuously over the range 0 to 17 rather than just take on integer values from 1
to 16). The left-most column of plots shows χ1g1(·) (top) and χ2g2(·) (bottom); the next
column shows χ3g3(·) and χ4g4(·); and so on. The Fourier frequency fl associated with
each χjgj(·) is written in the upper right-hand corner of each plot. Equation (3) tells
us that we can reconstruct (‘synthesize’) the 16 point time series by adding together the
thick curves in the 16 plots at the points t = 1, . . . , 16.

Because of Equation (4), we can decompose the energy in a time series with respect
to the N/2 + 1 Fourier frequencies in the following way. Let us define a discrete energy
spectrum S(fl) such that

S(fl) =



χ2

2l−1 + χ2
2l, fl = l/N for 1 ≤ l ≤ N/2 − 1;

χ2
N−1, fl = 1/2 (i.e., l = N/2);

χ2
N , fl = 0 (i.e., l = 0).

Equation (4) now tells us that
N/2∑
l=0

S(fl) =
N∑
t=1

x2
t ; (5)

i.e., S(fl) gives us the contribution to the energy due to sinusoidal components with
frequency fl.

The thick curve in Figure 1(b) shows S(fl) versus fl for {x(1)
t } (following standard

engineering practice, we have plotted S(fl) on a decibel scale, i.e., 10 log10(S(fl))). This
plot tells us, for example, that the lowest frequency term (f1 = 1/16) contributes more to
the energy in our time series than any of the other terms. We can readily see this dom-
inance in Figure 2 (the ‘synthesis’ plot): the amplitudes of the sinusoids associated with
f1 are larger than those for any other frequency. This correspondence is not surprising:
the amplitudes are governed by the χj ’s, whereas the S(fl)’s are governed by the χ2

j ’s.
In order to demonstrate in Section 5 one key difference between the Fourier and

wavelet transforms, let us see what happens if we change a single value in our 16 point

time series, namely x14, so that it is now −x14 to form the series {x(2)
t } (as shown by

the light lines in Figure 1(a)). By construction, this time series has the same energy as



   

{x(1)
t }. The thin curves in the plots of Figure 2 show the Fourier synthesis of {x(2)

t }, while
the thin curve in Figure 1(b) shows its discrete energy spectrum. Note that, although we
have altered just a single point in our time series in an energy preserving fashion, all but
three of the χj ’s and all of the S(fl)’s have been altered (some rather substantially). This
simple experiment emphasizes the point that Fourier transform coefficients are not well
‘localized’ in time; i.e., the χj ’s are determined by xt’s spread out over a wide range of
indices t so that changes in just a few xt’s can alter all of the coefficients χj .

To summarize, the use of sinusoids with a carefully chosen set of frequencies allows
us to define a discrete energy spectrum. This spectrum tells us how the energy in a time
series is decomposed on a frequency by frequency basis. Large values of the discrete energy
spectrum tell us which sinusoids are most significant in synthesizing the time series using
a linear combination of sinusoids.

4. The Spectral Estimation Problem

For practical use the simple Fourier theory we outlined in the preceding section is
not satisfactory for analyzing a time series because the frequencies are dictated by the
sample size N and because we have no way of accounting for the effect of stochastic
variations. Properties of the discrete energy spectrum can thus be highly dependent on
both the number of observations we have collected and also the particular set of stochastic
variations we happened to encounter in collecting our series.

To overcome these defects, considerable effort has been expended over the last half
century in extending the theory of the preceding section so that it applies to the class
of stationary stochastic process {Xt} (by definition, the expected value E{Xt} of such
a process is a constant, and the covariance cov {Xt, Xt+τ} between two members of the
process separated by τ units depends on just the lag τ and not the time index t). The
theory of stationary processes allows us to rigorously define a spectral density function
SX(·) (sdf) that decomposes (‘analyzes’) the variance of the process {Xt} with respect to
frequency; i.e., a fundamental property of the sdf is that

∫ 1/2

−1/2
SX(f) df = var {Xt}. (6)

Note the following similarities between the above equation and Equation (5):

[1] The left-hand sides of both equations express the summing of the spectrum or sdf over
a set of frequencies (by definition, SX(−f) = SX(f) for real-valued processes – the
introduction of negative frequencies in the sdf is purely for mathematical convenience).

[2] The right-hand side of Equation (5) is a sum of squares, while a common estimator

for var {Xt} in the right-hand side of (6) is the sample variance
∑N

t=1 X
2
t /N , i.e., a

normalized sum of squares. If
∑N

t=1 X
2
t can be regarded as a measure of ‘energy,’

then
∑N

t=1 X
2
t /N and hence var {Xt} can be regarded as a measure of ‘power’ – the

sdf SX(·) is thus sometimes called the power spectral density function.

With SX(·) so defined, we can apply the theory of stationary processes under the
assumption that our time series x1, . . . , xN is a portion of one realization of the stationary
process {Xt}. The spectral estimation problem is to estimate SX(·) from the finite time
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Figure 3. Three mother wavelets: (a) the Haar wavelet; (b) Daubechies’s D4 wavelet
(Strang, 1989); (c) Daubechies’s least asymmetric wavelet of order 8 (Daubechies, 1992).

series {xt}. The oldest estimator in the literature (dating back to at least Schuster, 1898)
is the periodogram, defined (for a process such that E{Xt} = 0) as

Ŝ
(p)
X (f) =

1

N

∣∣∣∣∣
N∑
t=1

Xte
−i2πft

∣∣∣∣∣
2

, where i ≡
√
−1

(the quantity between the vertical bars is proportional to the discrete Fourier transform of
X1, . . . , XN and can be computed efficiently using the fast Fourier transform algorithm).
It can be shown that ∫ 1/2

−1/2
Ŝ

(p)
X (f) df =

1

N

N∑
t=1

X2
t ; (7)

i.e., just as the integral of the sdf is the process variance (Equation (6)), the integral of
the periodogram is the sample variance.

While the obvious appeal of Equation (7) suggests that we can easily solve the spectral
estimation problem by using the periodogram, in fact there are substantial statistical rea-
sons for exercising extreme caution with this estimator. The ‘tragedy of the periodogram’
is twofold:

[1] The expected value of the periodogram E{Ŝ(p)
X (f)} can differ by orders of magnitude

from SX(f) i.e., Ŝ
(p)
X (f) can be a badly biased estimator of SX(f) (even for sample

sizes usually considered as ‘large’).
[2] The periodogram is not a consistent estimator of the sdf; i.e., its variability does not

decrease to zero as the sample size N increases to infinity (as is true for, say, the
sample mean as the estimator of the mean of independent and identically distributed
normal random variables).

These deficiencies in the periodogram have motivated much of the research in spectral
analysis over the last half century. For example, tapering and prewhitening have been
introduced to construct spectral estimators with acceptable bias, while smoothing across
frequencies, averaging of spectral estimators from different subsequences, and multitaper-
ing have been used to obtain consistency. Unfortunately for practictioners, there is no
single spectral estimator that is optimum under all circumstances, and there are subtleties
and pitfalls galore awaiting the unwary – the reader is advised to carefully study one or
more of the references cited in the introduction.
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Figure 4. The Haar wavelet synthesis of {x(1)
t } (thick curves) and {x(2)

t } (thin).

5. The Wavelet Transform

The wavelet transform of a time series is an orthogonal transformation in which the
gj(·)’s for j = 1, . . . , N − 1 are stretched, shifted and normalized versions of a ‘localized’
function known as a ‘mother wavelet’ (gN (·) is obtained from what is known as the ‘scaling
function’). Three wavelets are shown in Figure 3, each of which is localized in the sense
of being identically zero outside of a finite interval (as we noted previously, sinusoids
are not localized in this sense). For simplicity, we will concentrate on the Haar wavelet
(Figure 3(a)), which we choose to define here as

ψ(t) =

{
1, if 0 ≤ t < 1;
−1, if 1 ≤ t < 2;
0, otherwise

(the scaling function corresponding to the Haar wavelet can be defined as ϕ(t) = |ψ(t)|).
Stretching is accomplished by introducing the notion of scale τ > 0 to produce ψ(t/τ),
thus defining a function that is nonzero for 0 ≤ t < 2τ . Shifting merely relocates ψ(t/τ)
on the real axis so that it is nonzero for, say, u ≤ t < 2τ +u; shifting can be accomplished
by defining a function of t equal to ψ([t−u]/τ). In order that the orthogonality conditions
of Equation (1) be satisfied, we must choose τ and u carefully. If for simplicity we assume
that the sample size is a power of 2 (i.e., N = 2K for some integer K), then a choice that
works is to let τ = 2k for k = 0, . . . , K−1 and – within a particular scale – to let u = 0.5,
2τ + 0.5, 4τ + 0.5, . . . , N − 2τ + 0.5. (the 0.5 offset has been included here merely to
facilitate plotting). We order the gj(·)’s such that g1(·), . . . , gN/2(·) are all proportional
to a Haar wavelet of scale τ = 1; gN/2+1(·), . . . , g3N/4(·) are all proportional to a wavelet
of scale τ = 2; and so forth until we reach gN−1(·), the single one of the gj(·)’s that is

proportional to a wavelet of scale 2K−1 = N/2. Within each scale, we order the gj(·)’s
such that the shift u increases with j. The required normalization for a gj(·) of scale τ

is achieved by dividing the corresponding stretched and shifted ψ(·) by
√

2τ . Finally, we
obtain gN (·) by setting it proportional to a scaling function of scale N/2 so that in fact
gN (t) = |gN−1(t)| = 1/

√
N (exactly the same as in the Fourier transform). With the

gj(·)’s so defined, the χj ’s we obtain via Equation (2) can then be used to give a wavelet
synthesis of our time series using Equation (3).
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Figure 5. The scalograms for {x(1)
t } (plot a) and for {x(2)

t } (b) and σ/τ curves (c).

As an example, the thick curves in the 16 plots of Figure 4 show χjgj(t) versus t for

{x(1)
t } shown in Figure 1(a). The top row of plots shows, from left to right, χ1g1(·) to

χ8g8(·) (all of which are of scale one), while the bottom row shows χ9g9(·) to χ16g16(·)
(the first four of these are of scale two; the next two are of scale four; the next one is of
scale eight; and the last one corresponds to the scaling function). The two numbers ‘τ, t’
in the upper left-hand corner of the plots tells us that the χjgj(·) in the plot is associated
with a wavelet of scale τ that is nonzero starting at time index t. Equation (3) tells us

that we can reconstruct {x(1)
t } by adding together the thick curves.

Because of Equation (4), we can decompose the energy in a time series with respect
to scale τ and time t by forming a scalogram equal to χ2

j for j = 1, . . . , N−1. Figure 5(a)

shows the scalogram for {x(1)
t }, in which the values of χ2

j have been grey-scaled encoded

such that larger values are darker. This plot tells us, for example, that χN−1 (the wavelet
coefficient of scale 8) contributes more to the energy in our time series than any of the
other terms (cf. the synthesis plots in Figure 4).

Now let us consider what happens to the Haar wavelet transform when we change the

sign of x14 in {x(1)
t } to create {x(2)

t }. The thin curves in the plots of Figure 4 show how

the wavelet synthesis of {x(2)
t } differs from that of {x(1)

t }, while Figure 5(b) shows the

scalogram for {x(2)
t }. The important point to note is that just one coefficient per scale is

changed due to the fact that the wavelet basis is localized in time. In comparing the two
scalogram, note that only the grey scales of the boxes above t = 14 in 5(b) (indicated by
the extended tick mark) differ from those in 5(a).

What can a scalogram potentially tell us about a time series? Dark boxes indicate
the location of large ‘events’ of a given scale (consider, for example, the dark box above
t = 14 for scale one in 5(b) – this is associated with the prominent ‘downshoot’ we

created in {x(2)
t }). At a fixed time t, going vertically up a scalogram gives a localized

decomposition of the time series across different scales (note that the amount of data
used in the calculation of a given scale is proportional to that scale). At a fixed scale
τ , going horizontally across a scalogram tells us how the time series varies at a certain
scale over time. In a certain sense, the scalogram is an attempt to capture some of the



    

features of both the ‘time domain’ decomposition of x2
t versus t and the ‘frequency domain’

decomposition of S(fl) versus fl (see Section 7). Due to their localized nature, wavelets
are a useful tool for studying the evolution of nonstationary series.

To summarize, the use of wavelets with a carefully chosen set of scales and offsets
allows us to define a scalogram. This scalogram tells us how the energy in a time series
is decomposed on a scale by scale basis at different times. Large values of the scalogram
tell us which scales are most significant in synthesizing the time series using a linear
combination of wavelets.

6. The Allan Variance

There is an interesting connection between the Haar wavelet coefficients χj and the
Allan variance, a well-established characterization of the frequency stability of high-
performance oscillators (for details, see Allan, 1966; Sullivan et al., 1990; Percival, 1991;
and De Marchi and Lo Presti, 1993). To establish this connection, note first that the
χj ’s of scale τ are proportional to differences of nonoverlapping averages of length τ . For
example, the coefficients of scale one are proportional to x1 − x2, x3 − x4, etc.; the coeffi-
cients of scale two are proportional to (x1 +x2)/2− (x3 +x4)/2, (x5 +x6)/2− (x7 +x8)/2,
etc.; and, in general, the coefficients of scale τ are proportional to (x1 +x2 + · · ·+xτ )/τ −
(xτ+1 + xτ+2 + · · · + x2τ )/τ , etc. This averaging and differencing scheme has a natural
interpretation in the analysis of clock performance, as can be seen from the following ar-
gument. A clock is just a device that counts the cycles produced by a frequency standard
oscillating at a certain nominal frequency (for example, wall clocks in the U.S. typically
keep time based upon the 60 Hz oscillations in the power lines). As a thought experi-
ment, suppose we design a clock that counts the cycles of a perfect oscillator with a 60 Hz
frequency. Suppose our clock is correct at 7PM. If we temporarily change the frequency
of the oscillator to 90 Hz from 7PM to 7:30PM and then to 30 Hz from 7:30PM to 8PM,
the clock will display the correct time at 8PM due to the fact that the average frequency
of the oscillator from 7PM to 8PM is equal to 60 Hz, the frequency at which the clock
was designed to operate; i.e., the oscillator produced the correct number of cycles from
7PM to 8PM (although the cycles certainly did not occur equally spaced in time!).

From our thought experiment we can argue that the performance of a oscillator on
a scale of an hour is governed by differences in its hourly average frequencies from one
hour to the next – if these differences are small, the oscillator can be used to drive a clock
that marks the passage of hours quite well. The Allan variance is a measure of how much
the average frequency of an oscillator differs at difference scales (in practice, however,
fractional frequency deviations are used in place of actual frequency). To define the Allan
variance, let xt be the average frequency over, say, the hour indexed by t, and let

x̄t(τ) ≡
1

τ

τ−1∑
k=0

xt+k

represent the τ hour average frequency over hours t to t + τ − 1. Then the quantity
x̄t(τ)− x̄t+τ (τ) represents the difference between adjacent τ hour average frequencies and
is proportional to the Haar wavelet coefficient of scale τ . If we now replace the xt’s by
random variables Xt, the Allan variance is defined as

σ2
X(τ) ≡ E

{[
Xt(τ) −Xt+τ (τ)

]2}/
2



    

(this expectation is independent of the index t if we assume that {Xt −Xt−1} defines a
stationary process). Given a time series {xt} of length N , an estimator for σ2

X(τ) is

σ̂2
X(τ) =

2

N

∑
all j of scale τ

χ2
j

(this corresponds to what is known in the literature as the nonoverlapped estimator of the
Allan variance). In terms of the scalogram in which the χ2

j ’s are displayed with respect to

scales τ and times t, we obtain σ̂2
X(τ) by summing all the scalogram values of a particular

scale τ and then multiplying this sum by 2/N .
A plot of σ̂X(τ) (i.e., the square root of the estimated Allan variance) versus scale

τ is known in the literature as a ‘σ/τ ’ curve. Figure 5(c) shows such curves for {x(1)
t }

(small solid squares connected by thick lines) and {x(2)
t } (thin curve). Small values on

a σ/τ curve indicate scales over which there is relatively little change in the time series
(for an oscillator, small values would indicate time scales over which clocks based upon
the oscillator could keep good time). Note that the σ/τ curve suffers the same defect
previously noted for the discrete energy spectrum: changing a single point in a time series
can alter the entire curve. The σ/τ curve is a useful summary of the information in
a scalogram under an appropriate assumption of stationarity, but it is of less value for
processes that are evolving over time.

To conclude our discussion of the Allan variance, we note that it has been used with
considerable success since its introduction 25 years ago. This variance is most likely to
be of interest in metrology applications for which the averaging and differencing scheme
behind the Haar wavelet makes physical sense and for which the stationarity assumption
is appropriate (if the latter is not true, the scalogram is a more appropriate analysis tool).
For wavelets other than the Haar, it is possible to define a wavelet variance analogous to
the Allan variance. The statistical properties of such wavelet variances are currently under
study, but there are already documented examples (in the study of ocean turbulence) in
which the Allan variance has been found to be markedly inferior to the other wavelet
variances (Percival and Guttorp, 1994).

7. Relating Scale and Frequency

We can relate the concepts of scale and frequency by considering some well-known
results from the theory of linear filters. Suppose that our time series {xt} is one portion
of a realization of the stationary process {Xt} with sdf SX(·), and suppose that we filter
our series to create a new series {yt}; i.e.,

yt =
J−1∑
j=0

ajxt−j , t = J, . . . , N,

where a0, . . . , aJ−1 are the filter coefficients. The filter output {yt} can be regarded as
one portion of a realization of the stationary process {Yt} with sdf SY (·). The relationship
between the sdf’s SX(·) and SY (·) is given by

SY (f) = |A(f)|2 SX(f), where A(f) ≡
J−1∑
j=0

aje
−i2πfj .
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Figure 6. |A(f)|2 versus f for scales 1, 2, 4, 8 and 16 (thin to thick curves) for (a) the
Haar wavelet and (b) Daubechies’s least asymmetric wavelet of order 8 (see Figure 3(c)).
The six thin vertical lines in each plot mark – from left to right – the frequencies 1/64,
1/32, 1/16, 1/8, 1/4 and 1/2.

The function A(·) is known as the transfer function for the filter.
We can obtain the Haar wavelet coefficient of scale τ starting at time t from the

output of the following filter of length J = 2τ :

[(x1 + x2 + · · · + xτ ) − (xτ+1 + xτ+2 + · · · + x2τ )] /
√

2τ ≡ y2τ .

The filter coefficients {aj} are thus

aj =

{
−1/

√
2τ , 0 ≤ j ≤ τ − 1;

1/
√

2τ , τ ≤ j ≤ 2τ − 1.

Figure 6(a) shows |A(f)|2 for the Haar wavelet filter versus f for scales 1, 2, 4, 8, 16 and 32.
This figure shows that the Haar wavelet filter for scale τ can be regarded approximately
as a bandpass filter with a passband given by the interval [1/(4τ), 1/(2τ)]. The notion
of scale is thus approximately related to a certain passband of frequencies. Because
the various scales τ differ from each other by factors of two, the nominal passbands are
nonoverlapping. Thus, if we properly normalize the sum of squares of the output from
the wavelet filter of scale τ , we can estimate the integral of the sdf over frequencies
[1/(4τ), 1/(2τ)]. This scheme is exactly the idea behind an old ‘quick and dirty’ estimator
of the sdf called pilot analysis (Blackman and Tukey, 1958, Section 18) and also allows us
to translate a σ/τ curve into an estimate of the sdf (and vice versa).

Figure 6(b) shows |A(f)|2 versus f for a more complex wavelet than the Haar, namely,
Daubechies’s least asymmetric wavelet of order 8 (see Figure 3(c)). The advantage of this
wavelet over the Haar is the better approximation it offers to a set of nonoverlapping band-
pass filters. For certain applications, this advantage is vital (see Percival and Guttorp,
1994), but there are many applications for which the Haar wavelet is entirely adequate.

To summarize, the theory of linear filters allows us to tie the notion of scale to a
set of frequencies over a certain passband. With this correspondence, an estimate of the
wavelet variance at scale τ can used to estimate the integral of the sdf over the frequencies
[1/(4τ), 1/(2τ)]. Wavelet coefficients at different scales can be obtained by filtering a time
series with a set of approximate nonoverlapping bandpass filters.
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