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Motivating Question

olet X = [Xy, ..., Xny_1]7 be a portion of a stationary process
with autocorrelation sequence (ACS)

s
pr =L, where sy = cov { X3, Xpir} and sp = var {X;}
50

e given a time series, we can estimate its ACS at 7 = 1 using

_ S - X)(Xn - X)

N—-1
D (X —X)?
e (): given the amount of data N we have, how close can we
expect p1 to be to the true unknown p{?

1N—1
, WhereX:Ntz;Xt

e i.e., how can we assess the sampling variability in p17

Overview

e start with some background on rationale behind bootstrapping

e review parametric and block bootstrapping (two approaching
for handling correlated time series)

e review one wavelet-based approach to bootstrapping (Percival,
Sardy and Davison, 2001)

e describe a new wavelet-based approach that uses ‘trees’ for re-
sampling and is potentially useful for non-Gaussian time series

e demonstrate methodology on time series related to BMW stock

e conclude with some remarks

Classic Approach — Large Sample Theory

e let A, 0?) denote a Gaussian (normal) random variable (RV)
with mean g and variance o2

e under suitable conditions (see, e.g., Fuller, 1996), p; is close to
the distribution of M (p1, 012\7) as N — 0o, where

| X
UJQV = N Z {Pz(l + QP%) + Pre1Pr—1— 4P1P7PT—1}

T=—00
e in practice, this result is unappealing because it requires
— knowledge of theoretical ACS
— ACS to damp down fast, ruling out some processes of interest
e while large sample theory has been worked out for p; under

certain conditions, similar theory for other statistics can be
hard to come by




Alternative Approach — Bootstrapping: 1

e if X;’s were 11D, we could apply ‘bootstrapping’ to assess the
variability in pq, as follows

e consider a time series of length N = 8 that is a realization of a
Gaussian white noise process (p; = 0):

L1 L =008

e generate new series by randomly sampling with replacement:
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Alternative Approach — Bootstrapping: 111

e quality of approximation depends upon particular time series

e here are bootstrap approximations to PDF of p; based upon
two other time series of length N = 8, along with true PDF
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e repeating the above for 50 time series yields 50 bootstrap PDFs
e summarize via sample means and standard deviations (SDs):

average of 50 sample means = —0.127 (truth = —0.124)
average of 50 sample SDs = 0.280  (truth = 0.284)
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Alternative Approach — Bootstrapping: 11

e repeat a large number of times M to get /3(11>, /3?), e ,/5<1M>
e plots shows estimated probability density function (PDF) for

,6(11), [)9, e ,ﬁgmo), along with (a) PDF for AV/(0, %) and (b) ap-

proximation to the true PDF for p;
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e can regard sample distribution of {ﬁ%m)} as an approximation
to the unknown distribution of pq

Bootstrapping Correlated Time Series: 1

e key assumption: X contains [ID RVs
e if not true (as for most time series!), sample distribution of
{ﬁgm)} can be a poor approximation to distribution of p;
e as an example, consider first order autoregressive (AR) process:
Xt =9X¢—1 + e,
where ¢ = 0.9 and {&} is zero mean Gaussian white noise

e AR time series of length N = 128 with sample and true ACSs:
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Bootstrapping Correlated Time Series: 11

(1) ~(2) 5(100)

e use same procedure as before to get py 7, p17, ..., Py

e bootstrap approximation to PDF of p; along with true PDF":
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vertical line

/\ ) indicates p
o R

e hootstrap approximation gets even worse as IV increases

e to correct the problem caused by correlation in time series,
can use specialized time- or frequency-domain bootstrapping
(assuming true ACS damps downs sufficiently fast)

Parametric Bootstrapping: 11

e form ) . (1 .
xM=gx 4 =1, N1,
yielding the bootstrapped time series X<1), X{l), - 7X]<\})—1

e AR time series (left-hand plot) and bootstrapped series (right):
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e use bootstrapped series to compute ﬁgl)
e repeat this procedure M times to get /3<11), ﬁ(12), e ,[)gM>
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Parametric Bootstrapping: I

e one well-known time-domain bootstrapping scheme is the para-
metric (or residual) bootstrap

e suppose X is a realization of AR process Xy = ¢ X;_1 + ¢
o note that var {X;} = var {e;} /(1 — ¢2) and p; = ¢!
e in particular, p; = ¢, so can estimate ¢ using g& =N
e since ¢ = Xy — ¢X3_1, can form residuals
re=X;—6X;—q, t=1,...,.N—1,
with the idea that r; will be a good approximation to e;

(1) (1) (1)

eletry’,ry 7, ..., 7y_ bearandomsample from r, 79, ..., 7N _1
e let X(()l) = 7“(()1)/(1 — gzp)l/Q (‘stationary initial condition’)
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Parametric Bootstrapping: 111

e bootstrap approximation to PDF of p; along with true PDF":
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e repeating the above for 50 AR time series yields:

average of 50 sample means = 0.83  (truth = 0.86)
average of 50 sample SDs = 0.053 (truth = 0.048)
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Parametric Bootstrapping: IV

e important assumption: X generated by AR process

e to see what happens if assumption fails, consider a fractionally
differenced (FD) process

_°° I'(1—96)
Xt = ];) T+ DI(1—6—Fk) "

where 0 = 0.45 and {&} is zero mean Gaussian white noise

e F'D time series of length N = 128 with sample and true ACSs:
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Block Bootstrapping: 1

e another time-domain approach is block bootstrapping, which
has many variations, of which the following is the simplest

e break time series up into B blocks (subseries) of equal length:

e generate bootstrapped AR series by randomly sampling blocks:

A A e AT AT NS A e :égl) = 0.63

15

Parametric Bootstrapping: V

e AR process has ‘short-range’ dependence, whereas FD process
exhibits ‘long-range’ (or ‘long-memory’) dependence

e bootstrap approximation to PDF of p; along with true PDF":
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e repeating the above for 50 FD time series yields:

average of 50 sample means = 0.49  (truth = 0.53)
average of 50 sample SDs = 0.078 (truth = 0.107)

note: p; = 0.82 for this FD process; agreement in SD gets
worse (better) as N increases (decreases)
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Block Bootstrapping: II

e bootstrap approximation to PDF of p; along with true PDF":
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e repeating the above for 50 AR time series yields:

average of 50 sample means = 0.75  (truth = 0.86)
average of 50 sample SDs = 0.049 (truth = 0.048)

e repeating the above for 50 FD time series yields:

average of 50 sample means = 0.46  (truth = 0.53)
average of 50 sample SDs = 0.082 (truth = 0.107)
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Frequency-Domain Bootstrapping

e again, many variations, including the following three

e ‘phase scramble’ discrete Fourier transform (DFT)
N-1 . A
Xk — Z Xte—ZQ’/Tk’t/N — Akewk
t=0
of X and apply inverse DFT to create new series
e periodogram-based bootstrapping: in addition to phase scram-
bling, evoke large sample result that |Az|’s are approximately
uncorrelated with distribution related to a chi-square RV with
2 degrees of freedom

e circulant embedding bootstrapping: form nonparametric esti-
mate of spectral density function and generate realizations us-
ing circulant embedding

17

Overview of Discrete Wavelet Transform (DWT): I

e DWT is an orthonormal transform W that reexpresses a time
series X of length N as a vector of DWT coefficients W

W = WX,
where W is an N x N matrix such that X = WI'W
e particular W depends on the choice of

— wavelet filter, the most basic of which is the Haar filter
(fancier filters include the Daubechies family of ‘least asym-
metric’ filters of width L — denoted by LA(L), with L = 8
being a popular choice)

— level Jy, which determines the number of dyadic scales 7; =
2J=1 j=1,2,..., Jp, involved in the transform
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Critique of Time/Frequency-Domain Bootstrapping

e time- and frequency-domain approaches are mainly designed
for series with short-range dependence (e.g., AR) and are prob-
lematic for those exhibiting long-range dependence (e.g., FD)

e parametric and frequency-domain bootstraps work best for se-
ries that obey a Gaussian distribution, but can be problematic
for non-Gaussian series

e non-Gaussian series better handled by block bootstrapping, but
quality of this approach depends critically on chosen size for
blocks (ad hoc rule is to set size close to \/N)

e room for improvement: will consider wavelet-based approaches
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Overview of Discrete Wavelet Transform (DWT): II

e DWT coefficient vector W can be partitioned into Jy sub-
vectors of wavelet coefficients W, 7 =1,2,..., Jy, along with
one sub-vector of scaling coefficients V j,

o wavelet coefficients in W ; are associated with changes in aver-
ages over a scale of 7;, whereas the scaling coefficients in 'V Jo
are associated with averages over a scale of 27,

e as a concrete example, let’s look at a level Jy = 4 Haar DWT
of the AR time series

20
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e level Jy = 4 Haar DWT of AR series X, with scale 2 % 74 = 16
scaling coefficient highlighted
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e Haar DWT of FD series X and sample ACSs for each W &
V4, along with 95% confidence intervals for white noise
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e Haar DWT of AR series X and sample ACSs for each W &
V4, along with 95% confidence intervals for white noise
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DWT as a Decorrelating Transform

e for many (but not all!) time series, DWT acts as a decorrelating
transform: to a good approximation, each W is a sample of a
white noise process, and coefficients from different sub-vectors
W, and Wj/ are also pairwise uncorrelated

e variance of coefficients in W depends on j

e scaling coefficients V j, are still autocorrelated, but there will
be just a few of them if Jj is selected to be large

e decorrelating property holds particularly well for FD and other
processes with long-range dependence

e above suggests the following recipe for wavelet-domain boot-
strapping
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Recipe for Wavelet-Domain Bootstrapping

1. given X of length N = 2/ , compute level Jy DWT (the choice
Jo = J — 3 yields 8 coefficients in W ; and 'V j,)

2. randomly sample with replacement from W to create boot-

strapped vector W@, 7=1...,Jy

(b)

. create V Jo using a parametric bootstrap

(O8]

4. apply WT to ng), e Wa;) and VS? to obtain bootstrapped
(b)

time series X() and then form corresponding p;

e repeat above many times to build up sample distribution of
bootstrapped autocorrelations
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Wavelet-Domain Bootstrapping of AR Series
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e approximations to true PDF using (a) Haar & (b) LA(8) wavelets
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e using 50 AR time series and the Haar DWT yields:
average of 50 sample means = 0.67  (truth = 0.86)
average of 50 sample SDs = 0.071 (truth = 0.048)

e using 50 AR time series and the LA(8) DWT yields:

average of 50 sample means = 0.80  (truth = 0.86)
average of 50 sample SDs = 0.055 (truth = 0.048)
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Ilustration of Wavelet-Domain Bootstrapping
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e Haar DWT of FD(0.45) series X (left-hand column) and wavelet-
domain bootstrap thereof (right-hand)
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Wavelet-Domain Bootstrapping of FD Series

e approximations to true PDF using (a) Haar & (b) LA(8) wavelets
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e using 50 FD time series and the Haar DWT yields:
average of 50 sample means = 0.35  (truth = 0.53)
average of 50 sample SDs = 0.096  (truth = 0.107)
e using 50 FD time series and the LA(8) DWT yields:

average of 50 sample means = 0.43  (truth = 0.53)
average of 50 sample SDs = 0.098 (truth = 0.107)
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Effect of Non-Gaussianity: I

e wavelet-domain bootstrapping works well if we can assume
Gaussianity, but can be problematic if this assumption fails

e for non-Gaussian series, wavelet-domain bootstraps are typi-
cally closer to Gaussianity than original series, which poses a
problem for assessing variability in certain statistics
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Effect of Non-Gaussianity: 111

e wavelet-domain bootstraps of Xy and Yy = sign{X;} x Xt2:
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e right-hand plots show estimated PDF's and true original PDFs

Effect of Non-Gaussianity: 11

e consider Gaussian white noise X; and Y; = sign{ X} x XtQ:
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e right-hand plots show estimated PDFs and true PDFs
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Tree-Based Bootstrapping

e to preserve non-Gaussianity, consider using groups (‘trees’) of
wavelet coefficients co-located across small scales as basic sam-
pling unit for bootstrapping at those scales

e wavelet coefficients at large scales treated in same way as in
usual wavelet-domain bootstrap

e scaling coefficients handled using parametric bootstrap

e certain wavelet-based signal denoising schemes for non-Gaussian
noise treat small scales in a special way and large scales in the
same way as in the Gaussian case (see, e.g., Gao, 1997)

e tree-based structuring of wavelet coefficients is key idea behind
denoising using Markov models (Crouse et al., 1998) and notion
of wavelet ‘footprints’ (Dragotti and Vetterli, 2003)
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Illustration of Tree-Based Bootstrapping
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e Haar DWT of FD(0.45) series X (left-hand column) and level
| = 3 tree-based bootstrap thereof (right-hand)
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Summary of Computer Experiments

LAR) j=2j=4
Statistic Process| Parm Block DWT Tree Tree | True
mean AR | 086 083 0.83 0.84 0.85 0.8
FD | 058 0.57 054 0.55 057 0.59

SD AR ]0.016 0.021 0.025 0.025 0.024|0.021
FD 0.025 0.042 0.054 0.051 0.055]0.059

o 50 time series of length N = 1024 for each Y; = sign{X;} x X}

e 100 bootstrap samples from each series, yielding 100 unit lag
sample autocorrelations ﬁgm)

e mean and SD of 100 sample autocorrelations recorded

e table reports averages of these two statistics over 50 time series

e true values based on 100, 000 generated series for each process
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Tree-Based Bootstraps of Non-Gaussian White Noise

e Y} (top row) and j = 5 Haar tree-based bootstrap (bottom)
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e right-hand plots show estimated PDFs and true original PDF

Application to BMW Stock Prices - 1

0.15

0.00

-0.15 -

e right-hand plot: log of daily returns on BMW share prices

e left-hand: nonparametric and Gaussian PDF estimates

e series has small unit lag sample autocorrelation: p; = 0.081.

e large sample theory appropriate for Gaussian white noise gives

standard deviation of 1/4/N = 0.013
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Application to BMW Stock Prices - 11

e bootstrap estimates of standard deviations:

LA®) j=2 j=4
Parm Block DWT Tree Tree | Gaussian
SD est.| 0.012 0.016 0.021 0.019 0.019| 0.013

e since p; = 0.081, bootstrap methods all confirm presence of
autocorrelation (small, but presumably exploitable by traders)
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Concluding Remarks

e wavelet-domain & tree-based bootstraps competitive with para-
metric & block bootstraps for series with short-range depen-
dence and offer improvement in case of long-range dependence

e results to date for tree-based bootstrapping encouraging, but
many questions need to be answered, including:

— are there statistics & non-Gaussian series for which tree-
based approach offers more than just a marginal improve-
ment over wavelet-domain approach?

— what are asymptotic properties of tree-based approach?

— how can the tree-based approach be adjusted to handle sta-
tionary processes that are not well decorrelated by the DW'T?

e thanks to conference organizers for opportunity to speak!
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