Appendix

Proofs of theorems

Proof of Theorem 1. We can decompose *h^l* into a two-stage filter, the first of which has a transfer function whose squared modulus is $\mathcal{D}^{\frac{L}{2}}(f) = \left[4\sin^2(\pi f)\right]^{\frac{L}{2}}$. Letting W_t represent the output from this first stage, we have

$$
\widetilde{W}_t = (1 - B)^{\frac{L}{2}} Y_t = (1 - B)^{\frac{L}{2} - d} \left[(1 - B)^d Y_t \right] = (1 - B)^{\frac{L}{2} - d} Z_t.
$$

Hence W_t is a stationary process with zero mean. The second stage filter has a transfer function whose squared modulus is \mathcal{C} , which by construction can be factored into a filter of finite length (Daubechies, 1992, Ch. 6). The theorem follows by noting that filtering a zero-mean stationary process, i.e., W_t , with a filter of finite length yields a zero-mean stationary process, i.e., *Wt*.

The proof of Theorem 2 requires a central limit theorem due to Ibragimov and five lemmata.

Ibragimov's Theorem. Let ξ_t be a completely regular strictly stationary process such that $E(\xi_t)=0$ and var $(\xi_t) < \infty$. Let

$$
\sigma_n^2 \equiv \text{var}\left(\sum_{t=1}^n \xi_t\right). \tag{7}
$$

If $E(|\xi_t|^{2+\delta}) < \infty$ for some $\delta > 0$ and if $\sigma_n^2 \to \infty$, then $\xi_1 + \cdots + \xi_n$ is asymptotically normally distributed with zero mean and variance σ_n^2 .

Proof of Ibragimov's Theorem. See Theorem 2.1, Ibragimov (1975).

Lemma 1. If *S* is continuous and strictly positive, then any stationary process having *S* as its spectrum is completely regular.

Proof of Lemma 1. See Theorem 1, p. 146, Ibragimov & Rozanov (1978).

Lemma 2. Let $\zeta_1^2, \ldots, \zeta_n^2$ be a sample of size *n* of a strictly stationary process such that $E(|\zeta_t|^{4+\delta}) < \infty$ for some $\delta > 0$. Suppose that ζ_t^2 has spectrum S_{ζ^2} that is continuous on $[-\frac{1}{2}, \frac{1}{2}]$ and strictly positive. Then $\hat{\nu}^2_{\zeta} \equiv \frac{1}{n} \sum \zeta_t^2$ is asymptotically normally distributed with mean $\nu_{\zeta}^2 \equiv E(\zeta_t^2)$ and variance $S_{\zeta^2}(0)/n$.

Proof of Lemma 2. Let $\xi_t \equiv \zeta_t^2 - \nu_{\zeta}^2$, and define σ_n^2 as in Equation (7). Now $S_{\xi} = S_{\zeta^2}$, and the complete regularity of ξ_t follows from Lemma 1. Since 0 < $S_{\xi}(0) < \infty$, we have

$$
\sigma_n^2 = \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{\sin^2(n\pi f)}{\sin^2(\pi f)} S_{\xi}(f) df = nS_{\xi}(0)(1 + o(1))
$$

by a standard theorem, e.g., p. 322 of Ibragimov & Linnik (1971). Since $\sigma_n^2 \to \infty$ as $n \to \infty$, it follows from Ibragimov's Theorem that $\hat{\nu}_{\zeta}^2$ is asymptotically normally distributed with mean ν_{ζ}^2 and variance σ_n^2/n . Finally, since $\lim nS_{\zeta^2}(0)/\sigma_n^2 = 1$, Slutsky's theorem as given in Section 2c.4, part (*x*), p. 122 of Rao (1973) yields the lemma.

Lemma 3. If G_t is a Gaussian stationary process with spectrum S_G , then G_t^2 is a stationary process with spectrum

$$
S_{G^2}(f) = 2 \int_{-\frac{1}{2}}^{\frac{1}{2}} S_G(f') S_G(f - f') df'.
$$
 (8)

Proof of Lemma 3. See p. 83 of Hannan (1970).

Lemma 4. If *S* is a square integrable spectrum defined outside of $\left[-\frac{1}{2},\frac{1}{2}\right]$ by periodic extension, then

$$
\left(\int_{-\frac{1}{2}}^{\frac{1}{2}} |S(f') - S(f' - \rho)|^2 \, df'\right)^{\frac{1}{2}}
$$

tends to zero with *ρ*.

Proof of Lemma 4. See Lemma 1.11, p. 37, Zygmund (1978).

Lemma 5. Suppose that the spectra S_G and S_{G^2} are related by Equation (8). If *S^G* is finitely square integrable and strictly positive almost everywhere with respect to Lebesgue measure, then S_{G^2} is continuous on $\left[-\frac{1}{2},\frac{1}{2}\right]$ and strictly positive.

Proof of Lemma 5. For any $f \in \left(-\frac{1}{2}, \frac{1}{2}\right)$ and ρ such that $f + \rho \in \left[-\frac{1}{2}, \frac{1}{2}\right]$, the Schwarz inequality can be used to show that

$$
|S_{G^2}(f) - S_{G^2}(f+\rho)| \leq 2\left(\int_{-\frac{1}{2}}^{\frac{1}{2}} S_G^2(f')\,df'\int_{-\frac{1}{2}}^{\frac{1}{2}} \left(S_G(f') - S_G(f'-\rho)\right)^2\,df'\right)^{\frac{1}{2}}.
$$

By Lemma 4 the second integral above tends to zero as $\rho \to 0$, which establishes that S_{G^2} is continuous on $\left(-\frac{1}{2},\frac{1}{2}\right)$. A similar argument holds for the points $\pm\frac{1}{2}$. Next, we need to show that inf $S_{G^2}(f) > 0$. Suppose not. Since S_{G^2} is continuous on a closed bounded interval the infimum is attained at, say, *f*1; thus

$$
\int_{-\frac{1}{2}}^{\frac{1}{2}} S_G(f') S_G(f_1 - f') df' = 0.
$$

Since S_G is strictly positive almost everywhere, the above integrand is also such. A standard result in measure theory says that, if *h* is nonnegative on $\left[-\frac{1}{2},\frac{1}{2}\right]$, then $h(f) = 0$ almost everywhere if and only if $\int h(f) df = 0$; see, e.g., Corollary 4.10, p. 34, Bartle (1966). This fact establishes a contradiction, from which we conclude that S_{G^2} is strictly positive.

Proof of Theorem 2. Since W_t is a Gaussian stationary process with zero mean and spectrum S_W by Theorem 1, the process W_t^2 is strictly stationary with spectrum *S_W*2 related to *S_W* as in Equation (8); moreover, $E(|W_t|^{4+\delta}) < \infty$ for any $\delta > 0$. By Lemma 5, S_{W^2} is continuous on $\left[-\frac{1}{2},\frac{1}{2}\right]$ and strictly positive. The conditions of Lemma 2 are now satisfied for $\zeta_t^2 = W_t^2$ with $n = N_W$, thus yielding the theorem for W_t . The result for V_t follows from an identical argument.

Additional References

- BARTLE, R. G. (1966). The Elements of Integration. New York: John Wiley & Sons.
- HANNAN, E. J. (1970). Multiple Time Series. New York: John Wiley & Sons.
- IBRAGIMOV, I. A. (1975). A note on the central limit theorem for dependent random variables. Theory Prob. Applic. **20**, 135–41.
- IBRAGIMOV, I. A. & LINNIK, YU. V. (1971). Independent and Stationary Sequences of Random Variables. Gröningen: Wolters–Noordhoff.
- IBRAGIMOV, I. A. & ROZANOV, YU. A. (1978). Gaussian Random Processes. New York: Springer–Verlag.
- RAO, C. R. (1973). Linear Statistical Inference and Its Applications (Second Edition). New York: John Wiley & Sons.
- ZYGMUND, A. (1978). Trigonometric Series. Cambridge: Cambridge University Press.