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Abstract

In this primer we first give an overview of stochastic models that can be used to interpret
clock noise. Because of their statistical tractability, we concentrate on fractionally differenced
(FD) processes, which we relate to fractional Brownian motion, discrete fractional Brownian
motion, fractional Gaussian noise and discrete pure power-law processes. We discuss several
useful extensions to FD processes, namely, composite FD processes, autoregressive fractionally
integrated moving average (ARFIMA) processes and time-varying FD processes. We then con-
sider the statistical analysis of clock noise in terms of how these models are manifested via the
spectral density function (SDF) and the wavelet variance (WV), the latter being a generalization
of the well-known Allan variance. Both the SDF and the WV decompose the process variance
with respect to an independent variable (Fourier frequency for the SDF, and scale for the WV);
similarly, judiciously chosen estimators of the SDF and WV decompose the sample variance of
clock noise. We give an overview of the statistical properties of estimators of the SDF and the
WV and show how these estimators can be used to deduce the parameters of stochastic models
for clock noise.



1 Introduction

The quality of a time scale formed from the intercomparison of a collection of high performance
clocks is limited by the inherent instability (‘noise’) in the individual clocks. Quantification of the
characteristics of clock noise is possible using the notion of a stochastic process, which by definition
is a set of random variables (RVs) indexed by t (a variable representing the nominal time at which
a measurement of clock noise is taken). We let {Xt} denote the process itself, while Xt represents
the clock noise at time t. We will concentrate on models for sampled data, for which we assume for
convenience that t ∈ Z ≡ {. . . ,−1, 0, 1, . . . } (i.e., the collection of all integers); however, we will
find it handy in some cases to restrict t to just the nonnegative integers, i.e., t ∈ Z

∗ ≡ {0, 1, 2, . . . }.
Because the notion of a stochastic process is quite general, we need to consider carefully what

classes of stochastic processes can serve as useful models for clock noise. We concentrate here on
fractionally differenced (FD) processes, which we define and explore in §2. FD processes depend
upon two parameters. Given a set of clock measurements, we can estimate these parameters and
determine the adequacy of the FD process as a model by using two complementary analysis of
variance (‘power’) techniques, namely, spectral analysis and wavelet analysis. These are discussed
in, respectively, §3 and §4. We conclude with a brief summary in §5.

2 Fractionally Differenced and Related Processes

2.1 Background: Stationary Processes

Let us begin by reviewing the notion of a stationary process. Let E{Xt} denote the expected value
of the RV Xt, and let

cov{Xs, Xt} ≡ E{(Xs − E{Xs})(Xt − E{Xt})}

denote the covariance between the RVs Xs and Xt. A stochastic process {Xt} is said to stationary
if

1. E{Xt} = µX for all t, where µX is a constant that does not depend on t, and

2. cov{Xt, Xt+τ} = sX,τ for all possible t and t+ τ , where sX,τ is a constant depending on the
lag (time difference) between the RVs, but not on t.

The sequence {sX,τ} indexed by the lag τ ∈ Z is known as the autocovariance sequence (ACVS).
Because

sX,0 = cov{Xt, Xt} = E{(Xt − µX)2} ≡ var{Xt},

where var{Xt} denotes the process variance, one consequence of stationarity is that the process
variance is constant across time.

The stationary processes of interest here possess a spectral density function (SDF) that can be
expressed as the Fourier transform of the ACVS; i.e.,

SX(f) =
∞∑

τ=−∞
sX,τe

−i2πfτ , |f | ≤ 1/2. (1)

The SDF is a function of a variable f known as frequency (or, more precisely, Fourier frequency
to avoid confusion with notions such as fractional frequency that arise in the clock literature). We
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take f to have units of cycles per some basic time interval (this is the interval in time between
when we observe the value for, say, Xt and the one for Xt+1).

Although formally the SDF is defined over both positive and negative frequencies, in fact
SX(−f) = SX(f) when {Xt} is a real-valued process (the negative frequencies are a convenient
‘fiction’ that is introduced to simplify certain mathematical expressions). If a stationary process
{Xt} does possess an SDF, then we can recover the ACVS from SX(·) via an inverse Fourier
transform, namely, ∫ 1/2

−1/2
SX(f)ei2πfτ df = sX,τ , τ ∈ Z.

If we set τ = 0 in the above, we obtain the fundamental result that∫ 1/2

−1/2
SX(f) df = sX,0 = var {Xt}; (2)

i.e., the SDF decomposes the process variance across frequencies f .
We can use the theory of linear time invariant filters to give us a complementary interpretation

for the SDF. Let {au, u ∈ Z} denote a filter, and let

Yt ≡
∞∑

u=−∞
auXt−u, t ∈ Z, (3)

represent the output from this filter when its input is the stationary process {Xt}. Under a mild
‘matching condition’ on {au} and {Xt} to ensure that the output process has finite variance, the
process {Yt} is stationary with an SDF given by

SY (f) = A(f)SX(f), where A(f) ≡
∣∣∣∣∣

∞∑
u=−∞

aue
−i2πfu

∣∣∣∣∣
2

. (4)

The function A(·) is known as the squared gain function for {au}. Suppose now that {au} is a
narrow-band filter of bandwidth ∆f centered on some fixed frequency f ; i.e.,

A(f ′) =
{

1/2∆f, f − ∆f/2 ≤ |f ′| ≤ f + ∆f/2
0, otherwise,

We then have then have following interpretation for SX(f):

var {Yt} =
∫ 1/2

−1/2
SY (f ′) df ′ =

∫ 1/2

−1/2
A(f ′)SX(f ′) df ′ ≈ SX(f); (5)

i.e., the SDF SX(·) at frequency f is approximately equal to the variance of the process formed by
subjecting {Xt} to a narrow-band filter centered at that frequency.

2.2 White Noise and Integer Differences of White Noise

The simplest example of a stationary process is white noise. By definition, the stochastic process
{εt, t ∈ Z} is said to be white noise if it satisfies the following three conditions:

1. E{εt} = µε for all t, where µε is some real-valued constant (often taken to be zero);
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2. var {εt} = σ2
ε for all t, where σ2

ε is some positive constant; and

3. cov {εs, εt} = 0 for all s �= t.

White noise thus satisfies the conditions of a stationary process, and its ACVS takes a very simple
form, namely,

sε,τ = cov {εt, εt+τ} =

{
σ2
ε , τ = 0;

0, otherwise.

It follows from (1) that the SDF for white noise is given by

Sε(f) =
∞∑

τ=−∞
sX,τe

−i2πfτ = σ2
ε ;

i.e., the SDF is constant across all frequencies, with the constant being equal to the variance of the
process.

Despite its simplicity, by suitably manipulating white noise, we can create entire classes of
potentially interesting processes. As a first step in this direction, let us consider the first order
backward difference of white noise, namely,

Xt = εt − εt−1.

The above can be expressed in terms of a linear filter by noting that

Xt =
∞∑

u=−∞
auεt−u if we set au ≡


1, u = 0;
−1, u = 1;
0, otherwise

(cf. (3)). It follows from (4) that the squared gain function for a backward difference filter is

A(f) =
∣∣∣1 − e−i2πf

∣∣∣2 =
∣∣∣e−iπf (eiπf − e−iπf )∣∣∣2 =

∣∣∣(eiπf − e−iπf )∣∣∣2 = |2 sin(πf)|2,

where we have made use of the relationship sin(x) = (eix − e−ix)/2i. Equation (4) says that the
SDF for {Xt} is given by

SX(f) = A(f)Sε(f) = |2 sin(πf)|2σ2
ε . (6)

Using the approximation sin(x) ≈ x (valid for for small x), we see that SX(f) ≈ |2πf |2σ2
ε at low

frequencies.
Define B to be the backward shift operator; i.e., Bεt = εt−1, B2εt = εt−2, Bkεt = εt−k for any

positive integer, and (1−B)εt = εt − εt−1. We can use B to help us define the dth order backward
difference of white noise, where d is a positive integer:

Xt = (1 −B)dεt =
d∑

k=0

(
d

k

)
(−B)kεt

=
d∑

k=0

d!
k!(d− k)! (−1)kεt−k

=
d∑

k=0

Γ(d+ 1)
Γ(k + 1)Γ(d− k + 1)

(−1)kεt−k,
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where Γ(·) is the gamma function, one of whose properties is that Γ(k) = (k− 1)! for all k ∈ Z
+ ≡

{1, 2, . . . }. Now the gamma function has poles at all the nonpositive integers, i.e., Γ(k) = ∞ for
k = 0,−1,−2, . . . . Hence

Γ(d+ 1)
Γ(k + 1)Γ(d− k + 1)

(−1)k = 0 when d− k + 1 ≤ 0, i.e., when k ≥ d+ 1.

This fact allows us to write

Xt =
∞∑
k=0

Γ(d+ 1)
Γ(k + 1)Γ(d− k + 1)

(−1)kεt−k.

To be consistent with a convention in the literature, let us define δ ≡ −d (i.e., δ is a negative
integer) so that the above becomes

Xt =
∞∑
k=0

Γ(1 − δ)
Γ(k + 1)Γ(1 − δ − k)(−1)kεt−k. (7)

Since (1 − B)d = (1 − B) · · · (1 − B), a dth order backward difference can be expressed as d
successive applications of a first order backward difference. It follows from (6) that the SDF for
{Xt} is given by

SX(f) =
σ2
ε

|2 sin(πf)|2δ . (8)

At low frequencies we have SX(f) ≈ σ2
ε /|2πf |2δ.

2.3 Stationary Fractionally Differenced Processes

Granger and Joyeux [12] and Hosking [14] both show that (7) makes sense for all δ < 1/2, i.e., not
just for δ equal to a negative integer. When δ is not an integer, we can write

Xt =
∞∑
k=0

ak(δ)εt−k with ak(δ) ≡
Γ(1 − δ)

Γ(k + 1)Γ(1 − δ − k)(−1)k �= 0, (9)

which means that the summation above truly involves an infinite number of RVs from the white
noise process. The process {Xt} is stationary and is called a fractionally differenced (FD) process.
Its SDF has exactly the same form as before, namely, that of (8). We note that an FD process
reduces to white noise when δ = 0.

When δ < 1/2 and δ �= 0,−1, . . . , the ACVS for an FD process is given by

sX,τ = σ2
ε

sin(πδ)Γ(1 − 2δ)Γ(τ + δ)
πΓ(1 + τ − δ) ;

when δ = 0,−1, . . . , we have

sX,τ =

{
σ2
ε

(−1)τΓ(1−2δ)
Γ(1+τ−δ)Γ(1−τ−δ) , 0 ≤ |τ | ≤ −δ and

0, |τ | > −δ.

For all δ < 1/2, we have

sX,0 = var {Xt} = σ2
ε

Γ(1 − 2δ)
Γ2(1 − δ) , (10)
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and the remaining values in the ACVS can be computed easily via the recursion

sX,τ = sX,τ−1
τ + δ − 1
τ − δ , τ ∈ Z

+ (11)

(for negative lags τ , recall that sX,τ = sX,−τ ). Also, for all δ < 1/2, the partial autocorrelation
sequence (PACS) is given by

φt,t ≡
δ

t− δ , t ∈ Z
+

(this sequence is of importance in, e.g., constructing best linear predictors of Xt based upon the
t prior values Xt−1, Xt−2, . . . , X0, which in turn play a key role in exact maximum likelihood
estimation of the FD parameters δ and σ2

ε ).
In summary, stationary FD processes have simple and easily computed expressions for the SDF,

ACVS and PACS.

2.4 Simulation of Stationary Fractionally Differenced Processes

Models for clock noise are often used to generate simulated noise sequences on a digital computer for
use in, e.g., evaluation of different time scale algorithms. We note here that it is possible to obtain
‘exact’ simulations of an FD process via a so-called ‘circulant embedding’ scheme (this is sometimes
referred to in the statistical literature as the Davies–Harte algorithm) [7, 8, 25]. Suppose that we
wish to generate a realization of a portion X0, X1, . . . , XN−1 of an FD process with parameters
−1 ≤ δ < 1/2 and σ2

ε > 0. We begin by using (10) and (11) to compute sX,0, . . . , sX,N . We then
use the discrete Fourier transform (DFT) to compute

Sk ≡
N∑
τ=0

sX,τe
−i2πkτ/2N +

2N−1∑
τ=N+1

sX,2N−τe
−i2πkτ/2N , k = 0, . . . , N ; (12)

i.e., the desired Sk values are the first N + 1 values in the DFT of the following sequence of length
2N :

sX,0, . . . , sX,N−2, sX,N−1, sX,N , sX,N−1, sX,N−2, . . . , sX,1.

Given 2N independent Gaussian deviates εt with mean zero and variance σ2
ε (these can be readily

simulated on a digital computer), we form the complex-valued sequence

Yk ≡


ε0
√

2NS0, k = 0;
(ε2k−1 + iε2k)

√
NSk, 1 ≤ k < N ;

ε2N−1

√
2NSN , k = N ; and

Y∗
2N−k, N < k ≤ 2N − 1

(in the above, the asterisk denotes a complex conjugate). Finally we use the inverse DFT to
construct the real-valued sequence

Yt =
1

2N

2N−1∑
k=0

Yke
i2πkt/2N .

The first N values of this sequence, i.e., Y0, Y1, . . . , YN−1, constitute an exact simulation of X0,
X1, . . . , XN−1 in the sense that the multivariate Gaussian distributions of both sequences are
identically the same.

5



The circulant embedding scheme works for a wide variety of – but not all – stationary processes.
The scheme is guaranteed to work as long as all the Sk in (12) are nonnegative. Results in [5, 11, 19]
prove that (i) Sk ≥ 0 when −1 ≤ δ < 1/2 and (ii) this nonnegativity condition can fail when δ < −1
for certain sample sizes. We note that, since an FD process with δ < −1 can be expressed as a
certain number of backward differences of an FD process with −1/2 ≤ δ < 1/2, we can in fact
easily generate any stationary FD process.

Finally, an interesting implication of the circulant embedding scheme is that we can represent
X0, X1, . . . , XN−1 as

Xt =
2N−1∑
k=0

ct,k(δ)εk rather than Xt =
∞∑
k=0

ak(δ)εt−k; (13)

i.e., even though an FD process is formally defined in terms of an infinite weighted moving average
of a white noise sequence, in fact we can represent a finite portion of length N in terms of a weighted
sum of 2N deviates from another white noise sequence.

2.5 Nonstationary Fractionally Differenced Processes

Here we extend the definition of an FD process to include all δ ≥ 1/2, leading to an interesting
class on nonstationary processes that can generate realistic realizations of various kinds of clock
noise. To make this extension, suppose that X(1)

t is an FD process with parameter δ(s) such that
−1/2 ≤ δ(s) < 1/2. Let us define Xt as the cumulative sum of X(1)

t ; i.e.,

Xt ≡
t∑

l=0

X
(1)
l , t ∈ Z

∗

(for l < 0, let Xt ≡ 0). It can be argued that the process {Xt} is nonstationary because its variance
is not invariant over time, but rather increases unboundedly with time. Since, for t ∈ Z

∗,

X
(1)
t = Xt −Xt−1 and SX(1)(f) =

σ2
ε

|2 sin(πf)|2δ(s)
,

filtering theory suggests using the relationship

SX(1)(f) = |2 sin(πf)|2SX(f)

to define an SDF SX(·) for {Xt}; i.e.,

SX(f) ≡ SX(1)(f)
|2 sin(πf)|2 =

σ2
ε

|2 sin(πf)|2δ , where δ ≡ δ(s) + 1.

Note that this SDF has the same functional form as the SDF for a stationary FD process (see (8)).
Yaglom [26] shows that, although the integral of SX(·) from −1/2 to 1/2 is infinite, the function
SX(·) has many of the properties of SDFs associated with stationary processes, including the
bandpass interpretation of (5).

By cumulatively summing a stationary FD process with parameter δ(s) satisfying −1/2 ≤ δ(s) <
1/2, we define a nonstationary FD process with parameter δ satisfying 1/2 ≤ δ < 3/2. If we now
take this nonstationary process and in turn cumulatively sum it, we obtain another nonstationary
FD process, this time with a δ satisfying 3/2 ≤ δ < 5/2. By continuing in this manner, we can
define a nonstationary FD process for any δ ≥ 1/2.
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Let us consider four special cases of nonstationary FD processes whose backward differences of
a certain order are stationary FD processes. Suppose first that X(1)

t is white noise (i.e., δ(s) = 0)
so SX(1)(f) = σ2

ε . If we cumulatively sum it, the resulting process {Xt} is called a random walk,
which is associated with δ = 1. Its SDF is given by

SX(f) =
σ2
ε

|2 sin(πf)|2 ≈ σ2
ε

|2πf |2 at low frequencies.

If X(2)
t is white noise and if

X
(1)
t ≡

t∑
l=0

X
(2)
l and Xt ≡

t∑
l=0

X
(1)
l , t ∈ Z

∗, (14)

then Xt is called a random run. A random run is associated with δ = 2 and has an SDF given by

SX(f) =
σ2
ε

|2 sin(πf)|4 ≈ σ2
ε

|2πf |4 at low frequencies.

Now suppose that X(1)
t is an FD process with δ(s) = −1/2. If we cumulatively sum it, we obtain

an FD process that is associated with δ = 1/2 and that has an SDF given by

SX(f) =
σ2
ε

|2 sin(πf)| ≈
σ2
ε

|2πf | at low frequencies.

Clock noise with an SDF that varies as 1/|f | is often called flicker phase noise. Similarly, if X(2)
t

is an FD process with δ(s) = −1/2 and if Xt is formed as per (14), then Xt is an FD process with
δ = 3/2 and has an SDF given by

SX(f) =
σ2
ε

|2 sin(πf)|3 ≈ σ2
ε

|2πf |3 at low frequencies.

Clock noise with an SDF varying as 1/|f |3 is known as flicker frequency noise.
Since a nonstationary FD process can be formed by cumulatively summing a stationary FD

process a certain number of times, we can easily simulate the former via cummulative summations
of a simulation of the latter generated using the technique described in §2.4.

2.6 Alternatives to Fractionally Differenced Processes

One of the key properties of FD processes is that their SDFs obey a power law at low frequencies.
Formally we say that a process {Xt} obeys a power law at low frequencies if it possesses an SDF
such that

lim
f→0

SX(f)
C|f |α = 1

for some constant C > 0; i.e., SX(f) ≈ C|f |α at low frequencies. It follows from (8) that FD
processes obey the above with α = −2δ. Several other processes have been considered in the
literature that obey power laws at low frequencies. It is instructive to compare and contrast these
to FD processes.
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Let us first consider fractional Brownian motion (FBM), which we denote by BH(t), 0 ≤ t <∞,
where here t ranges over all nonnegative numbers (rather than just the integers). The SDF for an
FBM is given by

SBH(t)(f) =
σ2
XCH

|f |2H+1
, −∞ < f <∞,

where σ2
X > 0, CH > 0 and 0 < H < 1. The parameter H is called the Hurst parameter (or Hurst

coefficient), while σ2
X > 0 and CH > 0 are, respectively, a variance for an associated fractional

Gaussian noise (see below) and a constant that depends upon H. An FBM obeys a power law over
all frequencies with α = −(2H + 1), which means that −3 < α < −1. If we sample an FBM at the
nonnegative integers, we obtain a discrete fractional Brownian motion (DFBM); i.e., {Bt, t ∈ Z

∗}
is DFBM if Bt = BH(t). A DFBM has an SDF given by

SBt(f) = σ2
XCH

∞∑
j=−∞

1
|f + j|2H+1

, |f | ≤ 1/2

(see [23]). We can argue that a DFBM obeys a power law at low frequencies also with −3 < α < −1,
so it is similar to an FD process with 1/2 < δ < 3/2. We note that a DFBM reduces to a random
walk process if H = 1/2.

A process closely related to DFBM is fractional Gaussian noise (FGN) [15]. An FGN {Xt, t ∈
Z
∗} is defined to be the first forward difference of DFBM; i.e., Xt = Bt+1 − Bt. The SDF for an

FGN is given by

SX(f) = 4σ2
XCH sin2(πf)

∞∑
j=−∞

1
|f + j|2H+1

, |f | ≤ 1/2.

The above obeys a power law at low frequencies with α = −(2H−1), which means that −1 < α < 1.
An FGN {Xt} is in fact a stationary process, with an ACVS given by

sX,τ =
σ2
X

2
(
|τ + 1|2H − 2|τ |2H + |τ − 1|2H

)
, τ ∈ Z,

where we see that sX,0 = σ2
X = var {Xt}. When H = 1/2, an FGN reduces to white noise.

The final process of interest to us is a discrete pure power law (PPL) process, which is defined
to have an SDF given by

SX(f) = CS |f |α, |f | ≤ 1/2,

for some constant CS > 0. This SDF obviously obeys a power law at low frequencies. If α > −1,
a PPL process is stationary, but its ACVS takes some effort to compute; if α = 0, the process
reduces to white noise; and if α ≤ −1, the process is nonstationary, but its backward differences of
a certain order are stationary.

Let us now note the following five ways in which FD processes compare and contrast with
FBMs, DFBMs, FGNs and PPL processes.

1. All five processes obey power laws at low frequencies, but, whereas FD and PPL processes
cover the full range of possible power laws (i.e., −∞ < α < ∞), FBMs, DFBMs and FGNs
cover limited ranges (FBMs and DFBMs carry the restriction −3 < α < −1, while FGNs are
such that −1 < α < 1).
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2. If we difference an FD process, we obtain another FD process. For the other four processes,
differencing yields a new type of process. Because differencing is such an important operation
in time series analysis, the fact that differencing an FD process yields another FD process is
quite convenient in describing the effect of differencing.

3. An FD process has a simple SDF and, if stationary, a simple ACVS and PACS. By contrast,
FBM has a simple SDF, but DFBM has a complicated SDF involving an infinite summation
(since both of these processes are nonstationary, formally they do not possess an ACVS or
PACS). The form of the ACVS for an FGN is simple, but its SDF and PACS have complicated
expressions. Finally, we note that a PPL process has a simple SDF, but, when stationary, its
ACVS and PACS are complicated.

4. FD processes, DFBMs, FGNs and PPL processes all model sampled noise, which can be
problematic if the sampling rate at which the process is observed is subject to change. Only
FBM models unsampled noise.

Although FGNs, PPL processes and FD processes are formally different models, they are actu-
ally quite close to each other when their parameters are set such that they obey the same power law
at low frequencies. Figures 1 and 2 demonstrate two aspects of this closeness. In Figure 1, we show
log/log plots of the SDFs for two specific examples of the three processes. The left-hand, middle
and right-hand plots show SDFs for, respectively, FGNs, PPL processes and FD processes. The two
examples for FGNs have Hurst parameters of H = 0.6 (thick curve) and 0.9 (thin), which, using the
relationship α = −(2H − 1), yield power laws at low frequencies with, respectively, α = −0.2 and
−0.8. The statement SX(f) ≈ C|f |α implies that log (SX(f)) ≈ log (C) + α log (f) at positive low
frequencies, so the exponent α dictates the slope of the approximate linear behavior that appears
in the plots of SX(f) versus f on log/log axes. The middle plot shows the two PPL processes, with
α set to the two values previously mentioned. The right-hand plot gives corresponding examples
for FD processes, with δ set via the relationship δ = −α/2. From these plots, we see that the
power law approximation is evidently quite good when |f | < 1/8 or so for FGNs and FD processes.
We can also see that the SDFs for corresponding models differ only by a small amount at high
frequencies.

Figure 2 shows plots of realizations for the six processes whose SDFs are shown in Figure 1. The
top three plots show, respectively, an FGN with H = 0.6, a PPL process with α = −0.2 and an FD
process with δ = 0.1, while the bottom three plots show the cases H = 0.9, α = −0.8 and δ = 0.4.
Each realization is of length N = 512 and was created using the circulant embedding method
described in §2.4. This method forms a particular realization by transforming a set of 2N = 1024
independent deviates ε0, . . . , ε2N−1 from a standard Gaussian distribution. For all six realizations
plotted in Figure 2, we used the same set of 1024 deviates. The differences amongst comparable
realizations (i.e., the top three plots or the bottom three) are thus due to the underlying processes
rather than to the use of different sets of Gaussian deviates. Visually the three plots for realizations
with comparable parameters are strikingly similar, emphasizing our contention that FGNs, PPL
processes and FD processes are quite similar statistical models (estimates of the SDFs for the six
realizations do in fact show high frequency differences consistent with those shown in Figure 1).

2.7 Extensions to Fractionally Differenced Processes

An FD process is completely characterized by just two parameters (δ and σ2
ε ) and hence is a quite

simple statistical model. While some clock noise can be successfully modeled by this simple process,
usually more complex models are needed to capture the salient features of clock noise. Here we
consider three extensions to basic FD processes that can provide more realistic models.
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1) Composite fractionally differenced processes

Suppose that, for m = 0, . . . ,M−1, {Xm,t} is an FD process with parameters δm and σ2
m. Suppose

the processes {Xm,t} and {Xm′,t} are independent of each other when m �= m′ (this means that
Xm,t and Xm′,t′ are independent for all t and t′). We define a composite FD process as

Xt =
M−1∑
m=0

Xm,t.

This process will have an SDF given by

SX(f) =
M∑

m=1

σ2
m

|2 sin(πf)|2δm
.

A simple example of a composite FD process that has been used to model phase noise consists of
M = 2 components, namely, a random run process (δ1 = 2) and a random walk process (δ2 = 1).
A realization from such a process is shown in the upper right-hand plot of Figure 5, and its
corresponding SDF is shown as the thick smooth curves in Figures 4 and 6 (for this example, we
set σ2

1 = 0.0001 and σ2
2 = 0.0064).

2) Autoregressive fractionally integrated moving average processes

As is evident from the discussion in §2.3 and §2.5, all stationary and nonstationary FD processes
are ultimately based upon (possibly infinite) linear combinations of a white noise process {εt}. One
simple way of extending an FD process is to replace the white noise process in this construction
with a stationary autoregressive moving average (ARMA) process. By definition, an ARMA process
takes the form

Ut =
p∑

k=1

φkUt−k + εt −
q∑

k=1

θkεt−k

and is stationary if we suitably choose the φk parameters (see, e.g., [4]). With this replacement,
the resulting process is called an autoregressive fractionally integrated moving average (ARFIMA)
process (for details, see Beran [3], where these processes are referred to as FARIMA processes). An
ARFIMA process has an SDF given by

SX(f) =
σ2
ε

|2 sin(πf)|2δ ·
∣∣1 −

∑q
k=1 θke

−i2πfk∣∣2∣∣1 −
∑p

k=1 φke
−i2πfk

∣∣2 .
The introduction of the ARMA part gives us more flexibility in modeling the high-frequency struc-
ture of clock noise.

3) Time-varying fractionally differenced processes

Since an FD process is either stationary or has stationary backward differences of a certain order,
either all or some of its pertinent statistical properties are invariant over time. As a clock ages,
however, its statistical properties can change. It is possible to model these changes by introducing
the notion of a time-varying FD (TVFD) process. In the case of stationary FD processes, this can
be done by letting δ in (9) depend upon t, thus yielding the TVFD process

Xt =
∞∑
k=0

ak(δt)εt−k,
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which is well-defined as long as δt < 1/2 for all t. When dealing with a finite portion X0, X1, . . . ,
XN−1, we can also modify the alternative representation given in (13) to obtain

Xt =
2N−1∑
k=0

ct,k(δt)εk, t = 0, 1, . . . , N − 1,

which is particularly useful for generating simulations of TVFDs. The above ideas can be extended
to allow δt to vary in an arbitrary manner (i.e., we can remove the restriction δt < 1/2) and to
make σ2

ε a function of t also (for details, see [19]).
As an example, Figure 3 shows realizations of four different TVFDs, along with plots of δt

versus t. In plot (a), δt starts off close to what is appropriate for white noise (δt = 0) and ends up
close to a process having a power law at low frequencies with α = −1 (δt = 1/2). The change in the
spectral properties of the process is evident in the plotted realization. In plot (b), the parameter
δt is constant and just below 1/2 for the first half of the time series, after which it switches to
another constant – this time just above 1/2 – for the second half. Although the TVFD process
is thus stationary over the first half and nonstationary over the second half (but with stationary
first differences), there is no visible qualitative difference between the two halves of the series. In
plot (c), we show an example of a TVFD process that starts off as a nonstationary FD process with
δ close to 1/2 and then transitions linearly almost up to a random walk process (δ = 1). In plot (d),
the TVFD process starts off with δt = 0.4 (a stationary FD process). It then linearly ramps up
to a nonstationary FD process with δ = 3/4, after which it linearly ramps down to a white noise
process (δ = 0) and then back up to a process close to the stationary/nonstationary boundary of
δ = 1/2. While this last realization does not resemble actual clock noise, it does demonstrate the
potential for evolutionary changes in TVFDs.

2.8 Summary of Fractionally Differenced Processes

Let us briefly summarize some of the key results discussed above for FD processes. The stochastic
process {Xt} is said to be an FD process if its SDF is given by

SX(f) =
σ2
ε

|2 sin(πf)|2δ ≈ σ2
ε

|2πf |2δ at low frequencies.

An FD process depends upon two parameters, namely, δ (which can assume any real value) and σ2
ε

(a positive value that is the variance of the white noise process used to construct the FD process).
At low frequencies, an FD process obeys a power law with exponent α = −2δ. If δ < 1/2, the FD
process is stationary with an ACVS given by

sX,τ =


σ2
ε

sin(πδ)Γ(1−2δ)Γ(τ+δ)
πΓ(1+τ−δ) , when δ is not an integer;

σ2
ε

(−1)τΓ(1−2δ)
Γ(1+τ−δ)Γ(1−τ−δ) , when δ is an integer and 0 ≤ |τ | ≤ −δ; and

0, when δ is an integer and |τ | > −δ,

and a PACS given by

φt,t ≡
δ

t− δ , t ∈ Z
+.

Expressions for the ACVS that are convenient for computational purposes and that are valid for
both integer and noninteger δ are

sX,0 = σ2
ε

Γ(1 − 2δ)
Γ2(1 − δ) and sX,τ = sX,τ−1

τ + δ − 1
τ − δ , τ ∈ Z

+.
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If δ ≥ 1/2, the FD process is nonstationary but its dth order backward difference is a stationary
FD process with parameter δ(s), where

d ≡ �δ + 1/2� and δ(s) ≡ δ − d

(here �x� is the largest integer less than or equal to x).
Stationary FD processes can be readily simulated using the circulant embedding scheme de-

scribed in §2.4, while realizations of nonstationary FD processes can be generated by suitable
cumulative summations of realizations of stationary FD processes.

3 Spectral Analysis of Fractionally Differenced Processes

Suppose now that we have some clock noise and that we regard it as a realization of a portion
X0, . . . , XN−1 of an FD process with unknown parameters δ and σ2

ε . Given the available data, how
should we go about estimating these parameters? Many different estimators have been proposed
for this task (see, e.g., [3]), and the development of new estimators and the statistical analysis
of previously proposed estimators are areas of active research. In this section, we concentrate on
estimators based upon spectral analysis (i.e., frequency-based estimators), while we devote the
next section (§4) to estimators based upon wavelet analysis (i.e., scale-based estimators). These
estimators have the following advantages over certain other techniques that have been proposed in
the literature.

1. Both spectral and wavelet analysis are analysis of variance techniques, so they are useful for
much more than just estimating δ and σ2

ε .

2. Both techniques can help assess the need for models that are more complex than a simple
FD process (e.g., a composite FD process).

3. Both techniques can provide preliminary estimates for more complicated schemes that depend
upon numerical optimization (an example is exact maximum likelihood estimation).

4. The basic components of both techniques have appealing physical interpretations that directly
relate to fundamental notions about the characterization of clock noise.

The use of spectral analysis to estimate δ and σ2
ε has its basis in what happens when we take

the log of both sides of the expression for the SDF of an FD process given in (8). For 0 < f < 1/2,
we obtain

log (SX(f)) = log (σ2
ε ) − 2δ log (|2 sin(πf)|),

which says that a plot of log (SX(f)) versus log (|2 sin(πf)|) is linear with a slope of α = −2δ. As
we have previously noted, the approximation sin(πf) ≈ πf is quite good for 0 < f < 1/8 or so.
This fact implies that

log (SX(f)) ≈ log (σ2
ε ) − 2δ log (2πf);

i.e., a plot of log (SX(f)) versus log (2πf) is approximately linear at low frequencies with the same
slope as before.

Based upon the above log/log relationships, the basic scheme for estimating δ and σ2
ε via spectral

analysis consists of the following four steps.

1. Using X0, . . . , XN−1, we estimate SX(f) via some SDF estimator, say ŜX(f).
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2. We then fit a linear model to log (ŜX(f)) versus log (2πf) over low frequencies to obtain an
estimated slope and an estimated intercept. The simplest fitting procedures are variations on
least squares.

3. We then use the estimated slope α̂ to estimate δ via −α̂/2.

4. Finally we use the antilog of the estimated intercept to estimate σ2
ε .

In what follows, we consider the above scheme using the periodogram in §3.1 and multitaper SDF
estimators in §3.2.

3.1 Spectral Analysis based upon the Periodogram

The most basic estimator of S(f) is the periodogram, which is given by

Ŝ(p)(f) ≡ 1
N

∣∣∣∣∣
N−1∑
t=0

Xte
−i2πft

∣∣∣∣∣
2

, |f | ≤ 1/2

(for convenience, we assume E{Xt} = 0; when this is not the case, as is true in most practical
applications, we need to replace Xt in the above with Xt − X, where X is the sample mean of
X0, . . . , XN−1). Just as the SDF gives a decomposition of the variance of a stationary process, so
does the periodogram give a decomposition of the sample variance:∫ 1/2

−1/2
Ŝ(p)(f) df =

1
N

N−1∑
t=0

X2
t . (15)

For stationary processes and for large sample sizes N , theory suggests that

Ŝ(p)(f) d= S(f)χ2
2/2, 0 < f < 1/2, (16)

approximately; in words, Ŝ(p)(f) is approximately equal in distribution to a chi-square RV (denoted
by χ2

2) with two degrees of freedom after this RV has been multiplied by S(f)/2. Since E{χ2
2} =

2 and var {χ2
2} = 4, it follows that E{Ŝ(p)(f)} ≈ E{S(f)χ2

2/2} = S(f) and var {Ŝ(p)(f)} ≈
var {S(f)χ2

2/2} = S2(f). Additionally, theory suggests that, at Fourier frequencies fj ≡ j/N and
fk ≡ k/N satisfying 0 < fj < fk < 1/2, we have cov {Ŝ(p)(fj), Ŝ(p)(fk)} ≈ 0.

If we apply a log transform to both sides of (16), we obtain

log (Ŝ(p)(f)) d= log
(
S(f)χ2

2/2
)

= log (S(f)) + log
(
χ2

2/2
)
.

Let χ2
η represent a chi-square RV with η degrees of freedom. Bartlett and Kendall [2] determined

that the first moment and variance of a log (χ2
η/η) RV are given by

E
{
log

(
χ2
η/η

)}
= ψ(η/2) − log (η/2) and var

{
log

(
χ2
η/η

)}
= ψ′(η/2),

where ψ(·) and ψ′(·) are the di– and trigamma functions. Their results imply that

E{log (Ŝ(p)(f))} = log (S(f)) + ψ(1) − log (1) = log (S(f)) − γ,

where γ .= 0.57721 is Euler’s constant, and

var{log (Ŝ(p)(f))} = ψ′(1) = π2/6.
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In light of the above, let us define

Y (p)(fj) = log (Ŝ(p)(fj)) + γ and ε(fj) = Y (p)(fj) − log (S(fj)).

It follows that

Y (p)(fj) = log (S(fj)) + ε(fj) ≈ log (σ2
ε ) − 2δ log (2πfj) + ε(fj) (17)

over low frequencies indexed by, say, 1 ≤ j ≤ J . The above is a simple linear regression model
with dependent variables Y (p)(fj), intercept log (σ2

ε ), slope −2δ, independent variables log (2πfj)
and error terms ε(fj) having the following approximate statistical properties:

1. E{ε(fj)} = 0;

2. var {ε(fj)} = π2/6, a known constant;

3. cov {ε(fj), ε(fk)} ≈ 0 when j �= k under the additional assumption that {Xt} obeys a Gaussian
distribution; and

4. ε(fj)
d= log (χ2

2) + γ − log (2).

The properties of the errors ε(fj) are compatible with standard regression models with the exception
that their distribution is markedly non-Gaussian. Assuming this model, we can use a least square
procedure to obtain estimates δ̂ and σ̂2

ε for δ and σ2
ε , along with estimates of the variability in δ̂

and σ̂2
ε [9, 10, 16, 17].

3.2 Spectral Analysis based upon Multitaper Spectral Estimators

While the periodogram-based procedure works reasonably well for stationary FD processes, the
approximations to its statistical properties quoted above are of questionable validity for nonsta-
tionary FD processes. As an example of the potential problems that can arise, Figure 4 illustrates
that this estimator can suffer from a phenomenon called ‘leakage,’ resulting in unacceptably large
biases. The thick curve in plot (a) shows the SDF for the nonstationary composite FD process
described in § 1). The thin curve in that plot shows the periodogram based upon a time series
of length N = 512 generated from this composite process (the series itself is shown in the upper
right-hand plot of Figure 5). There are substantial biases in the periodogram.

One well-known technique for alleviating leakage is tapering, which leads to an SDF estimator
of the following form, known as a direct spectral estimator:

Ŝ(d)(f) ≡
∣∣∣∣∣
N−1∑
t=0

atXte
−i2πft

∣∣∣∣∣
2

.

In the above, {at} is called a data taper and usually resembles a bell-shaped curve. Plots (b)
and (c) in Figure 4 show two direct spectral estimates based upon two different data tapers. The
taper used in (b) leads to an SDF estimate that is less biased than the periodogram, but still
suffers from substantial bias, particularly at high frequencies. The taper used in (c) yields a direct
spectral estimate that is essentially bias free. The idea behind applying a data taper is to force
the beginning and end of the tapered time series to be close to each other. One interpretation of
leakage is that it is due to a mismatch between a time series and an implicit assumption in Fourier
analysis, namely, that the finite sequence X0, . . . , XN−1 is part of a periodic infinite sequence with
a period of N . If |X0 −XN−1| is large compared to typical values for |Xt−Xt−1|, t = 1, . . . , N −1,
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then Fourier methods can have a hard time dealing with the discontinuity between X0 and XN−1,
leading to leakage in SDF estimates. Tapering in effect forces a match between the beginning and
end of the series.

A critique of tapering is that we are effectively decreasing the sample size N of the time series
that we are dealing with; i.e., by tapering, we lose certain ‘information’ contained at the beginning
and end of the series so that N is in effect shortened. Thomson [24] proposed a scheme for
recovering this lost information called multitapering that, as its name implies, uses several different
data tapers. The idea behind multitapering is to use a set of K orthonormal data tapers {ak,t},
k = 0, . . . ,K − 1, where the orthonormality condition states that

N−1∑
t=0

ak,tal,t =

{
1, if k = l;
0, if k �= l.

0 ≤ k, l ≤ K − 1.

Each of these tapers is used to form a direct spectral estimator:

Ŝ
(d)
k (f) ≡

∣∣∣∣∣
N−1∑
t=0

ak,tXte
−i2πft

∣∣∣∣∣
2

, k = 0, . . . ,K − 1.

We then average all K such estimators together to obtain the simplest form of a multitaper SDF
estimator, namely,

Ŝ
(mt)
K (f) ≡ 1

K

K−1∑
k=0

Ŝ
(d)
k (f).

Thomson [24] proposed using tapers based upon discrete prolate spheroidal sequences (now com-
monly referred to as Slepian sequences). These require specialized software in order to compute
(for details, see Chapter 8 of [20]). In subsequent work, Riedel and Sidorenko [22] proposed a
‘minimum bias’ multitapering scheme based upon an easily computed family of sinusoidal tapers.
These tapers are given by

ak,t =
{

2
(N + 1)

}1/2

sin
{

(k + 1)π(t+ 1)
N + 1

}
, t = 0, . . . , N − 1.

Figures 5 and 6 show an example of multitapering using the sinusoidal tapers. The left-hand
column of Figure 5 shows tapers of orders k = 0, 1, 2 and 3 that are appropriate for a time series
of length N = 512. The top plot in the right-hand column shows a series of this length simulated
from the composite FD process with two components described in § 1). The plots below this
one show the effect of multiplying the various sinusoidal tapers and the time series together to form
the tapered series ak,0X0, . . . ak,N−1XN−1. The jagged curves in the top row of Figure 6 show the
direct spectral estimates Ŝ(d)

k (·) based upon the kth order sinusoidal tapers, k = 0, 1, 2 and 3 (left-
to right-hand plots). The smooth thicker curve in each plot shows the true SDF for the composite
FD process. The bottom row shows multitaper SDF estimates Ŝ(mt)

K (·) based upon an average of
K direct spectral estimates, where K = 1, 2, 3 and 4 (left to right). Note that, as K increases, the
variability in the resulting multitaper estimate decreases. This fact can be explained theoretically
from the result that, if S(·) is slowly varying around S(f) and if N is large, then

Ŝ
(mt)
K (f) d= S(f)χ2

2K/2K

15



approximately for 0 < f < 1/2. Since var {χ2
η} = 2η, we have

var {Ŝ(mt)
K (f)} ≈ S2(f) var {χ2

2K}/4K2 = S2(f)/K.

In light of the above, we can now set up a linear regression model that closely parallels the
model of (17) but is based upon the multitaper estimator. Let us define

Y (mt)(fj) = log (Ŝ(mt)
K (fj)) − ψ(K) + log (K) and ζ(fj) = Y (mt)(fj) − log (S(fj)).

We can model Y (mt)(fj) as

Y (mt)(fj) = log (S(fj)) + ζ(fj) ≈ log (σ2
ε ) − 2δ log (2πfj) + ζ(fj) (18)

over low frequencies. As in the case of the periodogram, the above is a simple linear regression
model, but now the errors ζ(fj) have the following statistical properties:

1. E{ζ(fj)} = 0;

2. var {ζ(fj)} = ψ′(K), a known constant (as before, ψ′(·) is the trigamma function);

3. the errors are now correlated, but the form of the correlation takes the following simple
structure:

cov{ζ(fj), ζ(fj+ν)} ≈
{
ψ′(K)

(
1 − |ν|

K+1

)
, if |ν| ≤ K + 1;

0, otherwise; and

4. ζ(fj) approximately obeys a Gaussian distribution when K ≥ 5.

We can compensate for the fact that the errors are now correlated by using a generalized least
squares procedure [9]. This procedure yields estimates δ̂ and σ̂2

ε for δ and σ2
ε , along with estimates

of the variability in δ̂ and σ̂2
ε . Monte Carlo studies indicate that the estimates of δ and σ2

ε obtained
from the multitaper approach are superior to those obtained from the periodogram approach (see
[16] for details).

4 Wavelet Analysis of Fractionally Differenced Processes

In addition to spectral analysis, another important method for estimating the parameters of an
FD processes and for assessing the characteristics of clock noise in general is based on the discrete
wavelet transform (DWT). One form of wavelet-based analysis is closely related to the Allan vari-
ance [1], which is a standard tool in the characterization of clock noise. In what follows, we give
a brief introduction to the DWT, following which we describe some of its uses in analyzing clock
noise.

4.1 Background: the Discrete Wavelet Transform

Let X = [X0, X1, . . . , XN−1]T denote a vector representing our observed time series. For conve-
nience, we assume that the sample size N is an integer multiple of some power of two, which we
denote as 2J0 (in practice, wavelet methods can be readily adapted to handle arbitrary sample
sizes). The DWT is an orthonormal transform of X. The result of the transform is a new vector
of length N , which we call the DWT coefficients and denote as W. This vector is created by
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premultiplying X by an N ×N real-valued matrix W that defines the DWT; i.e., W = WX. The
orthonormality conditions means that the inverse of W is just its transpose, which in turn means
that X = WTW. Since we can exactly recover X from its DWT coefficients, the vector W can be
regarded as an alternative (but fully equivalent) representation for the time series.

The structure of W is such that we can attach a physical meaning to each element of the DWT
coefficient vector W. Qualitatively we can partition W such that

W =


W1

...
WJ0

VJ0


and describe the subvectors as follows. The subvector Wj contains Nj = N/2j wavelet coefficients
that are associated with changes in averages of segments of the time series. Each average spans a
certain segment of data, and the amount that is spanned is referred to as the scale associated with
the wavelet coefficient. The scale associated with all the coefficients in Wj is τj = 2j−1 time units,
where ‘time unit’ refers to the time interval between adjacent measurements of the clock noise
(because the scale is always a power of two, τj is sometimes referred to as the jth ‘dyadic’ scale).
In addition, each wavelet coefficient in W is related to a particular segment of time spanning 2j

time units, and adjacent wavelet coefficients are related to time segments that are separated by
2j time units. The final subvector of W is VJ0 , which contains NJ0 = N/2J0 scaling coefficients.
These coefficients are averages of the time series over a scale denoted by λJ0 = 2J0 .

As an example, Figure 7 depicts the matrix W for the Haar DWT with N = 8 and J0 = 3.
This matrix has eight rows, and the contents of each row are plotted in the figure. Let us consider
the first row (indexed by n = 0), which consists of two nonzero values, followed by six zeros. When
we form the inner product of this row and X, we get a wavelet coefficient that is proportional
to X1 − X0, i.e., the difference between two adjacent ‘one point’ averages. The first four rows
collectively yield W1, with each coefficient in this vector being proportional to changes on a scale
of τ1 = 1. The next two rows (indexed by n = 4 and 5) collectively yield W2, whose contents
are proportional to changes on a scale of τ2 = 2. For example, if we take the inner product of
row n = 4 and X, the resulting coefficient is proportional to 1

2(X3 + X2) − 1
2(X1 + X0), i.e., the

difference between two adjacent ‘two point’ averages. The next row (n = 6) yields W3, with its
single coefficient being proportional to a change on a scale of τ3 = 4. The final row yields V3. This
single scaling coefficient is proportional to an average on a scale of λ3 = 8, i.e., to the sample mean
of all the data.

The wavelet and scaling coefficients that make up the DWT can also be expressed as outputs
from filters applied to the time series X. If we let {hj,l, l = 0, . . . , Lj − 1} represent the wavelet
filter associated with the jth scale, we can apply this filter to the time series to obtain the output

2j/2W̃j,t ≡
Lj−1∑
l=0

hj,lXt−lmodN , t = 0, 1, . . . , N − 1 (19)

(note that this filtering operation treats the data as if it were periodic with a period of N because,
e.g., t− l mod N = t− l+N when −N ≤ t− l ≤ −1 in the above summation). We obtain the tth
element Wj,t of Wj by subsampling this filter output; i.e.,

Wj,t = 2j/2W̃j,2j(t+1)−1, t = 0, 1, . . . , Nj − 1. (20)
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Figure 8 shows four sets of wavelet filters for scales τ1 up to τ7. The left-hand plot of Figure 8
shows the Haar wavelet filters, which, as we have already seen, yield wavelet coefficients that are
proportional to the difference between adjacent sample averages. The remaining plots in this figure
show, from left to right, the Daubechies D(4), C(6) and LA(8) wavelet filters (for details, see [6]
and [21]). The D(4) filters are asymmetric, whereas, by design, the C(6) and LA(8) wavelet filters
are much more symmetric and lead to an interpretation for the associated wavelet coefficients of
differences between a centrally located weighted average and averages of values before and after
it. In terms of their squared gain functions, the jth wavelet filter is approximately a band-pass
filter with a pass-band given by [1/2j+1, 1/2j ]. Thus the notion of scale is related to an interval
of frequencies rather than to just one particular frequency (although wavelet analysis is sometimes
referred to as a ‘time/frequency’ technique, a better descriptor for it is ‘time/scale’).

In a manner completely analogous to (19), we can obtain the scaling coefficients in VJ0 by
using a scaling filter {gJ0,l, l = 0, . . . , LJ0 − 1}. Figure 9 shows four sets of scaling filters for
J0 = 1, . . . , 7 corresponding to the wavelet filters shown in Figure 8. The Haar scaling filters yield
scaling coefficients that are proportional to averages of the time series, whereas the C(6) and LA(8)
scaling filters yield coefficients that are proportional to weighted averages (the D(4) filters can also
be interpreted as such, but the asymmetric weights are not as appealing as the more symmetric
looking weights for the C(6) and LA(8) filters). The J0th scaling filter is approximately a low-pass
filter with a pass-band given by [0, 1/2J0+1]. Collectively the wavelet filters of levels j = 1, . . . , J0

and the scaling filter of level J0 partition the entire frequency interval [0, 1/2].
The first level Haar wavelet filter has a width of two, whereas the corresponding D(4), C(6)

and LA(8) filters have widths of, respectively, four, six and eight. As the width of the first level
filter increases, the wavelet and scaling filters become better approximations to ideal band-pass
and low-pass filters. Also, each wavelet filter has a certain number of backward difference filters
contained within it: the Haar wavelet filter has one; the D(4) and C(6) filters each have two; and
the LA(8) filter has four. For time series that are well modeled by an FD process, the number of
embedded difference filters dictates the range of δ that can be handled by a particular wavelet filter
(e.g., the Haar wavelet filter is limited to δ < 3/2, whereas the LA(8) filter is less restricted in that
it can in theory handle FD processes with δ < 9/2).

As an example, Figure 10 shows the J0 = 6 D(4) DWT coefficients for a sample of N = 512
daily phase deviates for clock 55 (a commercial cesium beam atomic clock) as measured against
a US Naval Observatory clock time scale (this series is measured in nanoseconds and is the last
part of a longer series of 564 daily measurements, with the first 52 days being used to detrend the
remaining measurements via extrapolation of a linear least squares fit). The time series of these
clock noise measurements is shown in the bottom plot in the left-hand column. Above this plot,
there are seven other plots, which depict (from bottom to top) W1, . . . ,W6 and V6 plotted versus
the times associated with each coefficient (the wavelet coefficients are plotted as deviations from
zero, whereas the scaling coefficients are plotted by connected lines). Note that, as we go from
the jth scale to the (j + 1)st scale, the number of wavelet coefficients decreases by a factor of two,
whereas the times between adjacent coefficients increases by a factor of two. Wavelet coefficients
with large magnitudes are associated with portions of the phase record where the atomic clock
performed relatively poorly at the associated scale τj (i.e., there was a large change in the phase
from one time period of length τj to the next); conversely, wavelet coefficients that are close to
zero indicate time periods during which the clock performance was quite stable over a scale of τj .
Because the scaling coefficients (left-hand column, top row) are proportional to averages over 64
days, their plot resembles a highly smoothed version of the original data.

The right-hand column of Figure 10 illustrates an interesting feature of the DWT, namely, that
it can approximately decorrelate time series that have a high degree of autocorrelation. The bottom
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plot in this column shows the sample autocorrelation sequence (ACS) for the phase deviates out to
a lag of 32 days:

ρ̂τ ≡
∑N−τ−1

t=0 (Xt −X)(Xt+τ −X)∑N−1
t=0 (Xt −X)2

, τ = 0, . . . , 32.

This plot shows that the ACS damps down to zero at a very slow rate, which is indicative of a
nonstationary FD process (i.e., δ > 1/2). The six plots about this one show the sample ACSs
for W1, . . . ,W6, along with upper and lower curves depicting 95% confidence limits under the
assumption that the wavelet coefficients in Wj are a sample of white noise of length Nj . We
see that, when sampling variability is taken into account, each subvector of wavelet coefficients
is consistent with a hypothesis of white noise. In addition, it can be argued that the wavelet
coefficients between different scales are approximately uncorrelated. Thus the DWT acts as a
‘whitening transform’ for these highly correlated clock noise measurements.

4.2 Wavelet-Based Analysis of Variance

We noted in our discussion of the periodogram that it gives a decomposition of the sample variance
across frequencies (see (15)). This result is related to the fact that the discrete Fourier transform
is proportional to an orthonormal transform. Because the DWT is an orthonormal transform, we
can formulate a wavelet-based decomposition of the sample variance across scales. To see this, let
us consider the squared norm (or ‘energy’) in our time series X:

‖X‖2 = XTX =
N−1∑
t=0

X2
t .

It is easy to argue that this energy is preserved in the DWT coefficients because we have

‖W‖2 = ‖WX‖2 = XTWTWX = XTX = ‖X‖2

(recall that the inverse of the DWT matrix W is its transpose, and hence WTW is the identity
matrix). Since the subvectors W1, . . . ,WJ0 and VJ0 completely partition W, we have

‖W‖2 =
J0∑
j=1

‖Wj‖2 + ‖VJ0‖2,

where ‖Wj‖2 is the contribution to the energy in the series due to variations at scale τj . Combining
the above, we obtain the following scale-based analysis of the sample variance:

1
N

 J0∑
j=1

‖Wj‖2 + ‖VJ0‖2

 =
1
N

N−1∑
t=0

X2
t .

The above is analogous to the frequency-based decomposition of (15).

4.3 The Maximal Overlap Discrete Wavelet Transform

As noted in (19) and (20), the DWT can be expressed in terms of a subsampling of the output
from a filter applied to the time series X. We can define an interesting and useful variation on the
DWT that is known as the maximal overlap DWT (MODWT) by eliminating the subsampling. If
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we let W̃j represent a vector of length N containing the MODWT wavelet coefficients for scale τj ,
then the tth element of this vector is given by

W̃j,t ≡
1

2j/2

Lj−1∑
l=0

hj,lXt−lmodN , t = 0, 1, . . . , N − 1 (21)

(cf. (19)). A similar equation involving the scaling filter {gj,l} rather than the wavelet filter {hj,l}
can be used to define the elements of ṼJ0 , a vector of length N containing the MODWT scaling
coefficients.

Unlike the DWT, the MODWT is not an orthonormal transform, but is in fact highly redundant.
This is evident because, in the case of the DWT, there are exactly N DWT coefficients, whereas
a level J0 MODWT contains N · (J0 + 1) coefficients in its constituent vectors W̃1, . . . ,W̃J0 and
ṼJ0 . Like the DWT, we can use the MODWT to carry out an analysis of variance because it can
be shown that

‖X‖2 =
J0∑
j=1

‖W̃j‖2 + ‖ṼJ0‖2

(for details, see Chapter 5 of [21]). Unlike the DWT, the MODWT is naturally defined for all
samples sizes N (i.e., we need not make an assumption that N is related to a multiple of a power
of two).

As an example, Figure 11 shows the D(4) MODWT coefficients out to level J0 = 6 for the
same series of phase measurements analyzed using the DWT in Figure 10. In comparison to that
figure, we see that the elimination of subsampling in the MODWT yields a more detailed look at
the scale-based fluctuations in X as a function of time. This type of analysis can help us determine
if the fluctuations at a particular scale are homogeneous across time; if not, then the series might
be a candidate for modeling as a time-varying FD process.

4.4 The Wavelet Variance

Let {Xt, t ∈ Z} be a stochastic process that we use as input to a jth level wavelet filter, obtaining
as output (after rescaling)

W j,t ≡
1

2j/2

Lj−1∑
l=0

hj,lXt−l, t ∈ Z. (22)

We define the wavelet variance (WV) as

ν2
X,t(τj) ≡ var {W j,t},

assuming that var {W j,t} exists and is finite (the quantity ν2
X,t(τj) is sometimes called the wavelet

spectrum). In general, the WV depends on τj and t, but the statistical characteristics of typical
clock noise appear to be invariant over long stretches of time, leading us to consider processes for
which the WV is in fact independent of time; i.e.,

ν2
X(τj) ≡ var {W j,t}

is constant for all t. In practice, the statistical techniques that we outline below for the time-
independent case can be readily adapted to certain processes with time-dependent WVs if the
variations over time are relatively slow.
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One rationale for considering the WV is that it decomposes the variance of a stationary process
on a scale-by-scale basis. Recall that, if {Xt} is a stationary process with an SDF SX(·), then (2)
states the fundamental result that the integral of the SDF is equal to the process variance; i.e.,
the SDF decomposes var {Xt} across frequencies f . This decomposition involves an uncountable
infinite number of frequencies f . As noted in (5), we have the interpretation that SX(f) ∆f is the
contribution to var {Xt} due to frequencies in an interval of length ∆f centered at f . If we are
willing to interpret var {Xt} as being infinite for nonstationary processes with stationary backward
differences, then (2) and (5) hold for these process also,

For the WV the analog to (2) is

∞∑
j=1

ν2
X(τj) = var {Xt};

i.e., the WV decomposes the process variance across scales τj , and we can regard ν2
X(τj) as the

contribution to var {Xt} due to variations at scale τj . The fact that the WV decomposes the process
variance mimics results that we have already noted, namely, that the DWT and MODWT of a time
series X decompose its sample variance across scales. In a certain sense, the decomposition of the
process variance given by the WV is simpler than the SDF-based decomposition because the former
depends on a countably infinite number of scales, whereas the latter involves an uncountable infinite
number of frequencies. In addition, the square root νX(τj) of the WV has the same units as the
process {Xt} and hence is arguably easier to interpret.

A second rationale for considering the WV is that it is often a useful substitute or complement
for the SDF. The fact that the wavelet filter {hj,l} is approximately a band-pass filter with a
passband given by [1/2j+1, 1/2j ] implies that

ν2
X(τj) ≈ 2

∫ 1/2j

1/2j+1

SX(f) df. (23)

If the SDF SX(·) is relatively featureless within every passband of the form [1/2j+1, 1/2j ], then,
loosely speaking, the information in the WV over all scales is equivalent to the information in the
SDF; however, the WV offers a more succinct presentation of this information since we only need
one ν2

X(τj) for each octave band of frequencies.
The SDF SX(·) for an FD process is a good example of one that is relatively featureless. Since

SX(f) ≈ σ2
ε /|2πf |2δ at low frequencies, (23) implies that we should have

ν2
X(τj) ∝ τ2δ−1

j (24)

approximately. Taking logs yields

log (ν2
X(τj)) ≈ a+ (2δ − 1) log (τj),

where a is related to the constant of proportionality in (24). We can thus deduce δ from slope of
plots of log (ν2

X(τj)) versus log (τj). Once we have estimates of ν2
X(τj) over a range of moderate

to large scales and once we have determined the statistical properties of these estimates, we can
estimate δ and σ2

ε by applying regression analysis to the log of these estimates.
We can formulate a useful and efficient estimator of ν2

X(τj) based upon the MODWT wavelet
coefficients of (21) (we could also formulate an estimator based upon the DWT wavelet coefficients,
but it turns out that this estimator is less efficient than the corresponding MODWT estimator;
i.e., the variance of the DWT-based estimator cannot be smaller than that of the MODWT-based
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estimator and generally is larger). Recalling that by definition ν2
X(τj) = var {W j,t}, a comparison

of (21) for W̃j,t and (22) for W j,t shows that W̃j,t = W j,t as long as the ‘modulo N ’ operation is
not formally needed in the definition of the former. This happens when Lj − 1 ≤ t < N , so, under
the assumption that N − Lj ≥ 0, we can obtain an unbiased estimator of ν2

X(τj) using

ν̂2
X(τj) ≡

1
N − Lj + 1

N−1∑
t=Lj−1

W̃ 2
j,t =

1
Mj

N−1∑
t=Lj−1

W
2
j,t,

where Mj ≡ N − Lj + 1. By including all possible MODWT wavelet coefficients, we can also
construct a biased estimator of ν2

X(τj) via

ν̃2
X(τj) ≡

1
N

N−1∑
t=0

W̃ 2
j,t =

1
N

(Lj−2∑
t=0

W̃ 2
j,t +

N−1∑
t=Lj−1

W
2
j,t

)
,

where the first sum in the parentheses involves the MODWT wavelet coefficients that are influenced
by the circularity assumption.

While the unbiased estimator ν̂2
X(τj) might seem preferable, in fact there are reasons for con-

sidering the biased estimator ν̃2
X(τj). First, the biased estimator is actually unbiased if {Xt} is

a white noise process. Second, the biased estimator offers an exact decomposition of the sample
variance, whereas the unbiased estimator need not. The final and most compelling reason for con-
sidering ν̃2

X(τj) is that its mean square error can be smaller than ν̂2
X(τj); i.e., since the mean square

error of an estimator is equal to the sum of its variance and its squared bias, the bias in ν̃2
X(τj) is

compensated for by a decrease in its variability due to the use of the additional MODWT wavelet
coefficients. For details, see Greenhall et al. [13], where it is noted that the improvement in mean
square error comes about only if, instead of analyzing {Xt} itself, we apply the MODWT to a series
of length 2N formed by extending {Xt} with a reflected (i.e., time reversed) version of itself; i.e.,
we analyze

X0, X1, . . . , XN−2, XN−1, XN−1, XN−2, . . . , X1, X0

rather than just X0, X1, . . . , XN−2, XN−1.
Suppose now that {W j,t} obeys a Gaussian distribution and is a stationary process with zero

mean and with an SDF given by Sj(·) (this latter condition holds if, e.g., {Xt} is an FD process
and if the wavelet filter has enough embedded backward difference filters to reduce the FD process
to a zero mean stationary process). Since {W j,t} is the result of filtering {Xt} with the wavelet
filter {hj,l}, (4) tells us that Sj(·) involves the product of the SDF for {Xt} and the squared gain
function for the filter. Suppose further that Sj(f) > 0 at almost all frequencies (as is true in all
practical situations) and that the following square integrability condition holds:

Aj ≡
∫ 1/2

−1/2
S2
j (f) df <∞

(this condition is true for all FD processes as long as the wavelet filter has enough embedded back-
ward differences filters). Under these conditions, it is possible to show that ν̂2

X(τj) is asymptotically
normally distributed with a mean of ν2

X(τj) and a large sample variance given by 2Aj/Mj [18]. In
practice, we need to estimate Aj (see Chapter 8 of [21] for three methods for doing so), after which
we can assess the variability in ν̂2

X(τj) and hence in log (ν̂2
X(τj)).

As an example, Figure 12 shows the clock errors Xt for clock 55 (previously considered in
Figures 8 and 13), along with plots of its first and second order backward differences X(1)

t ≡
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Xt −Xt−1 and X(2)
t ≡ X

(1)
t −X

(1)
t−1. The first order backward differences are proportional to the

fractional frequency deviates Y t (these are obtained by dividing X(1)
t by 8.64× 1013 since (i) Xt is

measured in nanoseconds and (ii) the spacing between Xt−1 and Xt is one day). While Xt is too
dispersive to be a reasonable realization from a Gaussian stationary process, the plots in this figure
suggest that its first and second differences can be modeled as such; however, X(1)

t appears to have
a sample mean that is inconsistent with the assumption of a zero mean, whereas X(2)

t appears to
be a realization of a zero mean process.

Figure 13 shows the square root ν̂X(τj) of the estimated WVs versus τj on a log/log scale for
the clock errors Xt. The estimates ν̂X(τj) in the left-hand plot are based on three different wavelet
filters, namely, the Haar wavelet filter (x’s), the D(4) filter (circles) and the D(6) filter (pluses).
While the D(4) and D(6) estimates are in good agreement, the Haar estimates are systematically
larger. This anomalous result can be attributed to the fact that the Haar wavelet filter involves a
single backward difference, whereas a second order backward difference is required to reduce {Xt}
to a series that can reasonably be interpreted as a realization of a zero mean stationary process.
The fact that the Haar estimates are elevated can be regarded as a form of leakage, which can be
handled easily in wavelet analysis by merely using a wavelet filter with more embedded backward
differences (for the D(L) and LA(L) Daubechies wavelet filters, the number of such backward
differences is L/2). The right-hand plot in Figure 13 shows the D(4) values for ν̂X(τj) again, now
along with 95% confidence intervals and a linear least squares fit for deducing the δ parameter in
a possible simple FD model for Xt (the slope of the line in log/log space is 0.48, which translated
to an estimate of 0.98 for δ – this is quite close to the value δ = 1 for a random walk process).

Figure 14 shows a WV analysis of the daily average fractional frequency deviates {Y t} (these
are proportional to {X(1)

t }). The left-hand plot shows ν̂Y (τj) versus τj on a log/log scale using the
Haar wavelet filter (x’s) and the D(4) wavelet filter (circles). Because the first difference of {Y t}
can be reasonably regarded as a realization of a zero mean stationary process and because there is
at least one backward difference filter embedded in both wavelet filters, the resulting estimates of
νY (τj) for the two filters are quite similar. When we use the Haar wavelet filter, the resulting WV
ν2
Y

(τj) is proportional to the Allan variance σ2
Y

(2, τj); in fact, we have

ν2
Y

(τj) = 1
2σ

2
Y

(2, τj).

The right-hand plot shows the D(4) estimates again, but this time with 95% confidence intervals
and a regression fit for deducing the δ parameter in a simple FD model for Y t (the estimate slope
is now −0.47, which translates to δ = 0.03 and is quite close to the value δ = 0 for a white noise
process).

5 Summary

To briefly summarize our main points, fractionally differenced (FD) processes provide a flexible and
tractable class of models that obey power laws at low frequencies with any arbitrary exponent. FD
processes are easy to work with because the expressions for their SDFs, ACVSs and PACSs are all
quite simple. In addition, these processes can be readily extended in several directions, including
composite FD processes, ARFIMA processes and time-varying FD processes.

Given a sample of clock noise that we propose to model as a portion of a realization of an
FD process, we can use either spectral analysis or wavelet analysis to obtain estimates of the
parameters for FD processes. There are also numerous time-domain techniques for estimating
these parameters, but, while some of these are competitive with spectral or wavelet methods, these
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latter techniques also offer a decomposition of the sample variance across frequencies (in the case
of spectral analysis) or across scales (in the case of wavelet analysis). The two techniques provide
complementary analyses, but there are some potential advantages in using wavelet analysis for clock
noise. First, wavelet-based estimators of δ and σ2

ε tend to perform somewhat better than SDF-
based estimators. Second, wavelet analysis is useful for characterizing and analyzing clock noise
with time-varying statistical properties. Third, wavelet filters can handle clock noise observed in
the presence of certain polynomial trends (for details, see Chapter 9 of [21]). Finally, estimators of
the WV have the same units as X2

t , which facilitates their interpretation.
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Figure 1: SDFs for FGN, PPL and FD processes on log/log axes. Each SDF SX(·) is normalized
such that SX(0.1) = 1.
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Figure 2: Simulated realizations Xt of FGN, PPL and FD processes (the SDFs for these processes
are shown in Figure 1).
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Figure 3: Four examples of time series simulated from TVFD processes. The upper panel of each
plot shows the sequence δt, t = 0, . . . , 511, used to generate the simulated time series in the lower
panel.

28



        

 

        

 

  

  

  

  

  

  

  

  

  

  

  

        

 

(a) (b) (c)

S(f)

105

104

103

102

101

100

10−1

10−2

10−3

10−4

10−5

0.01 0.1 1 0.01 0.1 1 0.01 0.1 1
f f f

Figure 4: Periodogram (a) and direct spectral estimates (b, c) of clock noise simulated from a
composite FD process with two components specified by δ1 = 2, σ2

1 = 0.0001, δ2 = 1 and σ2
2 =

0.0064. The true SDF is the thick curve in each plot, while the thin curves are the spectral estimates.
The data tapers used in the direct spectral estimates are Slepian tapers (i.e., discrete prolate
spheroidal sequences) with the resolution bandwidth W set via (b) NW = 1 and (c) NW = 2. The
simulated clock noise is shown in the upper right-hand plot of Figure 5.
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Figure 5: Sinusoidal tapers (left-hand column) as applied to a simulated composite FD time series
(top plot, right-hand column), resulting in four tapered series (right-hand column, second to bottom
rows).
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Figure 6: Direct spectral estimates Ŝ(d)
k (·) formed using the kth sinusoidal taper, k = 0, . . . , 3

(top row, left- to right-hand plots), along with multitaper estimates Ŝ(mt)
K (·) formed by averaging

K = 1, . . . , 4 of these direct spectral estimates (bottom row).
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Figure 7: Haar discrete wavelet transform matrix W for the case N = 8 and J0 = 3. The (n, t)th
element of this 8× 8 matrix is denoted as Wn,t, where n, t = 0, . . . , 7. The eight values in each row
n are plotted as deviations from zero (indicated by a horizontal line).
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Figure 8: Haar, D(4), C(6) and LA(8) wavelet filters hj,l for scales τj = 2j−1, j = 1, 2, . . . , 7.
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Figure 9: Haar, D(4), C(6) and LA(8) scaling filters gJ0,l for scales λJ0 = 2J0 , J0 = 1, 2, . . . , 7.
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Figure 10: D(4) DWT wavelet and scaling coefficients (Wj,t and V6,t) for clock 55 and sample
autocorrelation sequences (ρ̂τ ).
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Figure 11: D(4) MODWT wavelet and scaling coefficients (W̃j,t and Ṽ6,t) for clock 55.
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Figure 12: Plot of differences in time {Xt} as kept by clock 55 and as kept by a time scale maintained
by the US Naval Observatory, Washington, DC (top plot); its first backward difference {X(1)

t }
(middle); and its second backward difference {X(2)

t } (bottom). In the middle plot, Y t denotes the
daily average fractional frequency deviates (plotted according to the right-hand vertical axis) –
these are proportional to X(1)

t .
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Figure 13: Square roots ν̂X(τj) of wavelet variance estimates for clock 55’s phase differences Xt

based upon the unbiased MODWT estimator and the following wavelet filters: Haar (x’s in left-
hand plot), D(4) (circles in left- and right-hand plots) and D(6) (pluses in left-hand plot). The
right-hand plot also shows 95% confidence intervals for the unknown wavelet variances and a linear
least squares fit to log10(ν̂X(τj)) versus log10(τj).
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Figure 14: Square roots ν̂Y (τj) of wavelet variance estimates for clock 55’s one day average fractional
frequency deviates Y t(τ1) based upon the unbiased MODWT estimator and the following wavelet
filters: Haar (x’s in left-hand plot) and D(4) (circles in left and right-hand plots). The right-hand
plot also gives 95% confidence intervals for the νY (τj) and a least squares fit to log10(ν̂Y (τj)) versus
log10(τj).
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