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Background: I

• Queensland Bulk Water Supply Authority (Seqwater) manages
catchments, water storages and treatment services to ensure
quality and quantity of water supplied to Southeast Queensland

• ongoing monitoring program recently upgraded with perma-
nent installation of vertical profilers at Lake Wivenhoe dam

• each profiler monitors water quality indicators every two hours
at different depths at a fixed location (temperature, pH, . . . )

• leads to a unique opportunity to study fluctuations in these
indicators in a subtropical dam as a function of time and depth

• will concentrate on a 600+ day segment of temperature fluc-
tations Xt recorded at dam wall (temperature is regarded as
important driver for other water quality indicators)
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CSIRO.  Understanding water quality measurements   2 

Lake Wivenhoe Photograph: Andrew Watkinson (Seqwater) 
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Background: II

• complicated structure both across time and down depth

• Q: how can we best quantify variations in data?

• propose to simplify task by breaking Xt into components cap-
turing daily, subannual & annual (DSA) variations

• can formulate precise definitions for each component in terms
of a wavelet-based multiresolution analysis (MRA)

• DSA components are such that they

− are approximately pairwise uncorrelated

− sum up to original Xt exactly and

− based upon coefficients that decompose sample variance of
Xt exactly across time
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Background: III

• some questions our approach can help address:

1. how does variance change across time?

2. are variations from one day to the next more prominent than
variations from, say, one month to the next?

3. how repeatable are variations in annual cycle at each depth?

4. what are the pairwise relationships between depth series over
different spans of time (e.g., day-to-day, month-to-month)?

• resulting analysis mainly descriptive, but provides insight into
components needed for a formal statistical model
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Overview of Remainder of Talk

• give overview of standard wavelet analysis

• describe adaptations for analysis of dam temperatures

• discuss preparations to data prior to analysis

• present key results of our analysis (complete analysis docu-
mented in recently completed manuscript)
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Basic Description of Wavelet Analysis: I

• let X be a column vector with elements Xt, t = 0, 1, . . . , N−1

•X represents time series of N ‘regularly sampled’ observations,
i.e., time associated with Xt is t0 + t ∆

− t0 is the time at which X0 was observed

− ∆ is the sampling time between adjacent observations
(e.g., ∆ = 2 hours for water temperature time series)

− t is time index for element Xt

• wavelet analysis of X is a linear transformation, expressed as

fW = fWX,

where fW is a matrix transforming X into a vector of maximal
overlap discrete wavelet transform (MODWT) coefficients fW
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Basic Description of Wavelet Analysis: II

• fW contains two types of MODWT coefficients

− wavelet coefficients

− scaling coefficients

• let’s focus first on wavelet coefficients, denoted by fWj,t

• while each Xt in X has just a time index t, each wavelet coef-
ficient fWj,t in fW has two indices:

− level index j, where j = 1, 2, . . . , J0

− time index t, where t = 0, 1, . . . , N − 1

• maximum level J0 depends upon the particular application
(for water temperature series, J0 = 9 as discussed later)
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Basic Description of Wavelet Analysis: III

• index t for fWj,t says that formation of this coefficient involves
only parts of X centered about a particular time

• index j tells us how many values in X are in effect being used
to form fWj,t

• if j is small (large), fWj,t depends mainly on a small (large)
number of values from X

• another interpretation is that j is an index for the interval of
frequencies f given by

Ij =

µ
1

2j+1 ∆
,

1

2j ∆

∏

• fWj,t is that part of a localized Fourier decomposition of X
associated with frequencies f ∈ Ij (localization dictated by t)

9



Frequency Intervals Ij When ∆ = 2 hours

0 1 2 3 4 5 6

   (cycles per day)

I1I2I3I4

f

10



Basic Description of Wavelet Analysis: IV

• let’s now focus on scaling coefficients eVJ0,t in fW
• each scaling coefficient also has a level index and a time index,

but level index can assume only single value J0

• time index t on eVJ0,t has same interpretation as for fWj,t

• interval of frequencies associated with eVJ0,t is

I0 =

∑
0,

1

2J0+1 ∆

∏

• union of Ij, j = 0, 1, . . . , J0, is [0, 1/(2 ∆)], i.e., all physically
meaningful frequencies in Fourier decomposition of X

• scaling coefficients capture localized low-frequency variations
in X, whereas wavelet coefficients do the same over frequency
intervals Ij, j = 1, 2, . . . , J0
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Wavelet-based Analysis of Variance: I

• place all wavelet coefficients in fW associated with level j into
vector fWj & all scaling coefficients into vector eVJ0

• denote the square of Euclidean norm of X as kXk2 ≡
P

t X
2
t

• important property of MODWT of X is that kfWk2 = kXk2

• since fW is the union of fW1, fW2, . . ., fWJ0
and eVJ0

, also have

J0X

j=1

kfWjk2 + keVJ0
k2 = kXk2

• can interpret kfWjk2 as part of kXk2 attributable to localized
Fourier coefficients associated with frequency interval Ij, and

keVJ0
k2 as being associated with low-frequency interval I0
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Wavelet-based Analysis of Variance: II

• let X =
P

t Xt/N denote sample mean of X, and consider its
sample variance:

σ̂2
X =

1

N

N−1X

t=0

°
Xt −X

¢2
=

1

N
kXk2 −X

2

• can reexpress the above as

σ̂2
X =

J0X

j=1

1

N
kfWjk2 +

µ
1

N
keVJ0

k2 −X
2
∂
≡

J0X

j=1

σ̂2
j + σ̂2

0,

where σ̂2
j and σ̂2

0 are sample variances associated with fWj and
eVJ0

(sample mean of eVJ0
is X also, whereas wavelet coeffi-

cients come from populations with zero means)

14



Wavelet-based Analysis of Variance: III

• can break up sample variance of X into J0 + 1 parts, J0 of
which (the σ̂2

j ’s) are attributable to fluctuations in intervals

of frequencies Ij, and the last (σ̂2
0), to fluctuations over low-

frequency interval I0

• refer to decomposition of σ̂2
X afforded by

σ̂2
X =

J0X

j=1

σ̂2
j + σ̂2

0

as a wavelet-based analysis of variance (ANOVA)
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Wavelet-based ANOVA for 1 m Water Temperatures
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Multiresolution Analysis (MRA)

• can use the MODWT coefficients to obtain a wavelet-based
additive decomposition known as a multiresolution analysis

• start with fact that X can be recovered from its MODWT
coefficients fW = fWX via synthesis equation X = fWT fW

• partitioning both fW and fW allows rewriting X = fWT fW as

X =
JX

j=1

eDj + eSJ0

• eDj is a ‘detail’ series depending just on fWj and those rows in
fW used to create fWj from X

• eDj captures part of X attributable to fluctuations in Ij

• eSJ0
is a ‘smooth’ series capturing low-frequency fluctuations
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J0 = 3 MRA for 1 m Water Temperatures
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Adaptation of MRA for Water Temperatures: I

• idea behind MRA is to break X up into components eDj and
eSJ0

capturing different aspects of X (in statistical terms, com-
ponents should be approximately pairwise uncorrelated)

• J0 usually chosen so that eSJ0
captures prominent large-scale

(low-frequency) fluctuations in X

• setting J0 = 9 means that eS9 captures fluctuations lower in
frequency than 4.3 cycles/year

• empirically eS9 is preferable to either eS8 or eS10 in capturing
interannual variations

− eS8 is arguably undersmoothed, containing fluctuations bet-
ter ascribed to intra-annual variations

− eS10 is somewhat oversmoothed, hence distorting the inter-
annual fluctuations
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J0 = 8 Smooth for 10 m Water Temperatures
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J0 = 9 Smooth for 10 m Water Temperatures

 

 

Jan 2008 July 2008 Jan 2009

t

16

18

20

22

24

26

D
eg

re
es

 C

21



J0 = 10 Smooth for 10 m Water Temperatures
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Adaptation of MRA for Water Temperatures: II

• with J0 = 9, would have 9 detail series and smooth eS9 in usual
wavelet-based MRA, but desirable to have decomposition with
physically motivated components

• two important physical drivers for dam water temperatures are

− revolution of earth about sun (influences annual variations)
− daily rotation of earth (influences diurnal variations)

• seek additive decomposition isolating these variations

• setting J0 = 9 results in eS9 capturing annual variations

• any purely periodic daily variation in time series with ∆ =
2 hours can be expressed exactly with a Fourier decomposition
involving a constant and sines & cosines with (at most) 6 fre-
quencies, namely, fundamental frequency f1 = 1 cycle/day and
five harmonics fk = kf1, k = 2, 3, 4, 5 and 6 cycles/day.
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Adaptation of MRA for Water Temperatures: III

• daily fluctuations are captured primarily in eD1, eD2 and eD3

• accordingly, let’s define a daily component as

D = eD1 + eD2 + eD3

• A = eS9 defines the annual component

• combine remaining details into a ‘subannual’ component

S = eD4 + eD5 + · · · + eD9,

leading to the modified MRA

X = D + S +A

• will refer to this modified MRA as the DSA decomposition
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DSA Decomposition for 1 m Water Temperatures
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Adaptation of ANOVA for Water Temperatures: I

• can formulate ANOVA corresponding to DSA decomposition
in two ways (one obvious, and the other, not so obvious)

• obvious way is to just add squared wavelet coefficients for each
level involved in forming D and S
− elucidation of statistical properties of combination requires

model to sort out relative influence of squared coefficients
from different fWj’s (not easy to come by)

• not-so-obvious way is define a new transform, say U = UX,
with associated synthesis equation X = UTU

•U contains three types of coefficients D, S and A, each having
N elements
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Adaptation of ANOVA for Water Temperatures: II

• coefficients satisfy kDk2 + kSk2 + kAk2 = kXk2, with

kDk2 =
3X

j=1

kfWjk2, kSk2 =
9X

j=4

kfWjk2, kAk2 = keVJ0
k2

• above leads to an ANOVA based upon the U transform:

σ̂2
X =

1

N
kDk2+

1

N
kSk2+

µ
1

N
keAk2 −X

2
∂

= σ̂2
D + σ̂2

S + σ̂2
A,

where

σ̂2
D =

3X

j=1

σ̂2
j , σ̂2

S =
9X

j=4

σ̂2
j and σ̂2

A = σ̂2
0

• manipulation of synthesis equation X = UTU leads to DSA
decomposition X = D + S +A
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Adaptation of ANOVA for Water Temperatures: III

• have essentially ‘collapsed’ 3N wavelet coefficients in fW1, fW2
and fW3 into N coefficients D, from which can determine D

• likewise, have collapsed 6N wavelet coefficients in fW4, fW5,
. . . , fW9 into N coefficients S, from which can determine S

• will refer to

− U as the DSA transform

−D, S and A collectively as DSA transform coefficients

−D, S and A alone as daily, subannual & annual coefficients

− elements of D, S and A by Dt, St and At
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Data Preparation

• monitoring system at Wivenhoe Dam designed to measure wa-
ter temperature and other variables at depths of 1, 2, . . . , 20 m
every two hours (will concentrate on 1, 5, 10, 15 and 20 m as
representative depths)

• protocol successfully adhered, with the exception of

− some gaps in the data

− some jitter in collection times (unlikely to impact analysis)

• can fill in gaps using a stochastic interpolation scheme

• also need to pay attention to how to handle boundary condi-
tions for MODWT and DSA transforms
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10 m Water Temperatures with Gaps
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Gap-filled 10 m Water Temperatures
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Gap-filled 10 m Water Temperatures
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Gap-filled 10 m Water Temperatures
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DSA Decomposition for 1 m Water Temperatures
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DSA Decomposition for 5 m Water Temperatures
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DSA Decomposition for 10 m Water Temperatures
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DSA Decomposition for 15 m Water Temperatures
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DSA Decomposition for 20 m Water Temperatures
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Relative Importance of Three Components

• distance between adjacent vertical tick marks on all plots is 5
degrees Celsius

• in terms of overall (global) variability in each X, annual com-
ponent A is obviously dominant

• daily component D appears to contribute least, but there are
local stretches over which it has greater variability than S

• can quantify relative contribution of D, S and A coefficients
to variance of each X globally using DSA-based ANOVA:

σ̂2
X = σ̂2

D + σ̂2
S + σ̂2

A,

where

σ̂2
D =

3X

j=1

σ̂2
j , σ̂2

S =
9X

j=4

σ̂2
j and σ̂2

A = σ̂2
0
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Wavelet-based ANOVA for Water Temperatures
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DSA-based ANOVA of Water Temperature

o

1 m 5 m 10 m 15 m 20 m
σ̂2

D 0.07 0.07 0.03 0.01 0.01
σ̂2

S 0.58 0.38 0.08 0.05 0.06
σ̂2

A 11.74 10.56 9.88 9.14 7.98
σ̂2

X 12.39 11.00 9.99 9.20 8.06

σ̂D 0.26 0.26 0.17 0.10 0.11
σ̂S 0.76 0.61 0.28 0.23 0.25
σ̂A 3.43 3.25 3.14 3.02 2.83
σ̂X 3.52 3.32 3.16 3.03 2.84
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Notes on ANOVA

• pattern of σ̂2
j ’s at 15 and 20 m quite similar, as are those for 1

and 5 m (with some divergence at j = 6, 7 & 8)

• pattern for 10 m represents a transition between shallower and
deeper depths

• gross patterns are largely the same across all depths: increase
from j = 1 to j = 3, followed by a drop between j = 3 & 4,
and tendency to increase after that

• fundamental frequency of daily variations evidently more im-
portant than harmonics

• variance of annual coefficients A is one or two orders of mag-
nitude greater than that of subannual coefficients S

• variance of S is greater than that of D by at least a factor of 2
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Annual Component for 1 m Water Temperatures
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Annual Component for 5 m Water Temperatures
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Annual Component for 10 m Water Temperatures
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Annual Component for 15 m Water Temperatures
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Annual Component for 20 m Water Temperatures
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Notes on Annual Components

• overall height decreases with depth

• times of peaks in both 2008 and 2009 and of valley in 2008
arrive at later times the deeper the depth

• times of peaks in 2008 occur between start of February and
start of March (span of one month)

• times of peaks in 2009 occur between start of January and start
of April (span of three months)

• time span between 2008 & 2009 peaks increases with depth
(11.5 months for 1 & 5 m, increasing to 13 months at 20 m)

• times of peaks for 1 & 5 m closely linked in both 2008 & 2009

• annual component in 2008 at each depth does not repeat itself
in 2009
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30-day Smoothed D2
t at 1 m with 95% CIs
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30-day Smoothed D2
t at 5 m with 95% CIs
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30-day Smoothed D2
t at 10 m with 95% CIs
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30-day Smoothed D2
t at 15 m with 95% CIs
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30-day Smoothed D2
t at 20 m with 95% CIs
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30-day Smoothed S2
t at 1 m with 95% CIs
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30-day Smoothed S2
t at 5 m with 95% CIs
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30-day Smoothed S2
t at 10 m with 95% CIs
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30-day Smoothed S2
t at 15 m with 95% CIs
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30-day Smoothed S2
t at 20 m with 95% CIs
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30-day Smoothed D2
t at 1, 5, 10, 15 & 20 Meters
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30-day Smoothed S2
t at 1, 5, 10, 15 & 20 Meters
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Notes on Time-Varying Variances of D and S

• variance of D at 1 m is relatively stable across time, but not at
lower depths

• opposite pattern holds for S: three lower depths have more
homogeneous variances than two shallower ones
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Global Cross-Correlations Between DSA Coefficients

• 15 sets of coefficients in all (D, S and A at 5 depths)

• there are
°15

2

¢
= 105 cross-correlations to consider

• 75 are ‘between-type’ cross-correlations, i.e., involving different
types of coefficients either at same depth or different depths

• between-type cross-correlations generally small: 6 are between
0.1 & 0.15, and remaining 69 are between −0.03 and 0.1

• lends credence to claim that DSA transform is separating X
into different types of coefficients (D, S and A) that are ap-
proximately uncorrelated

• remaining 30 cross-correlations are ‘within-type’
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Global Within-Type Cross-Correlations

D 1 m 5 m 10 m 15 m
5 m −0.09
10 m 0.03 0.22
15 m 0.05 0.01 0.06
20 m 0.05 −0.18 −0.07 0.12

S 1 m 5 m 10 m 15 m
5 m 0.61
10 m 0.20 0.48
15 m 0.21 0.28 0.56
20 m 0.05 0.04 0.19 0.43

A 1 m 5 m 10 m 15 m
5 m 0.99
10 m 0.92 0.95
15 m 0.79 0.84 0.96
20 m 0.68 0.74 0.89 0.97

X 1 m 5 m 10 m 15 m
5 m 0.97
10 m 0.89 0.94
15 m 0.77 0.83 0.96
20 m 0.66 0.73 0.88 0.97
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Month-by-month Correlations for D with 95% CIs
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Month-by-month Correlations for S with 95% CIs
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Notes on Month-by-Month Cross-Correlations

• cross-correlations for D tend to be smaller and less time depen-
dent than those for S

• in particular, small cross-correlations between D at 1 m and
deeper depths indicate little direct daily co-temporaneous vari-
ations between temperatures near surface and at deeper levels

• cross-correlations for S have stretches of high correlation, e.g.,
between 15 and 20 m from Feb to Sept 2008, followed by grad-
ual decline (period also associated with decreased variability at
both depths)

• periods of high correlation well aligned with known periods of
stratification
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Concluding Remarks: I

• biggest contributor to variance of X is A (annual coefficients)

• evident from just 600 days of data that A can vary consider-
ably from year to year (might be able to identify explanatory
covariates from sparsely sampled historical data)

• next biggest contributor is S (subannual coefficients), while D
(daily) is smallest

• S is more homogeneous in variability at deeper depths, whereas
D is most homogeneous at 1 m (can interpret in terms of in-
fluence of atmospheric conditions)

• global statistics do not necessarily reflect localized patterns in
various X, pointing to advantages of current sampling scheme
and of localized measures such as the DSA transform
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Concluding Remarks: II

• DSA approach is largely descriptive, but addresses some ques-
tions that could be answered also by formal statistical models

• plenty of opportunity for future work, including study of other
water quality indicators (chlorophyll-a, turbidity, dissolved oxy-
gen, specific conductivity) collected by the profiling system and
their relationship to temperature
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Thanks to . . .

• Sarah Lennox for organizing this seminar

• numerous folks at CSIRO who made my visit possible

• Seqwater for opportunity to analyze their data
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