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1. INTRODUCTION

Let {Xt} denote a discrete parameter stationary process with mean µ = E{Xt} and

autocovariance sequence (acvs) given by

sτ = cov{Xt, Xt+τ} = E{(Xt − µ)(Xt+τ − µ)}, τ = 0,±1,±2, . . .

(note that s0 is the variance of Xt). If we are given a time series of length N that can be

regarded as a realization of a portion X1, . . . , XN of {Xt}, the usual estimator of µ is just

the sample mean X̄ = 1
N

∑N
t=1 Xt. Textbooks on time series analysis commonly discuss

two estimators of the acvs, namely, the ‘unbiased’ estimator

s̃τ ≡ 1

N − |τ |

N−|τ |∑
t=1

(Xt − X̄)(Xt+|τ | − X̄)

and the ‘biased’ estimator

ŝτ ≡ 1

N

N−|τ |∑
t=1

(Xt − X̄)(Xt+|τ | − X̄) =

(
1 − |τ |

N

)
s̃τ ,

where |τ | ≤ N −1. The statistical properties of s̃τ and ŝτ are sufficiently complicated that

it is convenient to assume that µ is known. Under this assumption, the acvs estimators

reduce to

s̃′τ ≡ 1

N − |τ |

N−|τ |∑
t=1

(Xt − µ)(Xt+|τ | − µ) and ŝ′τ ≡ 1

N

N−|τ |∑
t=1

(Xt − µ)(Xt+|τ | − µ).

While these ‘mean known’ estimators are mathematically more convenient to work with,

the ‘mean adjusted’ estimators s̃τ and ŝτ are invariably used in practice. The purpose

of this note is to point out three properties of s̃τ and ŝτ that are surprisingly different

from those of the ‘mean known’ estimators. These ‘curiosities’ are useful as supplementary

material for students in an introductory time series analysis class.
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2. WHICH ACVS ESTIMATOR HAS LESS BIAS?

If the process mean µ is known, it is an easy exercise to show that s̃′τ is an unbiased

estimator of sτ , whereas ŝ′τ is a biased estimator unless sτ = 0. If µ is unknown, then both

s̃τ and ŝτ are in general biased estimators, but it is common practice to refer to the former

as the ‘unbiased’ estimator and to the latter as the ‘biased’ estimator (see, for example,

Priestley, 1981, Section 5.3.3). With this convention, it is somewhat surprising that the

‘biased’ estimator can in fact be less biased than the ‘unbiased’ estimator for all nonzero

lags for which the estimators are defined (the two estimators are identical for τ = 0). To

see this, suppose that {Xt} is a white noise process; i.e., sτ = 0 for τ �= 0. An easy exercise

shows that

E{s̃τ} = −s0

N
, whereas E{ŝτ} = −

(
1 − |τ |

N

)
s0

N
.

That ŝτ is less biased than s̃τ when 0 < |τ | < N − 1 follows from the fact that E{ŝτ}
is closer to 0 than E{s̃τ}. (A general formula for the bias in ŝτ can be obtained from

Theorem 6.2.2 of Fuller, 1976.)

3. NEGATIVE AUTOCOVARIANCES AND ZERO CORRELATION TIMES

When the process mean is unknown, the biased estimator of the acvs satisfies the

following surprising constraint:
N−1∑

τ=−(N−1)

ŝτ = 0. (3.1)

Proof. Consider an N × N matrix whose (t, u)th entry is (Xt − X̄)(Xu − X̄) for

1 ≤ t, u ≤ N :




(X1 − X̄)(X1 − X̄) (X1 − X̄)(X2 − X̄) . . . (X1 − X̄)(XN − X̄)
(X2 − X̄)(X1 − X̄) (X2 − X̄)(X2 − X̄) . . . (X2 − X̄)(XN − X̄)

...
...

. . .
...

(XN − X̄)(X1 − X̄) (XN − X̄)(X2 − X̄) . . . (XN − X̄)(XN − X̄)


 .

The sum of the elements on the main diagonal is
∑N

t=1(Xt − X̄)2 = Nŝ0. The sum of

the elements on the τth super-diagonal is Nŝτ for τ = 1, . . . , N − 1, and the same is

true for the τth sub-diagonal. Since ŝ−τ = ŝτ , the sum of all the elements in the matrix is

N
∑N−1

τ=−(N−1) ŝτ . However, the sum of the tth row of the matrix is (Xt−X̄)
∑N

u=1(Xu−X̄)
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– this is identically zero for all t, from which the stated result follows immediately. (A

variation on this proof shows that

N

N−1∑
τ=−(N−1)

ŝ′τ =

(
N∑
t=1

(Xt − µ)

)2

≥ 0 (3.2)

when the process mean is known.)

Equation (3.1) has three interesting implications.

[1] Since ŝ0 > 0 unless Xt is constant in t (an uninteresting special case), it follows that

ŝτ must be negative for some values of τ , a property that is not necessarily shared by

the true acvs.

[2] Property [1] in turns illustrates a limitation in the interpretation of ŝτ/ŝ0 as a correla-

tion coefficient measuring linear association between Xt+τ and Xt for t = 1, . . . , N−τ

and 0 ≤ τ < N . An extreme example is a time series whose tth value is given by bt,

where b is a nonzero constant. A scatter plot of Xt+τ versus Xt is perfectly linear

(with a slope of unity) for all τ such that 0 ≤ τ ≤ N − 2. The usual relationship

between scatter plots and correlation coefficients suggests that ŝτ/ŝ0 should be unity

(see, for example, Wright, 1992), whereas in fact it can be close to zero or negative.

Figure 1 illustrates this example.

[3] Suppose that {X(t)} is a continuous parameter stationary process with unknown mean

and autocovariance function s(τ). A measure of the correlation time (or integral time

scale) of this process can be defined as

∫ ∞

0

s(τ)

s(0)
dτ =

1

2

∫ ∞

−∞

s(τ)

s(0)
dτ.

If it is finite, this measure is sometimes interpreted in the physical sciences as ‘the

time needed for any correlation between X(t) and X(t+ τ) to die out’ (Yaglom, 1987,

p. 113). For a sampling interval ∆ > 0, let us now define the discrete parameter

process {Xt} by letting Xt = X(t∆) for t = 0, ±1, ±2, . . . . If we now obtain a

realization of X1, . . . , XN , a naive estimator of correlation time would be proportional

to
∑N−1

τ=−(N−1) ŝτ , which Equation (3.1) tells us must always be zero. Clearly this naive
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estimator is not very useful! On the other hand, if E{Xt} = E{X(t)} = µ is known,

we can use ŝ′τ instead of ŝτ . Equation (3.2) suggests that the naive estimator might

then be of some use.

4. BIAS IN THE SAMPLE VARIANCE

For τ = 0, we have

ŝ0 = s̃0 =
1

N

N∑
t=1

(Xt − X̄)2 and ŝ′0 = s̃′0 =
1

N

N∑
t=1

(Xt − µ)2,

all of which estimate the process variance var {Xt} = s0. It readily follows that ŝ′0 is an

unbiased estimator of s0 for all stationary processes. Further, it is straightforward to show

that

E{ŝ0} = s0 − var {X̄}. (4.1)

Since var {X̄} ≥ 0 and since ŝ0 is nonnegative, we have established that

0 ≤ E{ŝ0} ≤ s0 (4.2)

(this is a special case of an elegant proof due to David, 1985). Note that this result says

that, on the average, we cannot overestimate s0 using the estimator ŝ0. If sτ converges to

0 as τ gets large, then var {X̄} → 0 as N → ∞ (Corollary 6.1.1.1, Fuller, 1976), so we can

state the following asymptotic result:

lim
N→∞

E{ŝ0} = s0.

Is it possible to sharpen the lower bound of 0 for E{ŝ0} for finite N? The following

result says that the answer is ‘no.’

Theorem. For every sample size N ≥ 1 and every ε > 0, there exists a stationary

process such that
E{ŝ0}
s0

< ε.

Proof. Let {Xt} be a stationary first-order autoregressive process, i.e.,

Xt = φXt−1 + et,
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where |φ| < 1, and {et} is a white noise process with zero mean and unit variance. We

have s0 = 1/(1−φ2) and sτ = φ|τ |s0 (Equation (2.3.5), Fuller, 1976). Using Equation (4.1)

and the result

var {X̄} =
1

N2

N∑
t=1

N∑
u=1

st−u

(Corollary 6.1.1.2, Fuller, 1976), we obtain

E{ŝ0}
s0

= 1 − 1

N2

N∑
t=1

N∑
u=1

φ|t−u| ≡ 1 − f(φ).

If N > 1, then f(·) is a continuous strictly increasing function of φ on the closed interval

[0, 1]. Since f(0) = 1/N and f(1) = 1, we can find a value φ < 1 such that 1 − f(φ) < ε,

from which we obtain the stated result (the case N = 1 is trivial because then ŝ0 = 0).

This theorem shows that the effect of not knowning the process mean can be rather

large: whereas ŝ′0 is an unbiased estimator of s0 when µ is known, the commonly used ŝ0 can

severely underestimate s0 when µ is unknown. Figure 2 illustrates this result.
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Figure 1. The top plot shows ŝτ/ŝ0 versus τ for a time series of length N = 100 whose

tth value is given by 0.01t. The two thin vertical lines mark the positions τ = 37 and 71,

for which ŝ37/ŝ0 = −0.01 and ŝ71/ŝ0 = −0.41. The two bottom plots show the scatter

plots Xt+τ versus Xt for these two lags, where t = 1, . . . , 100 − τ .
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Figure 2. The jagged curve shows a portion of size 1000 of a realization from the stationary

zero mean AR(1) process Xt = 0.997Xt−1 + et, where {et} is a white noise process with

zero mean and unit variance. The variance of Xt is s0 = 166.9, and the two thin horizontal

lines mark ±s
1/2
0 = ±12.9. For sample size N = 10, we have E{ŝ0/s0} = 0.01; i.e., the

sample variance is biased by a factor of 100. The two thin vertical lines enclose one such

sample of 10 points, for which ŝ0 = 0.7 (well below s0 = 166.9). If we sweep across the

time series plotted above and compute ŝ0 for all possible 991 subseries of size 10, we find

that ŝ0 varies from 0.1 to 17.1 and has an average value of 1.8 (again well below the true

variance). On the other hand, if we compute ŝ′0 based upon the known process mean of

zero, we find that ŝ′0 varies from 0.6 to 764.0 and has an average value of 184.1, which is

rather close to s0 = 166.9.


