Wavelet-Based Multiresolution Analysis

of Wivenhoe Dam Water Temperatures

Don Percival

Applied Physics Laboratory Department of Statistics University of Washington Seattle, Washington, USA

http://faculty.washington.edu/dbp

Collaborative effort with Sarah Lennox, You-Gan Wang and Ross Darnell, with support from Sequater personnel

Background: I

- Queensland Bulk Water Supply Authority (Seqwater) manages catchments, water storages and treatment services to ensure quality and quantity of water supplied to Southeast Queensland
- ongoing monitoring program recently upgraded with permanent installation of vertical profilers at Lake Wivenhoe dam
- each profiler monitors water quality indicators every two hours at different depths at a fixed location (temperature, pH, ...)
- leads to a unique opportunity to study fluctuations in these indicators in a subtropical dam as a function of time and depth
- will concentrate on a 600+ day segment of temperature fluctations X_t recorded at dam wall (temperature is regarded as important driver for other water quality indicators)

Lake Wivenhoe

Photograph: Andrew Watkinson (Seqwater)

X_t at Depths of 1, 5, 10, 15 & 20 Meters

3

Background: II

- complicated structure both across time and down depth
- Q: how can we best quantify variations in data?
- propose to simplify task by breaking X_t into components capturing daily, subannual & annual (DSA) variations
- can formulate precise definitions for each component in terms of a wavelet-based multiresolution analysis (MRA)
- DSA components are such that they
 - are approximately pairwise uncorrelated
 - sum up to original X_t exactly and
 - based upon coefficients that decompose sample variance of X_t exactly across time

Background: III

- some questions our approach can help address:
 - 1. how does variance change across time?
 - 2. are variations from one day to the next more prominent than variations from, say, one month to the next?
 - 3. how repeatable are variations in annual cycle at each depth?
 - 4. what are the pairwise relationships between depth series over different spans of time (e.g., day-to-day, month-to-month)?
- resulting analysis mainly descriptive, but provides insight into components needed for a formal statistical model

Overview of Remainder of Talk

- give overview of standard wavelet analysis
- describe adaptations for analysis of dam temperatures
- discuss preparations to data prior to analysis
- present key results of our analysis (complete analysis documented in recently completed manuscript)

Basic Description of Wavelet Analysis: I

- let **X** be a column vector with elements $X_t, t = 0, 1, \ldots, N-1$
- **X** represents time series of N 'regularly sampled' observations, i.e., time associated with X_t is $t_0 + t \Delta$
 - $-t_0$ is the time at which X_0 was observed
 - Δ is the sampling time between adjacent observations (e.g., $\Delta = 2$ hours for water temperature time series)
 - -t is time index for element X_t
- wavelet analysis of \mathbf{X} is a linear transformation, expressed as

$$\widetilde{\mathbf{W}} = \widetilde{\mathcal{W}} \mathbf{X},$$

where $\widetilde{\mathcal{W}}$ is a matrix transforming **X** into a vector of maximal overlap discrete wavelet transform (MODWT) coefficients $\widetilde{\mathbf{W}}$

Basic Description of Wavelet Analysis: II

- \mathbf{W} contains two types of MODWT coefficients
 - wavelet coefficients
 - scaling coefficients
- let's focus first on wavelet coefficients, denoted by $\widetilde{W}_{j,t}$
- while each X_t in **X** has just a time index t, each wavelet coefficient $\widetilde{W}_{j,t}$ in $\widetilde{\mathbf{W}}$ has two indices:
 - level index j, where $j = 1, 2, \ldots, J_0$
 - time index t, where $t = 0, 1, \ldots, N-1$
- maximum level J_0 depends upon the particular application (for water temperature series, $J_0 = 9$ as discussed later)

Basic Description of Wavelet Analysis: III

- index t for $W_{j,t}$ says that formation of this coefficient involves only parts of **X** centered about a particular time
- index j tells us how many values in **X** are in effect being used to form $\widetilde{W}_{j,t}$
- if j is small (*large*), $\widetilde{W}_{j,t}$ depends mainly on a small (*large*) number of values from **X**
- another interpretation is that j is an index for the interval of frequencies f given by

$$\mathcal{I}_j = \left(\frac{1}{2^{j+1}\Delta}, \frac{1}{2^j\Delta}\right]$$

• $W_{j,t}$ is that part of a localized Fourier decomposition of **X** associated with frequencies $f \in \mathcal{I}_j$ (localization dictated by t)

Frequency Intervals \mathcal{I}_j When $\Delta = 2$ hours

Basic Description of Wavelet Analysis: IV

- let's now focus on scaling coefficients $\widetilde{V}_{J_0,t}$ in $\widetilde{\mathbf{W}}$
- each scaling coefficient also has a level index and a time index, but level index can assume only single value J_0
- time index t on $\widetilde{V}_{J_0,t}$ has same interpretation as for $\widetilde{W}_{j,t}$
- interval of frequencies associated with $\widetilde{V}_{J_0,t}$ is

$$\mathcal{I}_0 = \left[0, \frac{1}{2^{J_0 + 1}\Delta}\right]$$

- union of \mathcal{I}_j , $j = 0, 1, \ldots, J_0$, is $[0, 1/(2\Delta)]$, i.e., all physically meaningful frequencies in Fourier decomposition of **X**
- scaling coefficients capture localized low-frequency variations in **X**, whereas wavelet coefficients do the same over frequency intervals $\mathcal{I}_j, j = 1, 2, ..., J_0$

Frequency Intervals \mathcal{I}_i When $\Delta = 2$ hours & $J_0 = 4$

Wavelet-based Analysis of Variance: I

- place all wavelet coefficients in \mathbf{W} associated with level j into vector $\widetilde{\mathbf{W}}_j$ & all scaling coefficients into vector $\widetilde{\mathbf{V}}_{J_0}$
- denote the square of Euclidean norm of **X** as $\|\mathbf{X}\|^2 \equiv \sum_t X_t^2$
- important property of MODWT of **X** is that $\|\widetilde{\mathbf{W}}\|^2 = \|\mathbf{X}\|^2$
- since $\widetilde{\mathbf{W}}$ is the union of $\widetilde{\mathbf{W}}_1, \widetilde{\mathbf{W}}_2, \ldots, \widetilde{\mathbf{W}}_{J_0}$ and $\widetilde{\mathbf{V}}_{J_0}$, also have

$$\sum_{j=1}^{J_0} \|\widetilde{\mathbf{W}}_j\|^2 + \|\widetilde{\mathbf{V}}_{J_0}\|^2 = \|\mathbf{X}\|^2$$

• can interpret $\|\widetilde{\mathbf{W}}_{j}\|^{2}$ as part of $\|\mathbf{X}\|^{2}$ attributable to localized Fourier coefficients associated with frequency interval \mathcal{I}_{j} , and $\|\widetilde{\mathbf{V}}_{J_{0}}\|^{2}$ as being associated with low-frequency interval \mathcal{I}_{0}

Wavelet-based Analysis of Variance: II

• let $\overline{X} = \sum_{t} X_t / N$ denote sample mean of **X**, and consider its sample variance:

$$\hat{\sigma}_X^2 = \frac{1}{N} \sum_{t=0}^{N-1} \left(X_t - \overline{X} \right)^2 = \frac{1}{N} \|\mathbf{X}\|^2 - \overline{X}^2$$

• can reexpress the above as

$$\hat{\sigma}_X^2 = \sum_{j=1}^{J_0} \frac{1}{N} \|\widetilde{\mathbf{W}}_j\|^2 + \left(\frac{1}{N} \|\widetilde{\mathbf{V}}_{J_0}\|^2 - \overline{X}^2\right) \equiv \sum_{j=1}^{J_0} \hat{\sigma}_j^2 + \hat{\sigma}_0^2,$$

where $\hat{\sigma}_j^2$ and $\hat{\sigma}_0^2$ are sample variances associated with $\widetilde{\mathbf{W}}_j$ and $\widetilde{\mathbf{V}}_{J_0}$ (sample mean of $\widetilde{\mathbf{V}}_{J_0}$ is \overline{X} also, whereas wavelet coefficients come from populations with zero means)

Wavelet-based Analysis of Variance: III

- can break up sample variance of **X** into $J_0 + 1$ parts, J_0 of which (the $\hat{\sigma}_j^2$'s) are attributable to fluctuations in intervals of frequencies \mathcal{I}_j , and the last $(\hat{\sigma}_0^2)$, to fluctuations over low-frequency interval \mathcal{I}_0
- refer to decomposition of $\hat{\sigma}_X^2$ afforded by

$$\hat{\sigma}_X^2 = \sum_{j=1}^{J_0} \hat{\sigma}_j^2 + \hat{\sigma}_0^2$$

as a wavelet-based analysis of variance (ANOVA)

Wavelet-based ANOVA for 1 m Water Temperatures

Multiresolution Analysis (MRA)

- can use the MODWT coefficients to obtain a wavelet-based additive decomposition known as a multiresolution analysis
- start with fact that **X** can be recovered from its MODWT coefficients $\widetilde{\mathbf{W}} = \widetilde{\mathcal{W}} \mathbf{X}$ via synthesis equation $\mathbf{X} = \widetilde{\mathcal{W}}^T \widetilde{\mathbf{W}}$
- partitioning both $\widetilde{\mathcal{W}}$ and $\widetilde{\mathbf{W}}$ allows rewriting $\mathbf{X} = \widetilde{\mathcal{W}}^T \widetilde{\mathbf{W}}$ as

$$\mathbf{X} = \sum_{j=1}^{J} \widetilde{\mathcal{D}}_j + \widetilde{\mathcal{S}}_{J_0}$$

- $\widetilde{\mathcal{D}}_j$ is a 'detail' series depending just on $\widetilde{\mathbf{W}}_j$ and those rows in $\widetilde{\mathcal{W}}$ used to create $\widetilde{\mathbf{W}}_j$ from \mathbf{X}
- $\widetilde{\mathcal{D}}_j$ captures part of **X** attributable to fluctuations in \mathcal{I}_j
- $\widetilde{\mathcal{S}}_{J_0}$ is a 'smooth' series capturing low-frequency fluctuations

 $J_0 = 3$ MRA for 1 m Water Temperatures

Adaptation of MRA for Water Temperatures: I

- idea behind MRA is to break \mathbf{X} up into components $\widetilde{\mathcal{D}}_j$ and $\widetilde{\mathcal{S}}_{J_0}$ capturing different aspects of \mathbf{X} (in statistical terms, components should be approximately pairwise uncorrelated)
- J_0 usually chosen so that $\widetilde{\mathcal{S}}_{J_0}$ captures prominent large-scale (low-frequency) fluctuations in **X**
- setting $J_0 = 9$ means that \widetilde{S}_9 captures fluctuations lower in frequency than 4.3 cycles/year
- empirically $\widetilde{\mathcal{S}}_9$ is preferable to either $\widetilde{\mathcal{S}}_8$ or $\widetilde{\mathcal{S}}_{10}$ in capturing interannual variations
 - $-\widetilde{\mathcal{S}}_8$ is arguably undersmoothed, containing fluctuations better ascribed to intra-annual variations
 - $-\widetilde{\mathcal{S}}_{10}$ is somewhat oversmoothed, hence distorting the interannual fluctuations

$J_0 = 8$ Smooth for 10 m Water Temperatures

 $J_0 = 9$ Smooth for 10 m Water Temperatures

21

 $J_0 = 10$ Smooth for 10 m Water Temperatures

22

Adaptation of MRA for Water Temperatures: II

- with $J_0 = 9$, would have 9 detail series and smooth S_9 in usual wavelet-based MRA, but desirable to have decomposition with physically motivated components
- two important physical drivers for dam water temperatures are
 - revolution of earth about sun (influences annual variations)
 - daily rotation of earth (influences diurnal variations)
- seek additive decomposition isolating these variations
- setting $J_0 = 9$ results in $\widetilde{\mathcal{S}}_9$ capturing annual variations
- any purely periodic daily variation in time series with $\Delta = 2$ hours can be expressed exactly with a Fourier decomposition involving a constant and sines & cosines with (at most) 6 frequencies, namely, fundamental frequency $f_1 = 1$ cycle/day and five harmonics $f_k = kf_1$, k = 2, 3, 4, 5 and 6 cycles/day.

Frequency Intervals \mathcal{I}_j When $\Delta = 2$ hours

Adaptation of MRA for Water Temperatures: III

- daily fluctuations are captured primarily in $\widetilde{\mathcal{D}}_1, \, \widetilde{\mathcal{D}}_2$ and $\widetilde{\mathcal{D}}_3$
- accordingly, let's define a daily component as

$$\mathcal{D} = \widetilde{\mathcal{D}}_1 + \widetilde{\mathcal{D}}_2 + \widetilde{\mathcal{D}}_3$$

- $\mathcal{A} = \widetilde{\mathcal{S}}_9$ defines the annual component
- combine remaining details into a 'subannual' component

$$\mathcal{S} = \widetilde{\mathcal{D}}_4 + \widetilde{\mathcal{D}}_5 + \dots + \widetilde{\mathcal{D}}_9,$$

leading to the modified MRA

$$\mathbf{X} = \mathcal{D} + \mathcal{S} + \mathcal{A}$$

• will refer to this modified MRA as the DSA decomposition

DSA Decomposition for 1 m Water Temperatures

Adaptation of ANOVA for Water Temperatures: I

- can formulate ANOVA corresponding to DSA decomposition in two ways (one obvious, and the other, not so obvious)
- \bullet obvious way is to just add squared wavelet coefficients for each level involved in forming ${\cal D}$ and ${\cal S}$
 - elucidation of statistical properties of combination requires model to sort out relative influence of squared coefficients from different $\widetilde{\mathbf{W}}_{i}$'s (not easy to come by)
- not-so-obvious way is define a new transform, say $\mathbf{U} = \mathcal{U}\mathbf{X}$, with associated synthesis equation $\mathbf{X} = \mathcal{U}^T \mathbf{U}$
- U contains three types of coefficients D, S and A, each having N elements

Adaptation of ANOVA for Water Temperatures: II

• coefficients satisfy $\|\mathbf{D}\|^2 + \|\mathbf{S}\|^2 + \|\mathbf{A}\|^2 = \|\mathbf{X}\|^2$, with

$$\|\mathbf{D}\|^{2} = \sum_{j=1}^{3} \|\widetilde{\mathbf{W}}_{j}\|^{2}, \|\mathbf{S}\|^{2} = \sum_{j=4}^{9} \|\widetilde{\mathbf{W}}_{j}\|^{2}, \|\mathbf{A}\|^{2} = \|\widetilde{\mathbf{V}}_{J_{0}}\|^{2}$$

• above leads to an ANOVA based upon the \mathcal{U} transform:

$$\hat{\sigma}_X^2 = \frac{1}{N} \|\mathbf{D}\|^2 + \frac{1}{N} \|\mathbf{S}\|^2 + \left(\frac{1}{N} \|\widetilde{\mathbf{A}}\|^2 - \overline{X}^2\right) = \hat{\sigma}_D^2 + \hat{\sigma}_S^2 + \hat{\sigma}_A^2,$$

where

$$\hat{\sigma}_D^2 = \sum_{j=1}^3 \hat{\sigma}_j^2, \ \hat{\sigma}_S^2 = \sum_{j=4}^9 \hat{\sigma}_j^2 \text{ and } \hat{\sigma}_A^2 = \hat{\sigma}_0^2$$

• manipulation of synthesis equation $\mathbf{X} = \mathcal{U}^T \mathbf{U}$ leads to DSA decomposition $\mathbf{X} = \mathcal{D} + \mathcal{S} + \mathcal{A}$

Adaptation of ANOVA for Water Temperatures: III

- have essentially 'collapsed' 3N wavelet coefficients in \mathbf{W}_1 , \mathbf{W}_2 and $\widetilde{\mathbf{W}}_3$ into N coefficients \mathbf{D} , from which can determine \mathcal{D}
- likewise, have collapsed 6N wavelet coefficients in \mathbf{W}_4 , \mathbf{W}_5 , \ldots , $\widetilde{\mathbf{W}}_9$ into N coefficients **S**, from which can determine \mathcal{S}
- will refer to
 - $\, \mathcal{U}$ as the DSA transform
 - **D**, **S** and **A** collectively as DSA transform coefficients
 - D, S and A alone as daily, subannual & annual coefficients
 - elements of **D**, **S** and **A** by D_t , S_t and A_t

Data Preparation

- monitoring system at Wivenhoe Dam designed to measure water temperature and other variables at depths of 1, 2, ..., 20 m every two hours (will concentrate on 1, 5, 10, 15 and 20 m as representative depths)
- protocol successfully adhered, with the exception of
 - some gaps in the data
 - some jitter in collection times (unlikely to impact analysis)
- can fill in gaps using a stochastic interpolation scheme
- also need to pay attention to how to handle boundary conditions for MODWT and DSA transforms

10 m Water Temperatures with Gaps

31

Gap-filled 10 m Water Temperatures

32

Gap-filled 10 m Water Temperatures

Gap-filled 10 m Water Temperatures

34

DSA Decomposition for 1 m Water Temperatures

DSA Decomposition for 5 m Water Temperatures

DSA Decomposition for 10 m Water Temperatures

DSA Decomposition for 15 m Water Temperatures

DSA Decomposition for 20 m Water Temperatures

Relative Importance of Three Components

- distance between adjacent vertical tick marks on all plots is 5 degrees Celsius
- in terms of overall (global) variability in each \mathbf{X} , annual component \mathcal{A} is obviously dominant
- daily component \mathcal{D} appears to contribute least, but there are local stretches over which it has greater variability than \mathcal{S}
- can quantify relative contribution of D, S and A coefficients to variance of each X globally using DSA-based ANOVA:

$$\hat{\sigma}_X^2 = \hat{\sigma}_D^2 + \hat{\sigma}_S^2 + \hat{\sigma}_A^2,$$

where

$$\hat{\sigma}_D^2 = \sum_{j=1}^3 \hat{\sigma}_j^2, \ \hat{\sigma}_S^2 = \sum_{j=4}^9 \hat{\sigma}_j^2 \text{ and } \hat{\sigma}_A^2 = \hat{\sigma}_0^2$$

Wavelet-based ANOVA for Water Temperatures

• $\hat{\sigma}_{j}^{2}$'s to left (right) of vertical dashed line contribute to $\hat{\sigma}_{D}^{2}$ ($\hat{\sigma}_{S}^{2}$)

DSA-based ANOVA of Water Temperature

		1 m	$5 \mathrm{m}$	10 m	15 m	20 m
$\hat{\sigma}_L^2$)	0.07	0.07	0.03	0.01	0.01
$\hat{\sigma}_S^2$	1	0.58	0.38	0.08	0.05	0.06
$\hat{\sigma}_A^{ ilde{2}}$		11.74	10.56	9.88	9.14	7.98
$\hat{\sigma}_X^2$	-	12.39	11.00	9.99	9.20	8.06

$\hat{\sigma}_D$	0.26	0.26	0.17	0.10	0.11
$\hat{\sigma}_S$	0.76	0.61	0.28	0.23	0.25
$\hat{\sigma}_A$	3.43	3.25	3.14	3.02	2.83
$\hat{\sigma}_X$	3.52	3.32	3.16	3.03	2.84

Notes on ANOVA

- pattern of $\hat{\sigma}_j^2$'s at 15 and 20 m quite similar, as are those for 1 and 5 m (with some divergence at j = 6, 7 & 8)
- pattern for 10 m represents a transition between shallower and deeper depths
- gross patterns are largely the same across all depths: increase from j = 1 to j = 3, followed by a drop between j = 3 & 4, and tendency to increase after that
- fundamental frequency of daily variations evidently more important than harmonics
- \bullet variance of annual coefficients ${\bf A}$ is one or two orders of magnitude greater than that of subannual coefficients ${\bf S}$
- variance of \mathbf{S} is greater than that of \mathbf{D} by at least a factor of 2

Annual Component for 1 m Water Temperatures

44

Annual Component for 5 m Water Temperatures

45

Annual Component for 10 m Water Temperatures

Annual Component for 15 m Water Temperatures

Annual Component for 20 m Water Temperatures

Notes on Annual Components

- overall height decreases with depth
- times of peaks in both 2008 and 2009 and of valley in 2008 arrive at later times the deeper the depth
- times of peaks in 2008 occur between start of February and start of March (span of one month)
- times of peaks in 2009 occur between start of January and start of April (span of three months)
- time span between 2008 & 2009 peaks increases with depth (11.5 months for 1 & 5 m, increasing to 13 months at 20 m)
- times of peaks for 1 & 5 m closely linked in both 2008 & 2009
- annual component in 2008 at each depth does not repeat itself in 2009

30-day Smoothed D_t^2 at 1 m with 95% CIs

30-day Smoothed D_t^2 at 5 m with 95% CIs

30-day Smoothed D_t^2 at **10 m with 95% CIs**

30-day Smoothed D_t^2 at 15 m with 95% CIs

30-day Smoothed D_t^2 at **20 m with 95% CIs**

30-day Smoothed S_t^2 at 1 m with 95% CIs

55

30-day Smoothed S_t^2 at 5 m with 95% CIs

30-day Smoothed S_t^2 at **10 m with 95% CIs**

30-day Smoothed S_t^2 at 15 m with 95% CIs

30-day Smoothed S_t^2 at **20 m with 95% CIs**

30-day Smoothed D_t^2 at **1**, **5**, **10**, **15 & 20 Meters**

60

30-day Smoothed S_t^2 at 1, 5, 10, 15 & 20 Meters

61

Notes on Time-Varying Variances of D and S

- variance of **D** at 1 m is relatively stable across time, but not at lower depths
- opposite pattern holds for S: three lower depths have more homogeneous variances than two shallower ones

Global Cross-Correlations Between DSA Coefficients

- 15 sets of coefficients in all $(\mathbf{D}, \mathbf{S} \text{ and } \mathbf{A} \text{ at 5 depths})$
- there are $\binom{15}{2} = 105$ cross-correlations to consider
- 75 are 'between-type' cross-correlations, i.e., involving different types of coefficients either at same depth or different depths
- between-type cross-correlations generally small: 6 are between 0.1 & 0.15, and remaining 69 are between -0.03 and 0.1
- lends credence to claim that DSA transform is separating \mathbf{X} into different types of coefficients (\mathbf{D} , \mathbf{S} and \mathbf{A}) that are approximately uncorrelated
- remaining 30 cross-correlations are 'within-type'

Global Within-Type Cross-Correlations

D	1 m	$5 \mathrm{m}$	10 m	15 m	S	1 m	5 m	10 m	15 m
5 m	-0.09				5 m	0.61			
10 m	0.03	0.22			10 m	0.20	0.48		
$15 \mathrm{m}$	0.05	0.01	0.06		15 m	0.21	0.28	0.56	
20 m	0.05	-0.18	-0.07	0.12	20 m	0.05	0.04	0.19	0.43
•	1	-	10	1 M	₹Z	1	~	10	1 M
\mathbf{A}	1 m	5 m	10 m	15 m	$\mathbf{\Lambda}$	1 m	5 m	10 m	15 m
$5 \mathrm{m}$	0.99				5 m	0.97			
10 m	0.92	0.95			10 m	0.89	0.94		
$15 \mathrm{m}$	0.79	0.84	0.96		15 m	0.77	0.83	0.96	
20 m	0.68	0.74	0.89	0.97	20 m	0.66	0.73	0.88	0.97

Month-by-month Correlations for D with 95% CIs

Month-by-month Correlations for S with 95% CIs

Notes on Month-by-Month Cross-Correlations

- \bullet cross-correlations for ${\bf D}$ tend to be smaller and less time dependent than those for ${\bf S}$
- in particular, small cross-correlations between **D** at 1 m and deeper depths indicate little direct daily co-temporaneous variations between temperatures near surface and at deeper levels
- cross-correlations for **S** have stretches of high correlation, e.g., between 15 and 20 m from Feb to Sept 2008, followed by gradual decline (period also associated with decreased variability at both depths)
- periods of high correlation well aligned with known periods of stratification

Concluding Remarks: I

- biggest contributor to variance of **X** is **A** (annual coefficients)
- evident from just 600 days of data that **A** can vary considerably from year to year (might be able to identify explanatory covariates from sparsely sampled historical data)
- next biggest contributor is \mathbf{S} (subannual coefficients), while \mathbf{D} (daily) is smallest
- S is more homogeneous in variability at deeper depths, whereas D is most homogeneous at 1 m (can interpret in terms of influence of atmospheric conditions)
- global statistics do not necessarily reflect localized patterns in various \mathbf{X} , pointing to advantages of current sampling scheme and of localized measures such as the DSA transform

Concluding Remarks: II

- DSA approach is largely descriptive, but addresses some questions that could be answered also by formal statistical models
- *plenty* of opportunity for future work, including study of other water quality indicators (chlorophyll-a, turbidity, dissolved oxygen, specific conductivity) collected by the profiling system and their relationship to temperature

Thanks to ...

- Sarah Lennox for organizing this seminar
- numerous folks at CSIRO who made my visit possible
- Sequater for opportunity to analyze their data