
Appendix

Proofs of theorems

Proof of Theorem 1. We can decompose hl into a two-stage filter, the first of

which has a transfer function whose squared modulus is D L
2 (f) =

[
4 sin2(πf)

]L
2 .

Letting W̃t represent the output from this first stage, we have

W̃t = (1 − B)
L
2 Yt = (1 − B)

L
2 −d

[
(1 − B)dYt

]
= (1 − B)

L
2 −dZt.

Hence W̃t is a stationary process with zero mean. The second stage filter has a

transfer function whose squared modulus is C, which by construction can be factored

into a filter of finite length (Daubechies, 1992, Ch. 6). The theorem follows by noting

that filtering a zero-mean stationary process, i.e., W̃t, with a filter of finite length

yields a zero-mean stationary process, i.e., Wt.

The proof of Theorem 2 requires a central limit theorem due to Ibragimov and

five lemmata.

Ibragimov’s Theorem. Let ξt be a completely regular strictly stationary

process such that E(ξt) = 0 and var (ξt) < ∞. Let

σ2
n ≡ var

( n∑
t=1

ξt

)
. (7)

If E(|ξt|2+δ) < ∞ for some δ > 0 and if σ2
n → ∞, then ξ1+· · ·+ξn is asymptotically

normally distributed with zero mean and variance σ2
n.

Proof of Ibragimov’s Theorem. See Theorem 2.1, Ibragimov (1975).

Lemma 1. If S is continuous and strictly positive, then any stationary process

having S as its spectrum is completely regular.

Proof of Lemma 1. See Theorem 1, p. 146, Ibragimov & Rozanov (1978).
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Lemma 2. Let ζ2
1 , . . . , ζ2

n be a sample of size n of a strictly stationary process

such that E(|ζt|4+δ) < ∞ for some δ > 0. Suppose that ζ2
t has spectrum Sζ2 that

is continuous on [− 1
2 , 1

2 ] and strictly positive. Then ν̂2
ζ ≡ 1

n

∑
ζ2
t is asymptotically

normally distributed with mean ν2
ζ ≡ E(ζ2

t ) and variance Sζ2(0)/n.

Proof of Lemma 2. Let ξt ≡ ζ2
t − ν2

ζ , and define σ2
n as in Equation (7). Now

Sξ = Sζ2 , and the complete regularity of ξt follows from Lemma 1. Since 0 <

Sξ(0) < ∞, we have

σ2
n =

∫ 1
2

− 1
2

sin2(nπf)
sin2(πf)

Sξ(f) df = nSξ(0)(1 + o(1))

by a standard theorem, e.g., p. 322 of Ibragimov & Linnik (1971). Since σ2
n → ∞

as n → ∞, it follows from Ibragimov’s Theorem that ν̂2
ζ is asymptotically normally

distributed with mean ν2
ζ and variance σ2

n/n. Finally, since lim nSζ2(0)/σ2
n = 1,

Slutsky’s theorem as given in Section 2c.4, part (x), p. 122 of Rao (1973) yields the

lemma.

Lemma 3. If Gt is a Gaussian stationary process with spectrum SG, then G2
t

is a stationary process with spectrum

SG2(f) = 2
∫ 1

2

− 1
2

SG(f ′)SG(f − f ′) df ′. (8)

Proof of Lemma 3. See p. 83 of Hannan (1970).

Lemma 4. If S is a square integrable spectrum defined outside of [− 1
2 , 1

2 ] by

periodic extension, then

(∫ 1
2

− 1
2

|S(f ′) − S(f ′ − ρ)|2 df ′
) 1

2

tends to zero with ρ.
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Proof of Lemma 4. See Lemma 1.11, p. 37, Zygmund (1978).

Lemma 5. Suppose that the spectra SG and SG2 are related by Equation (8).

If SG is finitely square integrable and strictly positive almost everywhere with respect

to Lebesgue measure, then SG2 is continuous on [− 1
2 , 1

2 ] and strictly positive.

Proof of Lemma 5. For any f ∈ (− 1
2 , 1

2 ) and ρ such that f + ρ ∈ [− 1
2 , 1

2 ], the

Schwarz inequality can be used to show that

|SG2(f) − SG2(f + ρ)| ≤ 2

(∫ 1
2

− 1
2

S2
G(f ′) df ′

∫ 1
2

− 1
2

(SG(f ′) − SG(f ′ − ρ))2 df ′
) 1

2

.

By Lemma 4 the second integral above tends to zero as ρ → 0, which establishes

that SG2 is continuous on (− 1
2 , 1

2 ). A similar argument holds for the points ± 1
2 .

Next, we need to show that inf SG2(f) > 0. Suppose not. Since SG2 is continuous

on a closed bounded interval the infimum is attained at, say, f1; thus∫ 1
2

− 1
2

SG(f ′)SG(f1 − f ′) df ′ = 0.

Since SG is strictly positive almost everywhere, the above integrand is also such.

A standard result in measure theory says that, if h is nonnegative on [− 1
2 , 1

2 ], then

h(f) = 0 almost everywhere if and only if
∫

h(f) df = 0; see, e.g., Corollary 4.10,

p. 34, Bartle (1966). This fact establishes a contradiction, from which we conclude

that SG2 is strictly positive.

Proof of Theorem 2. Since Wt is a Gaussian stationary process with zero mean

and spectrum SW by Theorem 1, the process W 2
t is strictly stationary with spectrum

SW 2 related to SW as in Equation (8); moreover, E(|Wt|4+δ) < ∞ for any δ > 0.

By Lemma 5, SW 2 is continuous on [− 1
2 , 1

2 ] and strictly positive. The conditions of

Lemma 2 are now satisfied for ζ2
t = W 2

t with n = NW , thus yielding the theorem

for Wt. The result for Vt follows from an identical argument.
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IBRAGIMOV, I. A. & ROZANOV, YU. A. (1978). Gaussian Random Processes.

New York: Springer–Verlag.

RAO, C. R. (1973). Linear Statistical Inference and Its Applications (Second Edi-

tion). New York: John Wiley & Sons.

ZYGMUND, A. (1978). Trigonometric Series. Cambridge: Cambridge University

Press.

4


