Decline of Arctic Sea-Ice Thickness

as Evidenced by Submarine Measurements
Don Percival

Applied Physics Laboratory
Department of Statistics

University of Washington
Seattle, Washington, USA

http://faculty.washington.edu/dbp

NSF-sponsored collaborative effort with Drew Rothrock,
Mark Wensnahan, Tilmann Gneiting and Alan Thorndike



Overview

e scientific question of interest: has the average thickness of Arc-
tic sea ice declined significantly over the past 30+ years?

e thickness can be deduced from measurements of draft (sub-
merged portion of sea ice — 93% of ice thickness)

e draft measured using upward-looking sonars on submarines

e there have been previous analyses of these data, but ours differs
because of the use of

— new statistical model for correlation of measurements (incor-
porates so-called ‘long-range’ dependence)
— multiple regression analysis to deduce space/time variations

— newly archived data for submarine cruises from 1975 to 2001
(almost doubling the amount of available data)

2



Outline of Talk

e show pictures giving an idea of how data were collected

e study single submarine track to develop model for correlation
structure, contrasting properties of models based on first-order
autoregressive (AR(1)) and fractionally differenced (FD) processes

e discuss embedding of model for single tracks into overall space/time
model

e describe multiple regression model and rationale for fitting model
using ordinary least squares rather than generalized least squares

e discuss conclusions that can be drawn from regression analysis
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Map of Arctic Region with One Submarine Tract
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Understanding Spatial Correlation

e as submarine moves below ice, returns from sonar provide mea-
surements of ice draft averaged over 1 m patches, which are
recorded at 1 m intervals

e when submarine is moving along a tract (straight line), use 1000
consecutive measurements to form 1 km averages H 1.n5 where
n is the index for a particular average

e later on, will average 50 consecutive nonoverlapping Fljn’s to

form 50 km averages — denote these as ﬁ50,xmt, where x,, is the

center of the tract and ¢ is the associated time (x, = [0,0] =
North Pole, while ¢ € [1975, 2001])

e need to understand spatial covariance properties of ﬁ507xmt,
which we can begin to tackle by studying covariance of Hl,n
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Residual Draft Profile for One Submarine Track
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e above comes from track shown on overhead 6 (longest in 1997)

e to study covariance, have subtracted off linear trend (for profiles
less than 200 km or so, need only subtract sample mean)

e will now let ﬁl,n denote residual draft profile
e residuals approximately Gaussian (room for improvement?)

e note: lots of gaps in draft profile (631 averages over 803 km)
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Statistical Modeling of Residual Draft Profiles

e simple model of independence for ﬁl,n along profile not viable
(e.g., adjacent measurements Fl,n and ﬁlmH are correlated)

e assume 1 ;, is a realization of a zero mean Gaussian stationary
process (a ‘time’ series with distance replacing ‘time’)

e process fully characterized by its variance 0% and autocorrela-

tion sequence py = E{H ,H1 piq}/ a%, where d is the dis-
tance between measurements (lag) expressed in km

e consider two simple parametric forms for p; corresponding to

— first-order autoregressive (AR(1)) process

— fractionally differenced (FD) process



First-Order Autoregressive (AR(1)) Processes: 1

e process satisfies ﬁl,n = ¢ﬁ17n_1 +€p, where |¢p| < 1, and €;,s

are 11D Gaussian with mean 0 and variance o2

e note that
Hl,n = ¢ (¢H1,n—2 + En—l) + €p
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First-Order Autoregressive (AR(1)) Processes: 11

e process thus can be expressed as

00
ﬁl,n = Z@D]En_] with wj = ¢/
=0

e have p; = gb|d|, so model exhibits ‘short-range’ correlation:
measurements that are close in distance are correlated, but
correlation disappears rapidly (exponentially) with increasing
distance

e related to a first-order stochastic differential equation with ‘cor-
relation time’ dictated by ¢

e widely used in climate research to model time series

e given gappy draft profiles, can estimate ¢ and 02 using maxi-

mum likelihood (Jones, 1980), yielding ¢ = 0.36 (20.04)
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Fractionally Differences (FD) Processes

e process satisfies

©.0
ﬁl,n = ijen_j with wj =
=0
where |6] < 1/2, and €, is as before
o have pg ~ C|d|**~1 (much slower decay rate than for AR(1))

e related to average of many first-order stochastic differential
equations with different correlation times

e popular model for ‘long-range’ (or ‘10ng—memory’) dependence

e given gappy profiles, can estimate 0 and 0 using maximuin

likelihood (Palma & Chan, 1997), yielding 5 = (.27 (40.03)

e (): how do these two models compare?
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Qualitative Comparison I: i Weights
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e weights 1); used to create AR with ¢ = 0.36 (blue curve) and
FD with 6 = 0.27 (black curve) processes from a weighted
average of white noise
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Qualitative Comparison II: Simulated Draft Profiles
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e consider simulated AR (¢ = 0.36) & FD (§ = 0.27) profiles

e ‘exact’ simulations formed using circulant embedding technique
that maps same 1024 IID Gaussian deviates to both profiles
(Davies and Harte, 1987; Craigmile, 2003)
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Qualitative Comparison II: Simulated Draft Profiles

FD
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e consider simulated AR (¢ = 0.36) & FD (§ = 0.27) profiles

e ‘exact’ simulations formed using circulant embedding technique
that maps same 1024 IID Gaussian deviates to both profiles
(Davies and Harte, 1987; Craigmile, 2003)
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autocorrelation

Third Comparison: Autocorrelation Sequences

0.5 (a) autoregressive model

[ (b) fractionally differenced model

e sample (circles) and theoretical sequences (middle curves)

e upper and lower curves are 95% pointwise confidence intervals

for pg assuming relevant model (AR or FD)
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Fourth Comparison: Partial Autocorrelations
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e sample (circles) and theoretical sequences (x's)

e parallel gray lines in (a) are limits between which approximately

95% of samples Pq g at lags d > 2 should fall under assumption
that AR(1) model is correct
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PACS-Based Portmanteau Test for AR(1) Process

e can test null hypothesis that ﬁl,n comes from a Gaussian
AR(1) process versus nonspecific alternative hypothesis of non-
white Gaussian stationary process

e test is variation on standard portmanteau test for white noise
(using sample autocorrelation sequence) and is given by

K+1

T=N Z q%d
d=2

e can reject null it T is ‘too large’ in comparison to upper per-
centage points of x? distribution with K degrees of freedom

e & (observed level of significance) is < 0.014 for both K = 10
and K = 20, so AR(1) hypothesis unlikely to be true
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Fifth Comparison: Variance of Sample Means

e given ﬁl,n; n=20,...,N —1, consider statistical properties of
length L averages

L—1

_ 1 _

Hpm=7 > Himpi, m=0,1,...,[N/L] -1
[=0

o let a% =var{H[ ,}

e for AR and FD models, have
1+ ¢

2 2

e can compare sample estimates (AT% with E {(AT%} for various L

_ ['(1—9) _
L 1 d 2 ~ 2 L 1420
TR O s T (A 1 0)
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Sample 6% (Circles) and Theoretical 0%
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Sixth Comparison: Sample and Theoretical Spectra
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Haar wavelet variance

Seventh Comparison:

Wavelet Variances
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Map of Arctic Region with Tracks Taken in 1997
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Submarine Cruises

« NSIDC has draft data from Month vs Year
121,000 km of cruise tracks Dec | _
: ovd ® 9 _
* New data (2006) in red added 81%. “; o o . °
ct - -
. seo] ® % o
¥ Aug ® o
E Jul -
£ Jun - ¢
= o®
a1 ® o :oo o o
Apr v ® ...
Mar
Feb - @ Previously released|
Jan @ Newly released
1975 1980 1985 1990 1995 2000
Year

Data are archived at the National Snow and Ice Data Center
[Google: NSIDC]



Spatial Model for One Kilometer Averages

e analysis of additional profiles in 1997 and other years indicates
F'D model with 0 = 0.27 is good overall choice

e will now reindex ﬁl,n using a 2D vector x,, indicating the
location of the 1 km average (needed for dealing with data
from multiple tracks)

e can regard ﬁl,xn as samples from a stationary and isotropic
two-dimensional (2D) random process with covariances given
by

— — (ld] +6)I'(1 —9)
Hix,, H = 07 X
COV{ 1,Xn7 1,Xn—|—d} O-]_ F(‘d| i 1 — 5)F<5)7

where d is an arbitrary 2D vector, and |d| is its Euclidean norm

e 1D tracks through this 2D process yield an FD(d) process
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Fifty Kilometer Averages

e to reduce computational burden, combined 1 km averages into
50 km averages, yielding H g x,,

e assumed form for cov {ﬁl,xna FLX” +d} can be used to deduce
cov { H50,x,,, 750, +d

26



Draft (m)

Ice Draft from
Upward-Looking Sonar

[l .

101 data points,
each a 50-km average.

Profile data in archive.
1121,000 km

Distance along track (m)

(

i 0
| e

Wensnahan et al., EOS, Jan.,

2007)



Multiple Regression Model: 1

o let ﬁSO,xn,t represent average of 1 km measurements taken at
location xy, and time t (x5, = [0,0] = Pole & t € [1975,2001])

e let 7 represent the time of year (i.e., 7 = ¢ mod 1)
e assume simple model
H50x,t = C +1(t) + A7) + S(xn) + ex,.t;
where

— (' is a constant

— I(t) is the interannual variation

— A(7) is the annual cycle

— S(xy,) is the spatial field

— €x,,,t 18 an error term dictated by FD model within a given
season (different seasons/years assumed independent)
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Multiple Regression Model: 11

e assumed form for interannual variation () is
I(t) = I;(t — 1988) + I(t — 1988)° + I5(t — 1988)°,

where [1, Iy and I3 are parameters to be estimated (experi-
mented with other polynomials, but cubic is adequate)

e assumed form for annual cycle is
A(T) = Agsin(2n7) + Accos(2n7) = A cos(2m|T — Tmax]),

where Ag and A, are parameters to be estimated, from which
A and Tpax can be deduced (experimented with adding terms
with frequencies at harmonics of annual cycle, but simple form
is adequate)

29



Multiple Regression Model: 111

o letting x,, = [z, y]!, assumed form for spatial field S(x;,) is

S(xn) = S107 + So1y
+ Sopx” 4+ S11ry + S()QyQ
+ S3px” + 521$2y + Slgny + 503y3
+ Sapr” + Sglxgy + SQQCCQyQ + Slga:yg + So4y4
+ Ss02” + Sna'y + Ssox’y” + Sosa”y’ + Suwy® + Sosy’.
where 5;;'s are parameters to be estimated (experimented with
6th order polynomials, but t-tests say 5th order is adequate)

O N O A \V)

e within a given season and year, error term ex,, ¢ has a covariance
structure dictated by FD model

® €x, ¢ s from different seasons or years are assumed to be inde-
pendent (reasonable assumption, based upon ice physics)
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Fitting Multiple Regression Model: I

e used ordinary least squares (OLS) to fit model, even though
correlated errors recommends generalized least squares (GLS)

e to see rationale for ignoring usual recommendation, need to
review relationship between OLS and GLS estimators

e write regression model as Y = X3 + €, and let X¢ denote
covariance matrix for e

o OLS estimator is 8 = (X7X)"1XTy

e GLS estimator makes use of ‘square root’ of X¢; i.e., matrix

Z}E/Z such that 2}5/22}/2 = D¢
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Fitting Multiple Regression Model: 11

: —1/2 1/2 :
e Use inverse Y / of Ze/ to transform regression model:

sy — 7 Px g+ v e
which we can rewrite as
Y =X3+¢,
where covariance matrix for € can be expressed as 0% Iy (here
Iy is N x N identity matrix, and N is length of vector Y)

e OLS estimator [N‘i of B in transformed model is GLS estimator
for original model:

~

v I~ \—1IvT~ Tv—1y\—1vTv—1
B =X"X)"'XTYy = X' 'x)" !XTy ly
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Fitting Multiple Regression Model: 111

e In general, Y'Y = Yy = YTZle; i.e., total sums of
squares in original and transformed spaces are not equal

e portion of sum of squares explained by transtormed model can-
not be related directly to sum of squares for original model

e through study of measurement process, have estimate of vari-
ance of measurement errors in observations

e want to relate this variance estimate to sum of squares due to
error in regression model; i.e., can unexplained variability be
chalked up to just measurement errors?

e cannot state an ‘error budget’ using transformed model

e standard deviation of OLS-estimated parameters only 5% greater
on the average than those for GLS
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Interannual Variation [(t): 1

e interannual variation I(t) is a cubic polynomial

e residuals shown after addition to mean draft and fitted I(¢)
(blue for January to June data, red for rest of year)

e change from 1981 to 2000 is —1.13 m
e steepest decline (—0.08 m/yr) occurred in 1991
e no recovery by 2000

e much fuller data set strengthens previous results (Rothrock et

al., 1999, and Tucker et al., 2001)
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Interannual Variation /(t): 1II

1980 1985 1990 1995 2000

1975

year
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Annual Cycle A(7): 1

e annual cycle A(7) is a sinusoid with a period of a year

e residuals shown after addition to mean draft and fitted A(7)
(blue for January to June data, red for rest of year)

e maximum (minimum) occurs on 30 April (30 October)

e peak-to-trough amplitude is 1.06 m, which is much larger than
what would be expected from thermodynamic annual cycle of
thickness of multiyear ice (/= 0.43 m)

e sea-ice models predict asymmetric annual cycles, suggesting the
need for harmonics, but data do not support this need (possibly
due to preferential sampling during certain parts of the year)

36



Annual Cycle A(7): 11
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Spatial Field S(xj): I

e spatial field S(xy,) is a fifth order polynomial in x & y

e draft varies from 2.2 m near Alaska to just over 4 m near
Ellesmere Island

e need for polynomial of higher order than linear indicated by
examination of residuals versus x — obvious structure remaining
in linear fit (black for summer/fall, grey for winter/spring)

e corresponding plot of residuals versus y for linear model doesn’t
have same obvious structure
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Spatial Field S(x,): IV
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PDF of Observations (SD = 0.99 m)
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Concluding Remarks

e multiple regression model explains 79% of variance in data
(standard deviation is 0.98 m)

e unexplained variance has standard deviation of 0.46 m
e estimated standard deviation of measurement errors is 0.25 m
e improvements (‘polishing the cannon ball’):

— relax assumption of a constant spatial field across time

— estimate 0 from spatial data, not from profiles
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